Spreading of populations. Travelling-wave behaviour in non-linear equations

Alejandro Gárriz (Insitut de Mathematiques de Toulouse-CNRS)

Joint work with professors Fernando Quiros (Universidad autónoma de Madrid) and Yihong Du (University of New England-Armidale), and with professor Alessandro Audrito (Politecnico di Torino)

11 de mayo de 2023

### Linear models

# Some history. Linear diffusion

# Some history. The spreading of muskrat

Skellam, J.G.

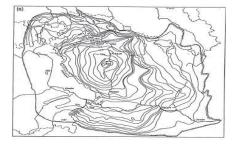
Random dispersal in theoretical populations. Biometrika 38 (1951), 196–218.

- Native to North America, brought to Europe for fur-breeding
- 1905: Five muskrats escaped from a farm near Prague
- Spreading and reproduction ightarrow entire Europe in 50 years
- Today: Millions

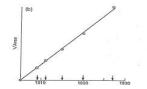


# Some history. Skellam's Observation

### A(t): Area of muskat's range at time t



Range expansion of muskrat from 1905-1927 (after Elton)



Square root of area occupied by muskrat versus time (after Skellam)

### Skellam's observation

 $t 
ightarrow \sqrt{\textit{A}(t)} \sim \textit{radius}(\textit{A}(t))$  is linear (constant spreading speed)

### Some history. The PDE models

This constant spreading speed suggested that the appropiate tools to model the spreading of the population were

random dispersal + natural selection + travelling wave solutions

$$\begin{cases} u_t = \underbrace{\Delta u}_{\text{random dispersal natural selection}} &+ \underbrace{u(1-u)}_{\text{natural selection}}, & (x,t) \in \mathbb{R} \times \mathbb{R}^+ \\ u(x,0) = u_0(x), & x \in \mathbb{R} \end{cases}$$

### Some history. The PDE models

This constant spreading speed suggested that the appropiate tools to model the spreading of the population were

random dispersal + natural selection + travelling wave solutions

$$\begin{cases} u_t = \underbrace{\Delta u}_{\text{random dispersal natural selection}} &+ \underbrace{u(1-u)}_{\text{natural selection}} &, \quad (x,t) \in \mathbb{R} \times \mathbb{R}^+ \\ u(x,0) = u_0(x), \quad x \in \mathbb{R} \end{cases}$$

Travelling waves with constant speed c are solutions of the form  $V(\xi)$ with  $\xi = x \cdot \mu - ct$ ,  $\mu \in \mathbb{R}^N$ , that satisfy

$$\Delta V + cV' + V(1-V) = 0.$$

### Some history. The PDE models

This constant spreading speed suggested that the appropiate tools to model the spreading of the population were

random dispersal + natural selection + travelling wave solutions

$$\begin{cases} u_t = \underbrace{\Delta u}_{\text{random dispersal natural selection}} + \underbrace{u(1-u)}_{\text{natural selection}}, \quad (x,t) \in \mathbb{R} \times \mathbb{R}^+ \\ u(x,0) = u_0(x), \quad x \in \mathbb{R} \end{cases}$$

Travelling waves with constant speed c are solutions of the form  $V(\xi)$ with  $\xi = x \cdot \mu - ct$ ,  $\mu \in \mathbb{R}^N$ , that satisfy

$$\Delta V + cV' + V(1-V) = 0.$$

In particular, we are interested in wavefront solutions , which are travelling waves that also satisfy

$$V(-\infty) = 1, \quad V(\infty) = 0$$

- Fisher, R. A. *The wave of advance of advantageous genes.* Ann. Eugenics 7 (1937), 355–369.
- Kolmogorov, A. N.; Petrovskii, I. G.; Piscunov, N. S. Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application á un problème biologique. Moscow Univ. Bull. Math., Série Internat., Sec. A, Math. et Méc. 1(6) (1937), 1–25.

$$\left\{egin{aligned} &u_t = \Delta u + f(u), \ &f(0) = f(1) = 0, \quad f(u) > 0, 0 < u < 1, \ &f'(0) > 0, \quad f'(u) < f'(0), 0 < u \leq 1 \end{aligned}
ight.$$

4

- Fisher, R. A. *The wave of advance of advantageous genes.* Ann. Eugenics 7 (1937), 355–369.
- Kolmogorov, A. N.; Petrovskii, I. G.; Piscunov, N. S. Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application á un problème biologique. Moscow Univ. Bull. Math., Série Internat., Sec. A, Math. et Méc. 1(6) (1937), 1–25.

$$\left\{egin{aligned} &u_t = \Delta u + f(u), \ &f(0) = f(1) = 0, \quad f(u) > 0, 0 < u < 1, \ &f'(0) > 0, \quad f'(u) < f'(0), 0 < u \leq 1 \end{aligned}
ight.$$

### Theorem

 $\exists$  ! (up to translations) wavefront  $V_c \Leftrightarrow c \geq c^* = \sqrt{2f'(0)}$ 

ć

KPP went even further. Let  $V_{c^*}(0) = 1/2$  (normalization) and  $u_0(x)$  a Heaviside initial datum.

#### Theorem

$$u(x+S(t),t) o V_{c^*}(x), \quad S'(t) o c^* ext{ as } t o \infty$$

KPP went even further. Let  $V_{c^*}(0) = 1/2$  (normalization) and  $u_0(x)$  a Heaviside initial datum.

### Theorem

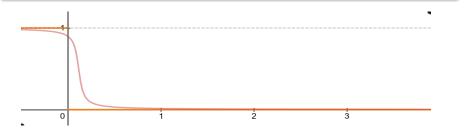
$$u(x+S(t),t) 
ightarrow V_{c^*}(x), \quad S'(t) 
ightarrow c^* ext{ as } t 
ightarrow \infty$$



KPP went even further. Let  $V_{c^*}(0) = 1/2$  (normalization) and  $u_0(x)$  a Heaviside initial datum.

#### Theorem

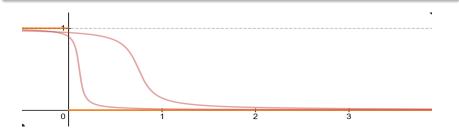
$$u(x+S(t),t)
ightarrow V_{c^*}(x), \quad S'(t)
ightarrow c^* ext{ as } t
ightarrow \infty$$



KPP went even further. Let  $V_{c^*}(0) = 1/2$  (normalization) and  $u_0(x)$  a Heaviside initial datum.

#### Theorem

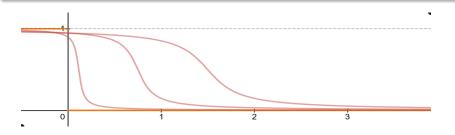
$$u(x+S(t),t)
ightarrow V_{c^*}(x), \quad S'(t)
ightarrow c^* ext{ as } t
ightarrow \infty$$



KPP went even further. Let  $V_{c^*}(0) = 1/2$  (normalization) and  $u_0(x)$  a Heaviside initial datum.

#### Theorem

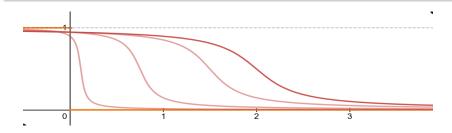
$$u(x+S(t),t)
ightarrow V_{c^*}(x), \quad S'(t)
ightarrow c^* ext{ as } t
ightarrow \infty$$



KPP went even further. Let  $V_{c^*}(0) = 1/2$  (normalization) and  $u_0(x)$  a Heaviside initial datum.

#### Theorem

$$u(x+S(t),t) 
ightarrow V_{c^*}(x), \quad S'(t) 
ightarrow c^* ext{ as } t 
ightarrow \infty$$



 Aronson, D. G.; Weinberger, H. F. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30 (1978), no. 1, 33–76.

Later on, Aronson & Weinberger expanded the results to:

- Dimension  $N \ge 1$
- More reaction terms
- Spreading VS vanishing

 Aronson, D. G.; Weinberger, H. F. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30 (1978), no. 1, 33–76.

Later on, Aronson & Weinberger expanded the results to:

- Dimension  $N \ge 1$
- More reaction terms
- Spreading VS vanishing  $\Rightarrow u \rightarrow 1$  (or other equilibrium > 0) or  $u \rightarrow 0$ ?

 Aronson, D. G.; Weinberger, H. F. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30 (1978), no. 1, 33–76.

Later on, Aronson & Weinberger expanded the results to:

- Dimension  $N \ge 1$
- More reaction terms
- Spreading VS vanishing  $\Rightarrow u \rightarrow 1$  (or other equilibrium > 0) or  $u \rightarrow 0$ ?

Theorem. Critical speed of propagation  $c^*$ 

When there is spreading:

$$0 \le c < c^* : \inf_{\substack{|x| \le ct}} u \to 1$$
$$c > c^* : \sup_{\substack{|x| \ge ct}} u \to 0$$

 Aronson, D. G.; Weinberger, H. F. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30 (1978), no. 1, 33–76.

Later on, Aronson & Weinberger expanded the results to:

- Dimension  $N \ge 1$
- More reaction terms  $\Rightarrow$  Not only f(u) = u(1-u)
- Spreading VS vanishing

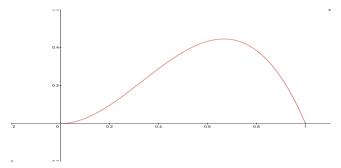
Theorem. Critical speed of propagation  $c^*$ 

When there is spreading:

$$0 \le c < c^*: \inf_{|x| \le ct} u \to 1$$
  
 $c > c^*: \sup_{|x| \ge ct} u \to 0$ 

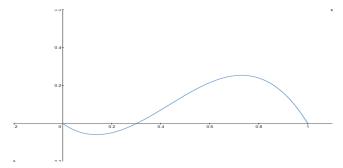
### The reaction terms

### Monostable reaction



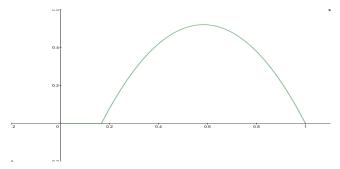
### The reaction term

### **Bistable reaction**



### The reaction term

### **Combustion reaction**



The behaviour of the centering term S(t) was also studied for other initial data and other reaction terms (which allowed  $c^* > \sqrt{2f'(0)}$ ). We differentiate between pulled ( $c^* = \sqrt{2f'(0)}$ ) and pushed ( $c^* > \sqrt{2f'(0)}$ ) wavefronts.

The behaviour of the centering term S(t) was also studied for other initial data and other reaction terms (which allowed  $c^* > \sqrt{2f'(0)}$ ). We differentiate between pulled ( $c^* = \sqrt{2f'(0)}$ ) and pushed ( $c^* > \sqrt{2f'(0)}$ ) wavefronts.

[Stokes, MB'1976]

Heaviside initial data, pushed case  $\rightarrow S(t) = c^*t + O(1)$ 

The behaviour of the centering term S(t) was also studied for other initial data and other reaction terms (which allowed  $c^* > \sqrt{2f'(0)}$ ). We differentiate between pulled ( $c^* = \sqrt{2f'(0)}$ ) and pushed ( $c^* > \sqrt{2f'(0)}$ ) wavefronts.

### [Stokes, MB'1976]

Heaviside initial data, pushed case  $\rightarrow S(t) = c^*t + O(1)$ 

### [Uchiyama, JMKU'1978]

Heaviside-like ini. data, pulled case  $\rightarrow S(t) = c^* t - \frac{3}{2c^*} \log t + O(\log \log t)$ 

Let us focus now in the convergence in dimension N > 1. If we consider radially symmetric initial data then we study our equation in radial coordinates r = |x|:

$$u_t = u_{rr} + \frac{N-1}{r}u_r + f(u).$$

Let us focus now in the convergence in dimension N > 1. If we consider radially symmetric initial data then we study our equation in radial coordinates r = |x|:

$$u_t = u_{rr} + \frac{N-1}{r}u_r + f(u).$$

[Gärtner, MN'1981]

Pulled case 
$$\rightarrow S(t) = c^*t - \frac{N+2}{2c^*}\log t + O(1)$$

Let us focus now in the convergence in dimension N > 1. If we consider radially symmetric initial data then we study our equation in radial coordinates r = |x|:

$$u_t = u_{rr} + \frac{N-1}{r}u_r + f(u).$$

### [Gärtner, MN'1981]

Pulled case 
$$\rightarrow S(t) = c^*t - \frac{N+2}{2c^*}\log t + O(1)$$

### [Uchiyama, ARMA'1985]

Pushed case 
$$\rightarrow S(t) = c^*t - \frac{N-1}{2c^*}\log t + O(1)$$

# Some (recent) history. Known results

But, most notably, recently it has been shown that for non-radially symmetric initial data there is, sometimes, no radialization of the solution

# Some (recent) history. Known results

But, most notably, recently it has been shown that for non-radially symmetric initial data there is, sometimes, no radialization of the solution

[Roquejoffre, Rossi & Roussier-Michon, DCDS'2019]

$$u(x,t) \sim V_{c^*}\left(|x| - c^*t + \frac{N+2}{2c^*}\log t + s(x/|x|)
ight)$$

with  $s \in Lip(\mathbb{S}^N)$ 

# Some (recent) history. Known results

But, most notably, recently it has been shown that for non-radially symmetric initial data there is, sometimes, no radialization of the solution

[Roquejoffre, Rossi & Roussier-Michon, DCDS'2019]

$$u(x,t) \sim V_{c^*}\left(|x| - c^*t + rac{N+2}{2c^*}\log t + s(x/|x|)
ight)$$

with  $s \in Lip(\mathbb{S}^N)$ 

[Rossi PAMS'2017]

But s is, in general, not constant. A counter-example is showcased

### Index

Some history. Linear diffusion

**(2)** Nonlinear diffusion in  $\mathbb{R}^N$ 

Onlinear Diffusion in a tubular domain

### Open Questions

# Nonlinear Diffusion in $\mathbb{R}^N$

Nonlinear diffusion presents several different characteristics to the linear one, but the main quality that we are interested in is how it affects the speed of propagation of the species.

Nonlinear diffusion presents several different characteristics to the linear one, but the main quality that we are interested in is how it affects the speed of propagation of the species.

• Degenerate diffusion - Vanishing diffusivity. Finite speed of propagation, often called **slow** diffusion, since it maintains the finitness of the support of the solution.

Nonlinear diffusion presents several different characteristics to the linear one, but the main quality that we are interested in is how it affects the speed of propagation of the species.

- Degenerate diffusion Vanishing diffusivity. Finite speed of propagation, often called **slow** diffusion, since it maintains the finitness of the support of the solution.
- Singular diffusion Blow-up in the diffusivity. Very fast speed of propagation, thus called **fast** diffusion. Not the focus of this talk.

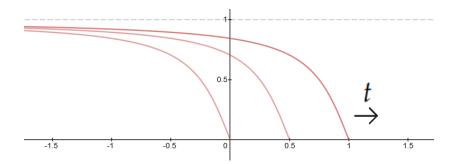
# Wavefronts in Nonlinear diffusion

The change on the diffusivity affects, of course, the shape of the wavefront solutions of the problem. Tipically,

#### Typical result

- $\exists$  ! (up to translations) wavefront  $\Leftrightarrow c \ge c^* > 0$ . Moreover, in the degenerate regime, if
  - $c > c^*$ : Positive wavefronts ( $V_{c^*} > 0$  for all  $\xi \in \mathbb{R}$ )
  - $c = c^*$ : Finite wavefronts ( $V_{c^*}(\xi) \equiv 0$  for all  $\xi \ge \xi^*$ )

## Finite Wavefront



### Physical motivations.

- **Biology** Growth of population depending on its density and a Pearl-Verhaulst type reaction.
- Gurtin, M. E.; MacCamy, R. C. <u>On the diffusion of biological</u> populations. Math. Biosci. 33 (1977), no. 1–2, 35–49.

## Physical motivations.

- **Biology** Growth of population depending on its density and a Pearl-Verhaulst type reaction.
- Gurtin, M. E.; MacCamy, R. C. <u>On the diffusion of biological</u> populations. Math. Biosci. 33 (1977), no. 1–2, 35–49.
- **Chemistry** Combustion with thermal conductivity depending on the temperature.
- Zel'dovich, Ya. B.; Raizer, Yu. P. <u>Physics of Shock Waves and</u> <u>High-Temperature Hydrodynamic Phenomena.</u> Dover Books on <u>Physics (1967).</u>

## Physical motivations.

- **Biology** Growth of population depending on its density and a Pearl-Verhaulst type reaction.
- Gurtin, M. E.; MacCamy, R. C. <u>On the diffusion of biological</u> populations. Math. Biosci. 33 (1977), no. 1–2, 35–49.
- **Chemistry** Combustion with thermal conductivity depending on the temperature.
- Zel'dovich, Ya. B.; Raizer, Yu. P. <u>Physics of Shock Waves and</u> <u>High-Temperature Hydrodynamic Phenomena.</u> Dover Books on Physics (1967).
- Astronomy Propagation of intergalatic civilizations.
- Newman, W. I.; Sagan, C. <u>Galactic civilizations: population dynamics</u> <u>and interstellar diffusion</u>. Icarus 46 (1981), 293–327.

# Without further delay, let us show the model that will be the focus of this talk

For m > 0, p > 1 s.t. m(p-1) > 1 (slow diff.), let us study the equation

$$\begin{cases} u_t = \Delta_p u^m + h(u) & \text{in } Q := \mathbb{R}^N \times \mathbb{R}_+, \\ u(\cdot, 0) = u_0 \ge 0 & \text{in } \mathbb{R}^N, \end{cases}$$
(1)

where  $\Delta_p u^m = \nabla \cdot (|\nabla u^m|^{p-2} \nabla u^m).$ 

For m > 0, p > 1 s.t. m(p-1) > 1 (slow diff.), let us study the equation

$$\begin{cases} u_t = \Delta_p u^m + h(u) & \text{in } Q := \mathbb{R}^N \times \mathbb{R}_+, \\ u(\cdot, 0) = u_0 \ge 0 & \text{in } \mathbb{R}^N, \end{cases}$$
(1)

where  $\Delta_p u^m = \nabla \cdot (|\nabla u^m|^{p-2} \nabla u^m)$ . The reaction term *h* is assumed to be in  $C^1(\mathbb{R}_+)$  and to fulfill, for some  $a \in [0, 1)$ ,

$$f'(h(0) = 0, h'(1) < 0$$
  
 $h(u) \le 0 \text{ if } u \in [0, a],$   
 $h(u) > 0 \text{ if } u \in (a, 1),$   
 $h(u) < 0 \text{ if } u > 1,$ 

For m > 0, p > 1 s.t. m(p-1) > 1 (slow diff.), let us study the equation

$$\begin{cases} u_t = \Delta_p u^m + h(u) & \text{in } Q := \mathbb{R}^N \times \mathbb{R}_+, \\ u(\cdot, 0) = u_0 \ge 0 & \text{in } \mathbb{R}^N, \end{cases}$$
(1)

where  $\Delta_p u^m = \nabla \cdot (|\nabla u^m|^{p-2} \nabla u^m)$ . The reaction term *h* is assumed to be in  $C^1(\mathbb{R}_+)$  and to fulfill, for some  $a \in [0, 1)$ ,

$$\begin{cases} h(0) = 0, & h'(1) < 0 \\ h(u) \le 0 \text{ if } u \in [0, a], \\ h(u) > 0 \text{ if } u \in (a, 1), \\ h(u) < 0 \text{ if } u > 1, \\ \int_{0}^{1} m u^{m-1} h(u) \ du > 0 \end{cases}$$

For m > 0, p > 1 s.t. m(p - 1) > 1 (slow diff.), let us study the equation

$$\begin{cases} u_t = \Delta_p u^m + h(u) & \text{in } Q := \mathbb{R}^N \times \mathbb{R}_+, \\ u(\cdot, 0) = u_0 \ge 0 & \text{in } \mathbb{R}^N, \end{cases}$$
(1)

where  $\Delta_p u^m = \nabla \cdot (|\nabla u^m|^{p-2} \nabla u^m)$ . The reaction term *h* is assumed to be in  $C^1(\mathbb{R}_+)$  and to fulfill, for some  $a \in [0, 1)$ ,

$$\begin{cases} h(0) = 0, \quad h'(1) < 0 \\ h(u) \le 0 \text{ if } u \in [0, a], \\ h(u) > 0 \text{ if } u \in (a, 1), \\ h(u) < 0 \text{ if } u > 1, \\ \int_{0}^{1} m u^{m-1} h(u) \ du > 0 \Rightarrow c^{*} > 0 \end{cases}$$

$$(2)$$

• **Spreading VS vanishing**: When does the solution *u* spread the value 1 along the medium?

- **Spreading VS vanishing**: When does the solution *u* spread the value 1 along the medium?
- Speed of propagation: How fast does it propagate?

- **Spreading VS vanishing**: When does the solution *u* spread the value 1 along the medium?
- Speed of propagation: How fast does it propagate?
- **Uniform convergence**: Which shape does the solution take when propagating?

- **Spreading VS vanishing**: When does the solution *u* spread the value 1 along the medium?
- Speed of propagation: How fast does it propagate?
- **Uniform convergence**: Which shape does the solution take when propagating?

The first step is to characterize the wavefront solutions of (1) with speed  $\sigma$ , a function  $V(\xi)$  with  $\xi = x \cdot \mu - \sigma t$ ,  $\mu \in \mathbb{R}^N$ , that satisfies

$$\Delta_{\rho}(V^{m}) + \sigma V' + h(V) = 0, \quad V(-\infty) = 1, \quad V(\infty) = 0$$
 (3)

## Wavefronts for the equation

The existence and characterization of the TW, in particular those which are wavefronts, is a topic that deserves a presentation by itself. For the sake of brevity, let us present just the result we need for now.

## Wavefronts for the equation

The existence and characterization of the TW, in particular those which are wavefronts, is a topic that deserves a presentation by itself. For the sake of brevity, let us present just the result we need for now.

#### Theorem (G.): Wavefronts for equation (1)

There exists a minimal speed  $\sigma^* = \sigma^*(m, p, h) > 0$  such that equation (1) has an unique (up to translations) distinct monotonic "change of fase type" wavefront satisfying

$$\lim_{\xi\to -\infty}V_{\sigma^*}(\xi)=1, \quad V_{\sigma^*}(\xi)\equiv 0 \,\, \text{for} \,\, \xi\geq \xi_0 \quad \text{and} \quad 0\leq V_{\sigma^*}<1$$

for a certain  $\xi_0 \in \mathbb{R}$ .

• Gárriz, A. Singular integral equations with applications to travelling waves for doubly nonlinear diffusion. Preprint. Available at arXiv:2001.11109. Accepted for publication.

A. Gárriz

Spreading of populations

#### There can always be spreading for every reaction term.

Our next result states that for every reaction h there exist certain initial data of compact support for which our solution propagates. It depends on how much mass  $u_0$  has and how concentrated it is.

#### There can always be spreading for every reaction term.

Our next result states that for every reaction h there exist certain initial data of compact support for which our solution propagates. It depends on how much mass  $u_0$  has and how concentrated it is.

#### Theorem (G., Du, Quirós): Condition on the initial data

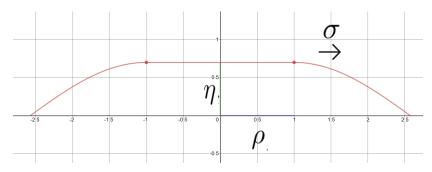
There exists a three-parameter  $(\sigma, \eta, \rho)$  family of functions v such that if

$$u(x,0) \ge v(x-x_0;\sigma,\eta,\rho)$$

for some  $x_0 \in \mathbb{R}^N$  and admissible  $\sigma, \eta, \rho > 0$ , then u converges to 1 uniformly on compact sets.

#### There can always be spreading for every reaction term.

#### An example of a function of this three-parameter family.



#### There can always be spreading for every initial datum.

Next, we see that certain reactions always lead to propagation, regardless on the mass of the initial datum. It depends on the behaviour that h presents near u = 0 compared to the **Fujita exponent**. This is called the **hair-trigger effect**.

#### There can always be spreading for every initial datum.

Next, we see that certain reactions always lead to propagation, regardless on the mass of the initial datum. It depends on the behaviour that h presents near u = 0 compared to the **Fujita exponent**. This is called the **hair-trigger effect**.

#### Theorem (G., Du, Quirós): Condition on the reaction

Suppose that

$$\liminf_{u\to 0}\frac{h(u)}{u^{m(p-1)+p/N}}>0.$$

and that  $u \neq 0$ .

Then *u* converges to 1 uniformly on compact sets.

# Speed of propagation

#### Theorem (G., Du, Quirós): Speed of propagation

Whenever spreading happens, for any  $\sigma \in (0, \sigma^*)$ 

$$\lim_{t\to\infty}\min_{|x-x_0|\leq\sigma t}u(x,t)=1.$$

and for any  $\sigma > \sigma^*$ 

$$\lim_{t\to\infty} u(x,t) = 0 \quad \text{ for } \quad |x-x_0| \ge \sigma t.$$

Moving too slow will translate to  $\sigma < \sigma^*$  (saturated environment), and too fast to  $\sigma > \sigma^*$  (empty environment).

Remember that the results about the critical speed  $\sigma^*$  don't say anything about the shape of the function for long times near the front, i.e., near the free boundary.

Remember that the results about the critical speed  $\sigma^*$  don't say anything about the shape of the function for long times near the front, i.e., near the free boundary.

Moreover, there can appear logarithmic corrections in the speed of the free boundary, as we have seen. How do we address this problem?

Remember that the results about the critical speed  $\sigma^*$  don't say anything about the shape of the function for long times near the front, i.e., near the free boundary.

Moreover, there can appear logarithmic corrections in the speed of the free boundary, as we have seen. How do we address this problem? **Remark:** We maintain the slow-diffusion regime hypothesis m(p-1) > 1 but from here on we also assume that  $p \ge 2$ .

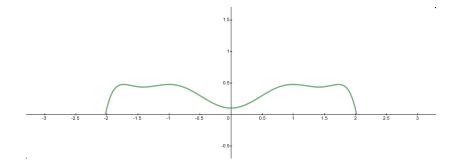
The main result regarding this question is the following.

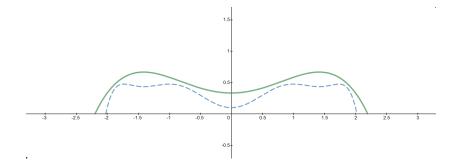
#### Theorem (G., Du, Quirós): Main result

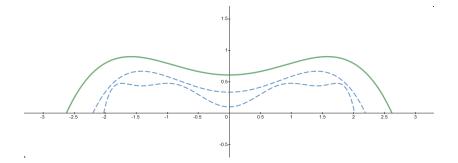
Let m(p-1) > 1 and  $p \ge 2$ . Let u be a spreading solution of (1) corresponding to a bounded, radially symmetric and compactly supported initial data  $u_0$ , and let  $\eta(t)$  be the function describing its interface. Then there is a constant  $r_0$  such that

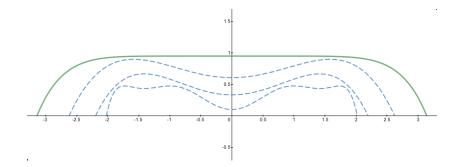
$$\begin{split} & \lim_{t \to \infty} \sup_{r \ge 0} |u(r,t) - V_{\sigma^*}(r - \sigma^* t + (N-1)\sigma_{\#} \log t - r_0)| = 0 \quad \text{and} \\ & \lim_{t \to \infty} \eta(t) - \sigma^* t + (N-1)\sigma_{\#} \log t = r_0, \end{split}$$

where  $\sigma_{\#}$  is a certain positive constant.









The key idea for the proof is the following. Let us consider the equation in radial coordinates. Taking r := |x| we get

$$u_t = \left( |(u^m)_r|^{p-2} (u^m)_r \right)_r + \frac{N-1}{r} |(u^m)_r|^{p-2} (u^m)_r + h(u)_r$$

The key idea for the proof is the following. Let us consider the equation in radial coordinates. Taking r := |x| we get

$$u_t = \left( |(u^m)_r|^{p-2}(u^m)_r \right)_r + \frac{N-1}{r} |(u^m)_r|^{p-2}(u^m)_r + h(u),$$

but near the free boundary, due to the previous result,  $r \sim \sigma^* t$ , and hence

$$rac{N-1}{r}pprox \gamma(t):=rac{N-1}{\sigma^*t}.$$

Therefore it is natural to study the equation

$$u_t = \left( |(u^m)_r|^{p-2} (u^m)_r \right)_r + \gamma |(u^m)_r|^{p-2} (u^m)_r + h(u), \tag{4}$$

for a fixed small  $\gamma > 0$  (since t will be big), and we can show that it has finite wavefront with speed  $\sigma(\gamma)$ .

Therefore it is natural to study the equation

$$u_t = \left( |(u^m)_r|^{p-2} (u^m)_r \right)_r + \gamma |(u^m)_r|^{p-2} (u^m)_r + h(u), \tag{4}$$

for a fixed small  $\gamma > 0$  (since t will be big), and we can show that it has finite wavefront with speed  $\sigma(\gamma)$ . Moreover, if we define

$$\eta(t) = \inf\{r > 0 : u(x, t) = 0 \text{ if } |x| > r\}$$

we conjecture that

$$\eta'(t)pprox\sigma(\gamma(t))pprox\sigma(0)+\sigma'(0)\gamma(t)=\sigma^*+\sigma'(0)rac{N-1}{\sigma^*t}$$

for large times

Therefore it is natural to study the equation

$$u_t = \left( |(u^m)_r|^{p-2} (u^m)_r \right)_r + \gamma |(u^m)_r|^{p-2} (u^m)_r + h(u), \tag{4}$$

for a fixed small  $\gamma > 0$  (since t will be big), and we can show that it has finite wavefront with speed  $\sigma(\gamma)$ . Moreover, if we define

$$\eta(t) = \inf\{r > 0 : u(x, t) = 0 \text{ if } |x| > r\}$$

we conjecture that

$$\eta'(t) pprox \sigma(\gamma(t)) pprox \sigma(0) + \sigma'(0)\gamma(t) = \sigma^* + \sigma'(0)rac{N-1}{\sigma^* t}$$

for large times, and hence

$$\eta(t) pprox \sigma^* t - (N-1)\sigma_\# \log t \quad \text{as } t o \infty,$$

with  $\sigma_{\#} = -\sigma'(0)/\sigma^* > 0$ .

It is here where we see a logarithmic correction (similar to Stokes') appearing, for dimensions bigger than 1, in the free boundary term. This correction is provoked, from an analytical point of view, by the extra convection term in radial coordinates.

### Convergence of solutions of compact support.

It is here where we see a logarithmic correction (similar to Stokes') appearing, for dimensions bigger than 1, in the free boundary term. This correction is provoked, from an analytical point of view, by the extra convection term in radial coordinates.

Notice also that, most notably, there are no pulled solutions. The compactness of the support forbids the *pioneers to pull from the front*. Every solution is *pushed forward by what's behind the front*.

# Bibliography

#### **Bibliography:**

The results presented here can be found in

 Du, Y.; Gárriz, A.; Quirós, F. Travelling-wave behaviour in doubly nonlinear reaction-diffusion equations. Preprint. Available at arXiv:2009.12959

### Nonlinear Diffusion

# Nonlinear Diffusion in a tubular domain

This time we consider a bounded domain  $D \subset \mathbb{R}^N$  and study the equation

$$\left\{egin{aligned} &u_t=\Delta u^m,\quad (x,t)\in\Omega imes\mathbb{R}^+,\ &u=0,\quad (x,t)\in\partial\Omega imes\mathbb{R}^+,\ &u(x,0)=u_0(x),\quad x\in\Omega, \end{aligned}
ight.$$

where  $\Omega = D \times \mathbb{R} \subset \mathbb{R}^{N+1}$ .

This time we consider a bounded domain  $D \subset \mathbb{R}^N$  and study the equation

$$\begin{cases} u_t = \Delta u^m, \quad (x,t) \in \Omega \times \mathbb{R}^+, \\ u = 0, \quad (x,t) \in \partial\Omega \times \mathbb{R}^+, \\ u(x,0) = u_0(x), \quad x \in \Omega, \end{cases}$$

where  $\Omega = D \times \mathbb{R} \subset \mathbb{R}^{N+1}$ . We consider  $v(x, \tau) = t(\tau)^{\frac{1}{m-1}} u(x, \tau), \tau = \ln t$  and thus the equation becomes

$$\left\{egin{aligned} & v_{ au}=\Delta v^m+rac{1}{m-1}v, \quad (x,t)\in\Omega imes\mathbb{R}, \ & v=0, \quad (x,t)\in\partial\Omega imes\mathbb{R}, \end{aligned}
ight.$$

with initial data  $v_0(x)$  compactly supported in the tube.

The key idea here is to consider separated variables  $x = (z, y) \in D \times \mathbb{R}$ and show that there exists a solution  $\varphi(z, y, \tau) = \varphi(z, y - c^*\tau)$  that we call *travelling wave in the tube* and satisfies, for  $\xi = y - c^*t$ ,

The key idea here is to consider separated variables  $x = (z, y) \in D \times \mathbb{R}$ and show that there exists a solution  $\varphi(z, y, \tau) = \varphi(z, y - c^*\tau)$  that we call *travelling wave in the tube* and satisfies, for  $\xi = y - c^*t$ ,

$$\Delta_x \varphi + c^* \partial_\xi \varphi + rac{1}{m-1} \varphi = 0,$$

having also the properties

$$\partial_{\xi} \varphi \leq 0, \quad \lim_{\xi \to -\infty} rac{\varphi(z,\xi)}{\Phi(z)} = 1 \quad ext{and} \quad \sup_{z \in D} \varphi(z,\xi) = 0 ext{ for all } \xi \geq \xi_0$$

for a certain  $\xi_0 \in \mathbb{R}$ ,

The key idea here is to consider separated variables  $x = (z, y) \in D \times \mathbb{R}$ and show that there exists a solution  $\varphi(z, y, \tau) = \varphi(z, y - c^*\tau)$  that we call *travelling wave in the tube* and satisfies, for  $\xi = y - c^*t$ ,

$$\Delta_x \varphi + c^* \partial_\xi \varphi + rac{1}{m-1} \varphi = 0,$$

having also the properties

$$\partial_{\xi} \varphi \leq 0, \quad \lim_{\xi \to -\infty} rac{\varphi(z,\xi)}{\Phi(z)} = 1 \quad ext{and} \quad \sup_{z \in D} \varphi(z,\xi) = 0 ext{ for all } \xi \geq \xi_0$$

for a certain  $\xi_0 \in \mathbb{R}$ , where  $\Phi(z)$  is the solution to the problem

$$egin{cases} \Delta \Phi^m + rac{1}{m-1} \Phi = 0, \quad z \in D \ \Phi = 0, \quad z \in \partial D \end{cases}$$

The existence of tavelling-wave solutions was studied in [Vázquez, CCM'2007] and the characterization of the critical speed  $c^*$  and the long time behaviour of solutions away from the boundaries in [Gilding & Goncerzewicz, IFB'2015], but two key questions remained open:

- Uniform convergence in the whole domain  $\boldsymbol{\Omega}$  for non-convex free boundaries
- Convergence in relative error to the profile  $\Phi(z)$  in bounded domains

The existence of tavelling-wave solutions was studied in [Vázquez, CCM'2007] and the characterization of the critical speed  $c^*$  and the long time behaviour of solutions away from the boundaries in [Gilding & Goncerzewicz, IFB'2015], but two key questions remained open:

- Uniform convergence in the whole domain  $\boldsymbol{\Omega}$  for non-convex free boundaries
- Convergence in relative error to the profile  $\Phi(z)$  in bounded domains (ACHIEVED)

The last question was answered in a recent work with A. Audrito and F. Quirós:

• Audrito, A.; Gárriz, A.; Quirós, F. *Convergence in relative error for the Porous Medium equation in a tube.* Preprint. Available at arXiv:2204.08224. Accepted for publication.

#### Theorem (Audrito, G., Quirós):

The solution v satisfies, for every  $c \in (0, c_*)$ ,

$$\lim_{\tau \to +\infty} \sup_{z \in D, \ |y| \le c\tau} \left| \frac{v(z, y, \tau)}{\Phi(z)} - 1 \right| = 0.$$
(5)

For every  $c>c_*$ , there exists  $au_c>0$  such that

$$v(z, y, \tau) = 0$$
 in  $D \times \{|y| \ge c\tau\}, \quad \forall \tau \ge \tau_c.$  (6)

Finally, there exists T > 0 (depending only on m, D,  $u_0$  and  $t_0 > 0$ ) such that for every  $\tau > T$ , the free boundary of v is made by two disjoint locally Hölder hypersurfaces.

#### Nonlinear diffusion

# **Open Questions**

But, to discuss open problems, let us go back to equation

$$u_t = \Delta_p u^m + h(u), \quad (x,t) \in \mathbb{R}^N \times \mathbb{R}^+$$

But, to discuss open problems, let us go back to equation

$$u_t = \Delta_p u^m + h(u), \quad (x,t) \in \mathbb{R}^N \times \mathbb{R}^+$$

• What is the precise threshold (depending on the initial datum) for the spreading VS vanishing dichotomy?

But, to discuss open problems, let us go back to equation

$$u_t = \Delta_p u^m + h(u), \quad (x,t) \in \mathbb{R}^N \times \mathbb{R}^+$$

- What is the precise threshold (depending on the initial datum) for the spreading VS vanishing dichotomy?
- When the solution goes to 0, does it so approaching a certain profile?

But, to discuss open problems, let us go back to equation

$$u_t = \Delta_{\rho} u^m + h(u), \quad (x,t) \in \mathbb{R}^N \times \mathbb{R}^+$$

- What is the precise threshold (depending on the initial datum) for the spreading VS vanishing dichotomy?
- When the solution goes to 0, does it so approaching a certain profile?
- Is there a no-symmetry effect in the free boundary a la R-R-RM?

The first two questions have been recently addressed by B. Lou and M. Zhou for some particular reaction terms in the case p = 2, see arXiv:2211.00001.

But, to discuss open problems, let us go back to equation

$$u_t = \Delta_{\rho} u^m + h(u), \quad (x,t) \in \mathbb{R}^N \times \mathbb{R}^+$$

- What is the precise threshold (depending on the initial datum) for the spreading VS vanishing dichotomy?
- When the solution goes to 0, does it so approaching a certain profile?
- Is there a no-symmetry effect in the free boundary a la R-R-RM?

The first two questions have been recently addressed by B. Lou and M. Zhou for some particular reaction terms in the case p = 2, see arXiv:2211.00001.

At this moment I am looking forward to studying these questions in detail for the doubly non-linear diffusion equation.

### Thanks

Thanks for your attention!