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Large global solutions of the parabolic-parabolic
Keller-Segel system in Rd and blowup for related toy
models

ut −∆u +∇ · (u∇ϕ) = 0,

τϕt = ∆ϕ+ u,

u(x , 0) = u0(x) ≥ 0,

(x , t) ∈ Rd × [0,T ), d ≥ 2,

u(x , t) ≥ 0 — the density of the population of microorganisms,
ϕ(x , t) — the density of the chemical secreted by themselves that
attracts them and makes them to aggregate.

As τ ↘ 0 solutions of the above (PP) system converge to those of
the parabolic-elliptic KS system (PE) with ∆ϕ+ u = 0
(A. Raczyński 2009, PB + L. Brandolese 2009, P.-G.
Lemarié-Rieusset 2013, ... , M. Kurokiba + T. Ogawa 2020, ...).

What about τ � 1 ?
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Motivations

• (an early result PB + L. Corrias + J. Dolbeault 2008)
The scaling transformation uλ(t, x) = λ2u(λ2t, λx), ϕλ(t, x) =
ϕ(λ2t, λx) for every λ > 0, leaves the Keller–Segel system
invariant. Each solution invariant under this scaling
u(t, x) = uλ(t, x), ϕ(t, x) = ϕλ(t, x), λ > 0, is called
a self-similar solution to system KS. It has the form

u(t, x) =
1

t
U

(
x√
t

)
, ϕ(t, x) = Φ

(
x√
t

)
with U(x) = u(1, x) and Φ(x) = ϕ(1, x).

In d = 2 one has u(0, x) = Mδ with M ∈ [0,M(τ));
8π = M(τ) for τ ∈ (0, 1

2 ), M(τ)↗∞ as τ →∞.

Nonuniqueness of self-similar solutions for large τ � 1 and
sufficiently large M.
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For d ≥ 3 if the limit u0(x) ≡ limt→0
1
tU
(

x√
t

)
exists (for example,

in the sense of distributions), then the initial datum u0 has to be
homogeneous of degree −2.

In particular, we will construct radial, nonnegative self-similar
solutions to system KS corresponding to initial data of the form
u0(x) = M

|x |2 for some constant M > 0.

When τ = 0 they exist for M ∈ [0, 2(d − 2)), while
uC (x) = 2(d − 2)|x |−2 is a discontinuous singular stationary
solution (C=Chandrasekhar).

Note that for sufficiently small, not necessarily radial but
homogeneous initial datum such a construction can be made using
a fixed point argument, in the framework of mild solutions. Even
for sign changing initial data.

• another motivation
When τ = 0 blowup of “big” nonnegative solutions occur.
For d = 2 “big” means

∫
u0(x)dx > 8π [many results, various

approaches].
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For d ≥ 3 “big” means (when u0 ≥ 0) (PB + J. Zienkiewicz 2019)

sup
R>0

R2−d
∫
{|x |<R}

u0(x)dx � 1.

This is the homogeneous Morrey space Ms(Rd) norm with
s = d

2 : ||u||Ms ≡ supR>0, x∈Rd Rd(1/s−1)
∫
{|y−x |<R} |u(y)|dy .

Notice that the local existence of solutions to the Cauchy problem

requires some regularity of u0 (u0 ∈ M
d
2 (Rd)) and a size condition

on local singularities, i.e.

lim sup
R→0

R2−d
∫
{|x |<R}

u0(x)dx < (some constant)(d),

so this is intimately connected with the appearance of singularities
at blowup time.
For τ > 0 blowup results are rather scarce, and they are obtained
under specific integrability conditions imposed on u0 (M. Winkler
2013, 2020).
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Our goals:

• Show existence of global-in-time solutions with arbitrarily large
data (not very regular) and suitably big τ (extending the result in
two dimensions by PB + I. Guerra + G. Karch 2015).

• Prove finite time blowup of solutions with even larger data.

The first goal is achieved.
The second goal is not.

However, we proposed two toy models, both consisting of two
parabolic equations, for which the above scenario is confirmed.

They are related to the well known semilinear heat equation (NLH)
ut = ∆u + u2 in a way similar to that as (PP) is related to (PE).
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ut = ∆u − u∆ϕ,

τϕt = ∆ϕ+ u,

u(0) = u0, ϕ(0) = ϕ0,

x ∈ Rd , t > 0, (TM)


ut = ∆u + (∆ϕ)2,

τϕt = ∆ϕ+ u,

u(0) = u0, ϕ(0) = ϕ0,

x ∈ Rd , t > 0, (TM’)

{
ut = ∆u + u2,

u(0) = u0,
x ∈ Rd , t > 0. (NLH)

(TM) is obtained by omitting the term −∇u · ∇ϕ in (PP)/(PE).
And for τ = 0 the term −u∆ϕ is just u2, as is for (TM’).
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There are many results on blowup for (NLH) obtained with the use
of various methods (moment ≡ eigenfunction method, convexity ≡
energy method, monotonicity) based on specific properties of the
single parabolic equation (NLH) (such as variational structure).

Surprisingly, for the systems of two parabolic equations those
approaches (almost) fail.

Cross-diffusion structures of (PP), (TM) make their analyses
delicate.
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The main results
Mild formulation of the evolution problem

u = U0 + B(u, u), U0(t) = et∆u0, Lz(t) = 1
τ

∫ t
0 ∇e

1
τ

(t−s)∆z(s)ds,

B(u, z)(t) = −
∫ t

0
∇e(t−s)∆ · (u(s)Lz(s))ds,

Pseudomeasures
PMa(Rd) = {f ∈ S ′(Rd) : ‖f ‖PMa = supξ∈Rd |ξ|a|f̂ (ξ)| <∞},
f̂ denotes the Fourier transform of the tempered distribution f

Ya = {u ∈ L∞loc(0,∞;S ′(Rd)) : sup
t>0, ξ∈Rd

t1+(a−d)/2|ξ|a|û(ξ, t)| <∞},

Yd−2 ≡ X = L∞(0,∞;PMd−2). Clearly, 1
|x |2 ∈ PM

d−2.

Theorem Let d ≥ 2, u0 ∈ PMd−2, ϕ0 = 0, τ ≥ e3.
If ‖u0‖PMd−2 < 33κd τ/(e ln τ)3, then (PP) has a global-in-time
solution. This solution belongs to X ∩ Yd−4/ ln τ , and is unique in
the ball of Yd−4/ ln τ centered at the origin, with radius
0 < r . τ/(ln τ)3.
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Besov spaces
Almost optimal spaces, optimal initial data: Ep :={
u ∈ L∞(0,∞; Lp(Rd)), |||u|||p := supt>0 t

1−d/(2p)‖u‖p <∞
}

Theorem Let d ≥ 2, max(d/2, 2d/(d + 1)) < p < 2d ,

u0 ∈ Ḃ
−(2−d/p)
p,∞ and ϕ0 = 0. Let q such that

|1/p − 1/d | < 1/q ≤ min(1/p, 1− 1/p), 1/q < 1/d .

Then there exist constants Cp,q, κp,q > 0, independent of τ and
u0, such that if

‖u0‖Ḃ−(2−d/p)
p,∞

< Cp,qτ
1/2−d/2(1/p−1/q),

then (PP) has a mild solution u ∈ Ep, such that
|||u|||p ≤ κp,q‖u0‖Ḃ−(2−d/p)

p,∞
. Moreover, mild solutions of (PP)

satisfying

|||u|||p ≤ R, R < κp,qCp,q τ
1/2−d/2(1/p−1/q),

are unique.
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Existence results for toy models (TM) and (TM’)

Almost the same as for (PP), with similar proofs.



Blowup of large solutions for both toy models

We are interested in nonnegative solutions of big size, say ≈ τ .

An idea of S. Montgomery-Smith for “cheap” Navier-Stokes
equations: blowup of the Fourier transform of solutions of (TM).

Consider w0 ∈ L2(Rd) defined by ŵ0(ξ) = 1IB0(ξ), where 1IE
denotes the indicator function of a measurable set E , and B0 is the
ball with center 3

4 (1, 0 . . . , 0) and radius 1
4 . Thus, the support of

ŵ0 is contained in the annulus E0 = {1
2 ≤ | · | ≤ 1}.

Theorem Let τ > 0, A > 0, and u0 ∈ S(Rd), such that

û0(ξ) ≥ Aŵ0(ξ).

Let t∗ be the maximal lifetime of the (unique) classical solution to
(TM). There exists a constant κd > 0 (only dependent on d) such
that if

A > κd e
1/τ τ,

then t∗ < 1.
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Notice that the right-hand side above behaves like τ as τ � 1.
Thus, the best possible size condition to be put on the initial data,
in order to obtain the global existence for (TM), would be of the
form ‖u0‖ . τ , no matter the choice of the norm, and
irrespectively of the functional setting where one constructs the
solution.

Finally, consider (TM’) in a smooth bounded domain Ω ⊂ Rd ,
supplemented with

u(x , t) = ϕ(x , t) = 0 for each x ∈ ∂Ω, t ≥ 0.

There exist positive solutions of system (TM’) for τ ≥ 2 with
u0 ≥ 0, ϕ0 ≥ 0 of order τ2, τ , resp., satisfying moreover∫

Ω
ψ(x)u0(x)dx ≥ 3

2
λτ2,∫

Ω
ψ(x)ϕ0(x)dx ≥ 3

2
τ,

where ψ ≥ 0 is the normalized eigenfunction of ∆ with the first
eigenvalue λ, which cannot be continued past a moment T > 0.
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2
τ,

where ψ ≥ 0 is the normalized eigenfunction of ∆ with the first
eigenvalue λ, which cannot be continued past a moment T > 0.



The proof of that result involves the equation for ϕ

τϕtt = (τ + 1)∆ϕt −∆2ϕ+ (∆ϕ)2

and the evolution of moment J(t) =
∫

Ω ψ(x)ϕ(x , t) dx is studied

τ J̈(t) = −λ(τ + 1)J̇(t)− λ2J(t) +

∫
Ω
ψ(∆ϕ)2

≥ −λ(τ + 1)J̇(t)− λ2J(t) + λ2J(t)2.



References

P. Biler, Singularities of solutions in chemotaxis systems,
Series in Mathematics and Life Sciences, De Gruyter, Berlin, 2020.
ISBN 978-3-11-059789-9.



P. Biler, A.Boritchev, L. Brandolese, Large global solutions of the
parabolic-parabolic Keller–Segel system in higher dimensions, 1–25.
arXiv: 2203.09130, J. Differential Equations,
https://doi.org/10.1016/j.jde.2022.11.018

P. Biler, A. Boritchev, L. Brandolese, Sharp well-posedness and
blowup results for parabolic systems of the Keller–Segel type, 1–24.
arXiv:220610399. hal.archives-ouvertes.fr/hal-03699868.

P. Biler, L. Corrias, J. Dolbeault, Large mass self-similar solutions
of the parabolic-parabolic Keller–Segel model, J. Math. Biology 63
(2011), 1–32.



P. Biler, I. Guerra, G. Karch, Large global-in-time solutions of the
parabolic-parabolic Keller–Segel system on the plane, Commun.
Pure Appl. Analysis 14 (2015), 2117–2126.

P. Biler, G. Karch, J. Zienkiewicz, Large global-in-time solutions to
a nonlocal model of chemotaxis, Adv. Math. 330 (2018),
834–875.

P. Biler, J. Zienkiewicz, Blowing up radial solutions in the minimal
Keller–Segel model of chemotaxis, J. Evol. Equ. 19 (2019),
71–90.



V. Calvez, L. Corrias, M. A. Ebde, Blow-up, concentration
phenomenon and global existence for the Keller–Segel model in
high dimension, Commun. Partial Differential Equations, 37
(2012), 561–584.

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for
the parabolic-parabolic and parabolic-elliptic Keller–Segel equations
in the whole space, Adv. Differ. Eq. 18 (2013), 1189–1208.

S. Montgomery-Smith, Finite time blow up for a Navier–Stokes like
equations, Proc. Amer. Math. Soc. 129 (2001), 3025–3029.

Y. Naito, Blow-up criteria for the classical Keller–Segel model of
chemotaxis in higher dimensions, J. Differential Equations 297
(2021), 144–174.



P. Quittner, Ph. Souplet, Superlinear parabolic problems.
Blow-up, global existence and steady states, 2nd ed., 2019,
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