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The neural field model under consideration

The probability density at time t, ρ(t, x, s), of finding a neuron at
x ∈ Td with activity level s ⩾ 0 solves

τ
∂ρ

∂t
= − ∂

∂s

((
Φρ̄ − s

)
ρ
)
+ σ

∂2ρ

∂s2
,

where

Φρ̄(t, x) = Φ

(∫

Td

W (x− y)ρ̄(t, y) dy +B(t)

)
,

with ρ̄(t, x) =
∫∞
0 sρ(t, x, s) ds, and

(
Φρ̄ρ− σ ∂ρ

∂s

)
(t, x, 0) = 0.
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Why this model and why care about stationary states?

• Proposed as a model to study the effects of noise in grid cells.1

• The brain is noisy.3

• Varying the noise level can shift the behaviour of the network from
one state to another.

• Existence of bifurcation branches gives possible stationary states,
their stability tells us which ones the model could settle into.

1Carrillo, Holden, S., JOMB 2022.
3Deco, Rolls: The Noisy Brain, 2010.
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Stationary states

Assume B constant. Stationary states satisfy

σ∂sρ(x, s) = − (s− Φρ̄) ρ(x, s).

Hence, they solve

ρ =
1

Z
e−

(s−Φρ̄)
2

2σ .

With conservation of unit mass we have

Z =

∫ +∞

0
e−

(s−Φρ̄)
2

2σ ds.

If B > 0 and
∫
Td W (x) dx < 0, and Φ′ ⩾ 0, the homogeneous in

space stationary states are unique.1

1Carrillo, Holden, S., JOMB 2022.
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Noise-induced apparition of patterns2

Let ρ∞ denote the spatially homogeneous stationary state, and 1
σ0

>
2|W0|2
πB2 . Assume Φ′′ > −Cσ0 and that ∃k∗ ∈ Nd s.t.

Ŵk∗ =
σ0

Φ′
0M∞

,

with

Φ′
0 = Φ′(W0ρ̄∞ +B

)
, M∞ =

∫ +∞

0
(s− ρ̄∞)2ρ∞(s)ds,

Then there exists spatially pat-
terned bifurcation branches ema-
nating from (ρσ0∞ , σ0).

2Carrillo, Roux, S., Physica D 2023.
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Possible patterns at the first three bifurcation points

5/13



Numerical bifurcation diagram2

κ = 1
σ

2Carrillo, Roux, S., Physica D 2023.
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Stability of stationary states

What is established? Not a lot in general.

But we can say something about the spatially homogeneous stationary
states, and maybe other states.
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An optimal condition for linear stability in relative entropy1

... of the spatially homogeneous stationary states.

1. Linearise the PDE around ρ∞.

2. Carefully combine estimates for the time derivative of the
relative entropy of each Fourier mode (ρ̂− ρ̂∞)k(s, t) of the
perturbation (ρ− ρ∞)(x, s, t), and the square of the Fourier
modes of the perturbation of the mean, (ˆ̄ρ− ˆ̄ρ∞)k.

Resulted in exponential decay of the quantities

∫ +∞

0

(
(ρ̂− ρ̂∞)k

ρ∞

)2

ρ∞ds− Φ′
0

σ
Ŵk((ˆ̄ρ− ˆ̄ρ∞)k)

2, k ∈ Zd,

which where shown to be positive under the condition

Ŵk <
σ

Φ′
0M∞

.

1Carrillo, Holden, S., JOMB 2022
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An optimal condition for linear stability1

The spatially homogeneous stationary state ρ∞, which depends on σ,
is linearly exponentially stable in the L1-norm of the relative entropy,

∫

Td

∫ +∞

0

(
ρ(x, s, t)− ρ∞(s)

ρ∞(s)

)2

ρ∞(s)dsdx,

when all the unnormalised Fourier modes of the component-wise
symmetric W satisfy

Ŵk <
σ

Φ′
0M∞

.

Optimal: replacing the inequality with an equality, this is exactly the

condition leading to bifurcations.

1Carrillo, Holden, S., JOMB 2022
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Nonlinear stability

Goal: estimates for a combination of the time derivatives of the quan-
tities

E =

∫ +∞

0

(
ρ− ρ∞
ρ∞

)2

ρ∞ds, and H = (Φρ̄ − Φ0)(ρ̄− ρ̄∞),

Why? Linearizing Φ− Φ0, we get

∫

Td

E − H
σ

dx ≃
∫

Td

∫ ∞

0

(
ρ− ρ∞
ρ∞

)2

ρ∞ dsdx

− Φ′
0

σ

∫

Td

W ∗ (ρ̄− ρ̄∞)(ρ̄− ρ̄∞)dx.

which is, by the Parseval–Plancherel identity, the sum of the Fourier

quantities in the linear stability result.
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Nonlinear stability

Let Φ be C2, and W ∈ L2(Td) be component-wise symmetric.
Assume that that for a suitably small α > 0,

∫

Td

(1− α)g2(x)−
Φδ
g(x)

σ
g(x) dx > 0, g ∈ L2(Td),

where
Φδ
g(x) = Φ

(
M∞W ∗ g(x) +W0ρ̄∞ +B

)
− Φ0.

Then, the L1 norm of the relative entropy

∫

Td

∫ +∞

0

(
ρ(x, s, t)− ρ∞(s)

ρ∞(s)

)2

ρ∞(s)dsdx,

decays exponentially fast whenever ρ0 is close enough to ρ∞ in
relative entropy.
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If Φ is linear, it reduces
to the linear stability
condition modulo α:

Ŵk <
σ(1− α)

M∞
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Stability of spatially dependent stationary states?

Let

M∞(x) =

∫ +∞

0
(s− ρ̄∞(x))2ρ∞(x, s)ds.

Assume that

∥Φ′∥∞∥W∥L2(Td) sup
x∈Td

M
1/2
∞ (x) <

σ

2
γ̃(ρ∞)

1/2,

where γ̃(ρ∞) = infx∈Td γ(ρ∞(x)), and γ(ρ∞(x)) is the Poincaré con-
stant for ρ∞(x). Then,

∫

Td

∫ +∞

0

(
ρ(x, s, t)− ρ∞(x, s)

ρ∞(x, s)

)2

ρ∞(x, s)dsdx,

decays exponentially fast whenever ρ0 is close enough to the stationary
state ρ∞ in relative entropy.
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Summary and outlook

We

• know there exists spatially heterogeneous stationary states,2

• have almost optimal conditions for (local) stability of the spatially
homogeneous stationary state, and

• have established stability of (possibly spatially heterogeneous) sta-
tionary states under somewhat restrictive conditions,

but what about

• existence and stability of the hexagonal states, or

• multistability?

2Carrillo, Roux, S., Physica D 2023.
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Thank you!

A preprint with J. Carrillo and P. Roux will be on arxiv very soon. (:


