Asymptotic stability of stationary states of a stochastic neural field in the form of a PDE

Susanne Solem

Workshop on nonlocal and nonlinear PDEs Trondheim 24.05.2023

The probability density at time $t,\ \rho(t,x,s),$ of finding a neuron at $x\in\mathbb{T}^d$ with activity level $s\geqslant 0$ solves

$$\tau \frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial s} \left(\left(\Phi_{\bar{\rho}} - s \right) \rho \right) + \sigma \frac{\partial^2 \rho}{\partial s^2},$$

The probability density at time $t,\ \rho(t,x,s),$ of finding a neuron at $x\in\mathbb{T}^d$ with activity level $s\geqslant 0$ solves

$$\tau \frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial s} \left(\left(\Phi_{\bar{\rho}} - s \right) \rho \right) + \sigma \frac{\partial^2 \rho}{\partial s^2},$$

where

$$\Phi_{\bar{\rho}}(t,x) = \Phi\left(\int_{\mathbb{T}^d} W(x-y)\bar{\rho}(t,y)\,\mathrm{d}y + B(t)\right),\,$$

The probability density at time $t,\ \rho(t,x,s),$ of finding a neuron at $x\in\mathbb{T}^d$ with activity level $s\geqslant 0$ solves

$$\tau \frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial s} \left(\left(\Phi_{\bar{\rho}} - s \right) \rho \right) + \sigma \frac{\partial^2 \rho}{\partial s^2},$$

where

$$\Phi_{\bar{\rho}}(t,x) = \Phi\left(\int_{\mathbb{T}^d} W(x-y)\bar{\rho}(t,y)\,\mathrm{d}y + B(t)\right),\,$$

The probability density at time $t,\ \rho(t,x,s),$ of finding a neuron at $x\in\mathbb{T}^d$ with activity level $s\geqslant 0$ solves

$$\tau \frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial s} \left(\left(\Phi_{\bar{\rho}} - s \right) \rho \right) + \sigma \frac{\partial^2 \rho}{\partial s^2},$$

where

Proposed as a model to study the effects of noise in grid cells.¹

¹Carrillo, Holden, S., JOMB 2022. ³Deco, Rolls: The Noisy Brain, 2010.

- Proposed as a model to study the effects of noise in grid cells.¹
- The brain is noisy.³

¹Carrillo, Holden, S., JOMB 2022. ³Deco, Rolls: The Noisy Brain, 2010.

- Proposed as a model to study the effects of noise in grid cells.¹
- The brain is noisy.³
- Varying the noise level can shift the behaviour of the network from one state to another.

¹Carrillo, Holden, S., JOMB 2022. ³Deco, Rolls: The Noisy Brain, 2010.

- Proposed as a model to study the effects of noise in grid cells.¹
- The brain is noisy.³
- Varying the noise level can shift the behaviour of the network from one state to another.
- Existence of bifurcation branches gives possible stationary states, their stability tells us which ones the model could settle into.

¹Carrillo, Holden, S., JOMB 2022. ³Deco, Rolls: The Noisy Brain, 2010.

Assume ${\cal B}$ constant. Stationary states satisfy

$$\sigma \partial_s \rho(x,s) = -\left(s - \Phi_{\bar{\rho}}\right) \rho(x,s).$$

¹Carrillo, Holden, S., JOMB 2022.

Assume B constant. Stationary states satisfy

$$\sigma \partial_s \rho(x,s) = -(s - \Phi_{\bar{\rho}}) \rho(x,s).$$

Hence, they solve

$$\rho = \frac{1}{Z} e^{-\frac{(s-\Phi_{\bar{\rho}})^2}{2\sigma}}.$$

¹Carrillo, Holden, S., JOMB 2022.

Assume B constant. Stationary states satisfy

$$\sigma \partial_s \rho(x,s) = -(s - \Phi_{\bar{\rho}}) \rho(x,s).$$

Hence, they solve

$$\rho = \frac{1}{Z} e^{-\frac{(s-\Phi_{\bar{\rho}})^2}{2\sigma}}.$$

With conservation of unit mass we have

$$Z = \int_0^{+\infty} e^{-\frac{\left(s - \Phi_{\bar{\rho}}\right)^2}{2\sigma}} ds.$$

¹Carrillo, Holden, S., JOMB 2022.

Assume ${\cal B}$ constant. Stationary states satisfy

$$\sigma \partial_s \rho(x,s) = -(s - \Phi_{\bar{\rho}}) \rho(x,s).$$

Hence, they solve

$$\rho = \frac{1}{Z} e^{-\frac{(s - \Phi_{\bar{\rho}})^2}{2\sigma}}$$

With conservation of unit mass we have

$$Z = \int_0^{+\infty} \mathrm{e}^{-\frac{\left(s - \Phi_{\bar{\rho}}\right)^2}{2\sigma}} \,\mathrm{d}s.$$

If B > 0 and $\int_{\mathbb{T}^d} W(x) dx < 0$, and $\Phi' \ge 0$, the homogeneous in space stationary states are unique.¹

¹Carrillo, Holden, S., JOMB 2022.

Noise-induced apparition of patterns²

Let ρ_{∞} denote the spatially homogeneous stationary state, and $\frac{1}{\sigma_0} > \frac{2|W_0|^2}{\pi B^2}$. Assume $\Phi'' > -C_{\sigma_0}$ and that $\exists k^* \in \mathbb{N}^d$ s.t.

$$\hat{W}_{k^*} = \frac{\sigma_0}{\Phi_0' M_\infty},$$

with

$$\Phi_0' = \Phi' \big(W_0 \bar{\rho}_\infty + B \big), \quad M_\infty = \int_0^{+\infty} (s - \bar{\rho}_\infty)^2 \rho_\infty(s) ds,$$

Then there exists spatially patterned bifurcation branches emanating from $(\rho_{\infty}^{\sigma_0}, \sigma_0)$.

²Carrillo, Roux, S., Physica D 2023.

Possible patterns at the first three bifurcation points

Numerical bifurcation diagram²

²Carrillo, Roux, S., Physica D 2023.

Stability of stationary states

What is established? Not a lot in general.

What is established? Not a lot in general.

But we can say something about the spatially homogeneous stationary states,

What is established? Not a lot in general.

But we can say something about the spatially homogeneous stationary states, and *maybe* other states.

... of the spatially homogeneous stationary states.

¹Carrillo, Holden, S., JOMB 2022

... of the spatially homogeneous stationary states.

1. Linearise the PDE around ρ_{∞} .

¹Carrillo, Holden, S., JOMB 2022

... of the spatially homogeneous stationary states.

- 1. Linearise the PDE around $\rho_\infty.$
- 2. Carefully combine estimates for the time derivative of the relative entropy of each Fourier mode $(\hat{\rho} \hat{\rho}_{\infty})_k(s,t)$ of the perturbation $(\rho \rho_{\infty})(x, s, t)$, and the square of the Fourier modes of the perturbation of the mean, $(\hat{\rho} \hat{\rho}_{\infty})_k$.

... of the spatially homogeneous stationary states.

- 1. Linearise the PDE around $\rho_\infty.$
- 2. Carefully combine estimates for the time derivative of the relative entropy of each Fourier mode $(\hat{\rho} \hat{\rho}_{\infty})_k(s,t)$ of the perturbation $(\rho \rho_{\infty})(x, s, t)$, and the square of the Fourier modes of the perturbation of the mean, $(\hat{\rho} \hat{\rho}_{\infty})_k$.

Resulted in exponential decay of the quantities

$$\int_0^{+\infty} \left(\frac{(\hat{\rho} - \hat{\rho}_\infty)_k}{\rho_\infty} \right)^2 \rho_\infty ds - \frac{\Phi'_0}{\sigma} \hat{W}_k ((\hat{\rho} - \hat{\rho}_\infty)_k)^2, \qquad k \in \mathbb{Z}^d,$$

which where shown to be positive under the condition

$$\hat{W}_k < \frac{\sigma}{\Phi'_0 M_\infty}.$$

¹Carrillo, Holden, S., JOMB 2022

An optimal condition for linear stability¹

The spatially homogeneous stationary state ρ_{∞} , which depends on σ , is *linearly exponentially stable* in the L^1 -norm of the relative entropy,

$$\int_{\mathbb{T}^d} \int_0^{+\infty} \left(\frac{\rho(x, s, t) - \rho_{\infty}(s)}{\rho_{\infty}(s)} \right)^2 \rho_{\infty}(s) ds dx,$$

when all the unnormalised Fourier modes of the component-wise symmetric \boldsymbol{W} satisfy

$$\hat{W}_k < \frac{\sigma}{\Phi'_0 M_\infty}.$$

¹Carrillo, Holden, S., JOMB 2022

An optimal condition for linear stability¹

The spatially homogeneous stationary state ρ_{∞} , which depends on σ , is *linearly exponentially stable* in the L^1 -norm of the relative entropy,

$$\int_{\mathbb{T}^d} \int_0^{+\infty} \left(\frac{\rho(x, s, t) - \rho_{\infty}(s)}{\rho_{\infty}(s)} \right)^2 \rho_{\infty}(s) ds dx,$$

when all the unnormalised Fourier modes of the component-wise symmetric \boldsymbol{W} satisfy

$$\hat{W}_k < \frac{\sigma}{\Phi'_0 M_\infty}.$$

Optimal: replacing the inequality with an equality, this is exactly the condition leading to bifurcations.

¹Carrillo, Holden, S., JOMB 2022

An optimal condition for linear stability¹

The spatially homogeneous stationary state ρ_{∞} , which depends on σ , is *linearly exponentially stable* in the L^1 -norm of the relative entropy,

$$\int_{\mathbb{T}^d} \int_0^{+\infty} \left(\frac{\rho(x, s, t) - \rho_{\infty}(s)}{\rho_{\infty}(s)} \right)^2 \rho_{\infty}(s) ds dx,$$

when all the unnormalised Fourier modes of the component-wise symmetric W satisfy $\hat{W}_k < \frac{\sigma}{\Phi_0' M_\infty}.$

Optimal: replacing the inequality with an condition leading to bifurcations.

$ \begin{array}{l} \mbox{loise-induced apparition of patterns}^2 \\ \mbox{Let } \rho_{\infty} \mbox{ denote the spatially homogeneous stationary state, and} \\ \frac{1}{\sigma_0} > \frac{2 W B^2}{2 W B^2}. \mbox{ Assume } \Phi^{\prime\prime} > - C_{\sigma_0} \mbox{ and that } \mathbb{H}^k \in \mathbb{N}^d \mbox{ s.t.} \end{array} $	2
$\tilde{W}_{k^*} = \frac{\sigma_0}{\Phi'_0 M_{\infty}},$	
with	
$\Phi_0'=\Phi'\big(W_0\bar\rho_\infty+B\big), M_\infty=\int_0^{+\infty}(s-\bar\rho_\infty)^2\rho_\infty(s)ds,$	
Then there exists spatially patterned bifurcation branches emanating from $(\rho_{\infty}^{a}, \sigma_0)$.	
² Carrillo, Roux, S., Physica D 2023. 4/13	

¹Carrillo, Holden, S., JOMB 2022

Goal: estimates for a combination of the time derivatives of the quantities

$$\mathcal{E} = \int_0^{+\infty} \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty ds, \quad \text{and} \quad \mathcal{H} = (\Phi_{\bar{\rho}} - \Phi_0)(\bar{\rho} - \bar{\rho}_\infty),$$

Goal: estimates for a combination of the time derivatives of the quantities

$$\mathcal{E} = \int_0^{+\infty} \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty ds, \quad \text{and} \quad \mathcal{H} = (\Phi_{\bar{\rho}} - \Phi_0)(\bar{\rho} - \bar{\rho}_\infty),$$

Why?

Goal: estimates for a combination of the time derivatives of the quantities

$$\mathcal{E} = \int_0^{+\infty} \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty ds, \quad \text{and} \quad \mathcal{H} = (\Phi_{\bar{\rho}} - \Phi_0)(\bar{\rho} - \bar{\rho}_\infty),$$

Why? Linearizing $\Phi-\Phi_0$, we get

$$\int_{\mathbb{T}^d} \mathcal{E} - \frac{\mathcal{H}}{\sigma} dx \simeq \int_{\mathbb{T}^d} \int_0^\infty \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty \, ds dx \\ - \frac{\Phi'_0}{\sigma} \int_{\mathbb{T}^d} W * (\bar{\rho} - \bar{\rho}_\infty)(\bar{\rho} - \bar{\rho}_\infty) dx.$$

Goal: estimates for a combination of the time derivatives of the quantities

$$\mathcal{E} = \int_0^{+\infty} \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty ds, \quad \text{and} \quad \mathcal{H} = (\Phi_{\bar{\rho}} - \Phi_0)(\bar{\rho} - \bar{\rho}_\infty),$$

Why? Linearizing $\Phi - \Phi_0$, we get

$$\int_{\mathbb{T}^d} \mathcal{E} - \frac{\mathcal{H}}{\sigma} dx \simeq \int_{\mathbb{T}^d} \int_0^\infty \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty \, ds dx \\ - \frac{\Phi'_0}{\sigma} \int_{\mathbb{T}^d} W * (\bar{\rho} - \bar{\rho}_\infty) (\bar{\rho} - \bar{\rho}_\infty) dx.$$

which is, by the Parseval–Plancherel identity, the sum of the Fourier quantities in the linear stability result.

Goal: estimates for a combination of the time derivatives of the quantities

$$\mathcal{E} = \int_0^{+\infty} \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty ds, \quad \text{and} \quad \mathcal{H} = (\Phi_{\bar{\rho}} - \Phi_0)(\bar{\rho} - \bar{\rho}_\infty),$$

Why? Linearizing $\Phi - \Phi_0$, we get

$$\int_{\mathbb{T}^d} \mathcal{E} - \frac{\mathcal{H}}{\sigma} dx \simeq \int_{\mathbb{T}^d} \int_0^\infty \left(\frac{\rho - \rho_\infty}{\rho_\infty}\right)^2 \rho_\infty \, ds dx \\ - \frac{\Phi'_0}{\sigma} \int_{\mathbb{T}^d} W * (\bar{\rho} - \bar{\rho}_\infty)(\bar{\rho} - \bar{\rho}_\infty) dx.$$

which is, by the Parseval–Plancherel identity, the sum of the Fourier quantities in the linear stability result. $\int_{0}^{+\infty} \left(\frac{(\hat{\rho}-\hat{\rho}_{\infty})_{k}}{\rho_{\infty}}\right)^{2} \rho_{\infty} ds - \frac{\Phi'_{0}}{\sigma} \hat{W}_{k} ((\hat{\rho}-\hat{\rho}_{\infty})_{k})^{2}$

Let Φ be C^2 , and $W \in L^2(\mathbb{T}^d)$ be component-wise symmetric. Assume that that for a suitably small $\alpha > 0$,

$$\int_{\mathbb{T}^d} (1-\alpha)g^2(x) - \frac{\Phi_g^\delta(x)}{\sigma}g(x)\,dx > 0, \quad g \in L^2(\mathbb{T}^d),$$

where

$$\Phi_g^{\delta}(x) = \Phi \left(M_{\infty} W * g(x) + W_0 \bar{\rho}_{\infty} + B \right) - \Phi_0.$$

Then, the L^1 norm of the relative entropy

$$\int_{\mathbb{T}^d} \int_0^{+\infty} \left(\frac{\rho(x,s,t) - \rho_{\infty}(s)}{\rho_{\infty}(s)} \right)^2 \rho_{\infty}(s) ds dx,$$

decays exponentially fast whenever ρ_0 is close enough to ρ_∞ in relative entropy.

Let Φ be C^2 , and $W \in L^2(\mathbb{T}^d)$ be component-wise symmetric. Assume that that for a suitably small $\alpha > 0$,

$$\int_{\mathbb{T}^d} (1-\alpha)g^2(x) - \underbrace{\Phi_g^\delta(x)}{\sigma} g(x) \, dx > 0, \quad g \in L^2(\mathbb{T}^d),$$

where

$$\Phi_g^{\delta}(x) = \Phi \left(M_{\infty} W * g(x) + W_0 \bar{\rho}_{\infty} + B \right) - \Phi_0.$$

Then, the L^1 norm of the relative entry

$$\int_{\mathbb{T}^d} \int_0^{+\infty} \left(\frac{\rho(x,s,t) - \rho_{\rm c}}{\rho_{\infty}(s)} \right)^{\rm to the linear stability} \ {\rm condition \ modulo} \ \alpha:$$

decays exponentially fast whenever ρ_0 relative entropy.

$$\hat{W}_k < \frac{\sigma(1-\alpha)}{M_\infty}$$

 Φ is linear it reduces

Stability of spatially dependent stationary states? Let

$$M_{\infty}(x) = \int_0^{+\infty} (s - \bar{\rho}_{\infty}(x))^2 \rho_{\infty}(x, s) ds.$$

Assume that

$$\|\Phi'\|_{\infty}\|W\|_{L^{2}(\mathbb{T}^{d})}\sup_{x\in\mathbb{T}^{d}}M_{\infty}^{1/2}(x)<\frac{\sigma}{2}\tilde{\gamma}(\rho_{\infty})^{1/2},$$

where $\tilde{\gamma}(\rho_{\infty}) = \inf_{x \in \mathbb{T}^d} \gamma(\rho_{\infty}(x))$, and $\gamma(\rho_{\infty}(x))$ is the Poincaré constant for $\rho_{\infty}(x)$. Then,

$$\int_{\mathbb{T}^d} \int_0^{+\infty} \left(\frac{\rho(x,s,t) - \rho_{\infty}(x,s)}{\rho_{\infty}(x,s)} \right)^2 \rho_{\infty}(x,s) ds dx,$$

decays exponentially fast whenever ρ_0 is close enough to the stationary state ρ_∞ in relative entropy.

Stability of spatially dependent stationary states?

Let

$$M_{\infty}(x) = \int_0^{+\infty} (s - \bar{\rho}_{\infty}(x))^2 \rho_{\infty}(x, s) ds.$$

Assume that

$$\|\Phi'\|_{\infty}\|W\|_{L^{2}(\mathbb{T}^{d})} < \frac{1}{2},$$

Then,

$$\int_{\mathbb{T}^d} \int_0^{+\infty} \left(\frac{\rho(x,s,t) - \rho_{\infty}(x,s)}{\rho_{\infty}(x,s)} \right)^2 \rho_{\infty}(x,s) ds dx,$$

decays exponentially fast whenever ρ_0 is close enough to the stationary state ρ_∞ in relative entropy.

Summary and outlook

We

- know there exists spatially heterogeneous stationary states,²
- have almost optimal conditions for (local) stability of the spatially homogeneous stationary state, and
- have established stability of (possibly spatially heterogeneous) stationary states under somewhat restrictive conditions,

but what about

- existence and stability of the hexagonal states, or
- multistability?

²Carrillo, Roux, S., Physica D 2023.

Thank you!

A preprint with J. Carrillo and P. Roux will be on arxiv very soon. (: