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Based on a joint work with Elisabetta Carlini (La Sapienza) and Ahmad
Zorkot (Université de Limoges).
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Introduction

First order (or deterministic) Mean Field Games (MFGs) were first
introduced in Lasry-Lions’07 in the following form

−∂tv +H(x,Dxv) = F (x,m(t)) in [0, T ]× Rd,

v(T, x) = G(x,m(T )) in Rd,

∂tm− div
(
DpH(x,Dv)m

)
= 0 in [0, T ]× Rd,

m(0, ·) = m∗
0 in Rd.


(MFG)

I The Hamiltonian H : Rd × Rd → R is given by

H(x, p) = sup
a∈Rd

{〈a, p〉 − L(x, a)} , where L : Rd × Rd → R.

I F, G : Rd × P1(Rd)→ R and m∗0 ∈ Lp(Rd) for some p ∈]1,∞[.
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I When the Hamiltonian H is coercive, the existence of solutions to
(MFG) has been studied in Lasry-Lions’07 and in
Cardaliaguet-Hadikhanloo’17.

I If H is not coercive, the existence question has been studied in
Achdou-Mannucci-Marchi-Tchou’20 and in Cannarsa-Mendico’20.

I The notion of MFG equilibria can be stated in terms of probability
measures over the set of paths C([0, T ];Rd).

I The existence of equilibria for this relaxed, also called
Lagrangian, form can be shown under some rather general
assumptions on the data.

I Under some regularity assumptions on the data, then a
solution to (MFG) can be obtained from a relaxed equilibrium.
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Concerning the numerical approximation of solutions to (MFG):

I In the coercive case:

I In Camilli-S.’12, for H(x, p) = |p|2/2, a semi-discrete SL
scheme is proposed and convergence is shown.

I A fully-discrete version proposed in Carlini-S.’14, for
H(x, p) = |p|2/2, is shown to converge when d = 1.

I Extensions to the second order case have been studied in
Carlini-S’15-18 and to the case of fractional and non-local
operators in Chowdhury-Ersland-Jakobsen’22.

I An approximating MFG with discrete time and finite state
space is proposed in Hadikhanloo-S.’19. Convergence is
obtained in general dimensions.

I In the non-coercive case:

I See Gianatti-S’22 and Gianatti-S-Zorkot’23.

I

I When b(x, a) = a, in Hadikhanloo-S. ’19, the MFG problem is
approximated by a MFG in discrete time and finite state space (see
Gomes-Mohr-Souza ’14). Convergence is shown in
arbitrary dimension.

I When b(x, a) = A(x) +B(x)a and rather general cost functions are
considered, an extension of the approximation in Hadikhanloo-S. ’19
is shown to converge in Gianatti-Silva ’22.

I Fourier methods to treat (MFG) have been proposed recently in
Nuberkyan-Saúde’19 and Li-Jacobs-Li-Nuberkyan-Osher ’20.
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Assumptions

In what follows, C > 0 denotes a generic constant.

I L is of class C2, and for all x, a ∈ Rd, we have

L(x, a) ≤ C(|a|2 + 1),

|DxL(x, a)| ≤ C(|a|2 + 1),

C|b|2 ≤ D2
aaL(x, a)(b, b),

D2
xxL(x, a)(y, y) ≤ C(|a|2 + 1)|y|2.

These assumptions on L imply that H has quadratic growth and

|DpH(x, p)| ≤ C(1 + |p|) for all x, p ∈ Rd.

A typical example is H(x, p) = a(x)|p|2 + 〈b(x), p〉, with a and b of
class C2

b and a bounded from below by a strictly positive constant.
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I F and G are bounded, continuous and, for every µ ∈ P1(Rd),

|F (x, µ)− F (y, µ)|+ |G(x, µ)−G(y, µ)| ≤ C|x− y|,
F (x+ y, µ)− 2F (x, µ) + F (x− y, µ) ≤ C|y|2,
G(x+ y, µ)− 2G(x, µ) +G(x− y, µ) ≤ C|y|2.

Notice that no differentiability is supposed on F and G. Thus, we
can consider functionals of the form

F (x, µ) = min{|x− x̄|2, R}+ f0(x, µ) for x̄ ∈ Rd, R > 0.

I m∗0 has compact support and m∗0 ∈ Lp(Rd) (for some p ∈]1,∞]).
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Approximation of the HJB equation

Let µ ∈ C([0, T ];P1(Rd)) and consider the HJB equation

−∂tv +H(x,Dv) = F (x, µ(t)) in [0, T ]× Rd,
v(T, x) = G(x, µ(T )) in Rd.

If v[µ] denotes its solution, then for every (t, x) ∈ [0, T ]× Rd,

v[µ](t, x) = inf

∫ T

t

(
L(γ(s), α(s))+F (γ(s), µ(s))

)
ds+G(γ(T ), µ(T ))

s.t. γ̇(s) = −α(s) in ]s, T [, γ(t) = x.
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Proposition
The value function is uniformly bounded, and the following hold:

(Lip)
∣∣v[µ](t, x)− v[µ](t, y)

∣∣ ≤ C|x− y|,
(SC) v[µ](x+ y, µ)− 2v[µ](x, µ) + v[µ](x− y, µ) ≤ C|y|2.

Using the properties above for v[µ], one can show the existence of m[µ]
solving

∂tm− div(DpH(x,Dxv)m) = 0 in ]0, T [×Rd, m(0) = m∗0

and such that

I m[µ](t, ·) has a compact support, independent of µ.

I “The mass does not concentrate too much in finite time”

‖m[µ](t, ·)‖Lp ≤ C‖m∗0‖Lp .
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As in Carlini-S’14, given (∆t,∆x) we consider the following SL scheme
for the HJB equation:

vk,i = inf
a∈Rd

[
∆tL(xi, a) + I1[vk+1,·](xi −∆ta)

]
+ ∆tF (xi, µ(tk)),

vN,i = G(xi, µ(T )),

where, given φ defined on G∆x = {xi = ∆x | i ∈ Zd},

I1[φ](x) =
∑
i∈Zd

β1
i (x)φ(xi) for all x ∈ Rd,

with {β1
i | i ∈ Zd} being a Q1-basis on the regular mesh G∆x.

This scheme preserves:

I The Lipschitz property (Lip).

I The semiconcavity (SC).
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We set

v∆t,∆x[µ](t, x) = I1[vk,·](x) if t ∈ [tk, tk+1[, x ∈ Rd,

and, given ε > 0 and a standard mollifier ρε, we set ∆ = (∆t,∆x, ε) and

v∆[µ](t, x) =
(
ρε ∗ v∆t,∆x[µ](t, ·)

)
(x).

I v∆[µ] preserves the Lipschitz property.

I The following semi-concavity estimate holds:

〈
D2
xxv

∆[µ](t, x)y, y
〉
≤ C

(
1 +

(∆x)2

ε4

)
|y|2.

I Under suitable assumptions on the parameters, if µn → µ and
∆n → 0, then v∆n [µn]→ v[µ] uniformly over compact sets, and
Dxv

∆n[µn]→ Dxv[µ] a.e.
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Approximation of the continuity equation

We now focus on the discretization of the continuity equation

∂tm− div(DpH(x,Dxv
∆[µ])m) = 0 in ]0, T [×Rd, m(0) = m∗0,

Since v∆ is smooth w.r.t. the state, this equation has a unique solution

m∆[µ](t, ·) = Φ∆[µ](0, t, ·)]m∗0,

where, for s ≤ t, Φ∆[µ](s, t, x) is the the solution, at time t, of the ODE:

γ̇(r) = −DpH
(
γ(r), Dxv

∆[µ](r, γ(r))
)

in ]s, T [, γ(s) = x.

Equivalently, for every 0 ≤ s ≤ t ≤ T , and ϕ, integrable w.r.t. m∆[µ](s),∫
Rd

ϕ(x)dm∆[µ](t)(x) =

∫
Rd

ϕ
(
Φ∆[µ](s, t, x)

)
dm∆[µ](s)(x). (∗)
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I Approximate Φ∆[µ](tk, tk+1, x) by

Φ∆
k [µ](x) = x−∆tDpH

(
x,Dxv

∆[µ](tk, x)
)
.

I Let {βi}i∈Zd be a FE basis and approximate m∆[µ](tk) by

m∆[µ](tk, x) =
∑
i∈Zd

mk,iβi(x)

I Using this approximation and taking ϕ = βj in (∗), we get

∑
i∈Zd

mk+1,i

∫
Rd

βi(x)βj(x)dx

=
∑
i∈Zd

mk,i

∫
Rd

βj(Φ∆
k [µ](x))βi(x)dx.

I In what follows, we take

βi = β0
i = IEi , where Ei = [xi −∆x/2, xi + ∆x/2]d.
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This yields the following LG scheme

mk+1,i =
1

(∆x)d

∑
j

mk,j

∫
Ej

β0
i (Φ∆

k [µ](x))dx,

m0,i =
1

(∆x)d

∫
Ei

m∗0(x)dx. (LG)

I Since ∫
Ej

β0
i (Φ∆

k [µ](x))dx = Ld
(

Φ∆
k [µ]−1(Ei) ∩ Ej

)
,

this scheme coincides with the one proposed in Piccoli and Tosin.1

Given a solution to (LG), if t ∈ [tk, tk+1), set

m∆[µ](t, x) =

(
tk+1 − t

∆t

)∑
i∈Zd

mk,iβ
0
i (x) +

(
t− tk

∆t

)∑
i∈Zd

mk+1,iβ
0
i (x).

1B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling of
pedestrian flow. Arch. Ration. Mech. Anal. 2011



A Lagrange-Galerkin scheme for first order mean field games

Approximation of the continuity equation

The approximation m∆[µ] satisfies

I m∆[µ] ∈ C([0, T ];P1(Rd)).

I There exists C∗ > 0 such that sup(m∆[µ](t, ·)) ⊆ B(0, C∗).

I The map [0, T ] 3 t 7→ m∆[µ](t, ·) ∈ P1(Rd) is Lipschitz continuous.

I If ∆x = O(∆t) and ∆t = O(ε2) then

‖m∆[µ](t, ·)‖Lp ≤ C‖m∗0‖Lp .

The proof of the Lp-stability mainly relies on the following facts:

• ∆t/ε small enough ⇒ Φ∆
k [µ] is one-to-one.

• The estimate on D2
xxv

∆[µ](tk, ·) implies that∣∣∣det
(
DxΦ∆

k [µ](x)
) ∣∣∣−1

≤ 1 + C∆t.
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Approximation of the MFG system

I The MFG system is discretized as follows:

Find µ such that µ = m∆[µ]. (MFG)∆

Using the Brouwer’s fixed point theorem, one shows that (MFG)∆

admits at least one solution.

I Convergence holds in general state dimensions.

Theorem
Let ∆n = (∆tn,∆xn, εn) ∈]0,∞[3, denote by mn a solution to
(MFG)∆n , and set vn = v∆n [mn].
Assume that, as ∆n → 0, ∆xn = o(∆tn) and ∆tn = O(ε2

n). Then, up to
some subsequence, (vn,mn) converges to a solution (v∗,m∗) to (MFG).
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Numerical results

I In order to implement the scheme, we follow
Morton-Priestley-Süli’88 by considering the following approximation

Φ∆
k [µ](x) ∼ x−∆tDpH

(
xi, Dxv

∆[µ](tk, xi)
)

if x ∈ Ei

to obtain, surprisingly, that∫
Ej

β0
i (Φ∆

k [µ](x))dx = β1
i (Φ∆

k [µ](xj)),

and, hence, the LG scheme implemented with this approximation
coincides with the scheme proposed in Carlini-S’14.

I In the numerical test below, we take d = 2, T = 1,

m∗0(x) =
ν(x)∫

[0,2]2
ν(x)dx

with ν(x) = e
−|x−x0|

2

0.01 and x0 = (0.75, 0.75),
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H(x, p) = |p|2/2, F (x,m) = γmin{R, |x−xf |2}+(ρσ∗m)(x), G = 0,

with xf = (1.75, 1.75). In the figures below, we display the distributions
for γ = 1 and γ = 3.
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