Hölder and maximal regularity for Hamilton-Jacobi equations

Marco Cirant

Università di Padova

May 25, 2023

Goals

For $u: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying

$$
-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \in L^{q}(\Omega)
$$

what can be said about Hölder regularity of u ? (when $\gamma>2, A>0$)

Goals

For $u: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying

$$
-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \in L^{q}(\Omega)
$$

what can be said about Hölder regularity of u ? (when $\gamma>2, A>0$)

About ${ }^{9}$-maximal regularity? Is it true that

$$
-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \in L^{q} \quad \Rightarrow \quad D^{2} u,|D u|^{\gamma} \in L^{q} \quad ?
$$

Goals

For $u: \Omega \subseteq \mathbb{R}^{n} \times(0, T) \rightarrow \mathbb{R}$ satisfying

$$
\partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \in L^{q}(\Omega \times(0, T))
$$

what can be said about Hölder regularity? (when $\gamma>2, A>0$)

About L9-maximal regularity? Is it true that

$$
\partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \in L^{q} \quad \Rightarrow \quad \partial_{t} u, D^{2} u,|D u|^{\gamma} \in L^{q} \quad ?
$$

Motivations

■ Stochastic optimal control and homogenization: Hamilton-Jacobi

Motivations

■ Stochastic optimal control and homogenization: Hamilton-Jacobi

■ Theory of growth and roughening of surfaces - KPZ, flame propagation models - Michelson-Sivashinsky

Motivations

■ Stochastic optimal control and homogenization: Hamilton-Jacobi

■ Theory of growth and roughening of surfaces - KPZ, flame propagation models - Michelson-Sivashinsky

- Mean Field Games:

$$
\left\{\begin{array}{l}
-\partial_{t} u-\Delta u+|D u|^{\gamma}=f(m(x, t)) \\
\partial_{t} m-\Delta m-\operatorname{div}\left(\gamma|\operatorname{Du}|^{\gamma-2} D u m\right)=0
\end{array}\right.
$$

Motivations

■ Stochastic optimal control and homogenization: Hamilton-Jacobi

■ Theory of growth and roughening of surfaces - KPZ, flame propagation models - Michelson-Sivashinsky

■ Mean Field Games:

$$
\left\{\begin{array}{l}
-\partial_{t} u-\Delta u+|D u|^{\gamma}=f(m(x, t)) \\
\partial_{t} m-\Delta m-\operatorname{div}\left(\gamma|D u|^{\gamma-2} D u m\right)=0
\end{array}\right.
$$

■ Maximal regularity: conjectured by P.- L. Lions ~ '12-'14 to hold iff

$$
q>d \frac{\gamma-1}{\gamma}=: q_{0}
$$

Gain of regularity

Since $-\Delta u=f-|D u|^{\gamma}$, by Calderón-Zygmund

$$
\|u\|_{w_{2}, 9} \leqslant\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L q}
$$

Gain of regularity

Since $-\Delta u=f-|D u|^{\gamma}$, by Calderón-Zygmund

$$
\|u\|_{w^{2}, 9} \lesssim\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L q}
$$

Using Sobolev embeddings,

$$
\|D u\|_{L q^{*}} \lesssim\|u\|_{w^{2,9}} \lesssim\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L 9}=\|D u\|_{L_{r q}}^{\gamma}+\|f\|_{L 9}
$$

and

$$
q^{*}>\gamma q \quad \Leftrightarrow \quad q>\frac{d}{\gamma^{\prime}}
$$

Gain of regularity

Since $-\Delta u=f-|D u|^{\gamma}$, by Calderón-Zygmund

$$
\|u\|_{w^{2}, 9} \lesssim\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L q}
$$

Using Sobolev embeddings,

$$
\|D u\|_{L^{*}} \lesssim\|u\|_{w^{2,9}} \lesssim\left\||D u|^{\gamma}\right\|_{L q}+\|f\|_{L q}=\|D u\|_{L_{r q}}^{\gamma}+\|f\|_{L q}
$$

and

$$
q^{*}>\gamma q \quad \Leftrightarrow \quad q>\frac{d}{\gamma^{\prime}}
$$

Using Gagliardo-Nirenberg,

$$
\|D u\|_{L^{*}} \lesssim\|u\|_{W^{2}, q}^{\theta}[u]_{\alpha}^{1-\theta} \lesssim\left(\|D u\|_{L r q}^{\gamma}+\|f\|_{L q}\right)^{\theta}[u]_{\alpha}^{1-\theta}
$$

and

$$
\gamma \theta<1 \quad \Leftrightarrow \quad \alpha>\frac{\gamma-2}{\gamma-1}
$$

Scaling

If $\quad-\Delta u+|D u|^{\gamma}=f$,
the α-Hölder scaling $v(x)=\varepsilon^{-\alpha} u(\varepsilon x)$ solves

$$
-\Delta v+\varepsilon^{(\alpha-1) \gamma+2-\alpha}|D v|^{\gamma}=\varepsilon^{2-\alpha} f(\varepsilon x)
$$

Scaling

If $\quad-\Delta u+|D u|^{\gamma}=f$, the α-Hölder scaling $v(x)=\varepsilon^{-\alpha} u(\varepsilon x)$ solves

$$
-\Delta v+\varepsilon^{(\alpha-1) \gamma+2-\alpha}|D v|^{\gamma}=\varepsilon^{2-\alpha} f(\varepsilon x)
$$

- Subquadratic case: $\gamma<2$

$$
-\Delta v=f_{\varepsilon}+o_{\varepsilon}(1)|D v|^{\gamma}
$$

α-Hölder bounds depending on L^{q}-norm of $f, q>d / 2$: [LU].

Scaling

If $\quad-\Delta u+|D u|^{\gamma}=f$,
the α-Hölder scaling $v(x)=\varepsilon^{-\alpha} u(\varepsilon x)$ solves

$$
-\Delta v+\varepsilon^{(\alpha-1) \gamma+2-\alpha}|D v|^{\gamma}=\varepsilon^{2-\alpha} f(\varepsilon x)
$$

- Subquadratic case: $\gamma<2$

$$
-\Delta v=f_{\varepsilon}+o_{\varepsilon}(1)|D v|^{\gamma}
$$

α-Hölder bounds depending on L^{q}-norm of $f, q>d / 2$: [LU].

- Superquadratic case: $\gamma>2$

$$
|D v|^{\gamma}=f_{\varepsilon}+o_{\varepsilon}(1) \Delta v
$$

universal α-Hölder bounds: [Dall'Aglio-Porretta] for

$$
\alpha \leq \frac{\gamma-2}{\gamma-1}:=\alpha, \quad q \leq q_{0}:=\frac{d}{\gamma^{\prime}}
$$

Scaling

$\frac{\gamma-2}{\gamma-1}$-Hölder is "sharp": $u(x)=c|x|^{\frac{\gamma-2}{\gamma-1}}$ is a weak sol. of

$$
-\Delta u+|D u|^{\gamma}=0
$$

Scaling

$\frac{\gamma-2}{\gamma-1}$-Hölder is "sharp": $u(x)=c|x|^{\frac{\gamma-2}{\gamma-1}}$ is a weak sol. of

$$
-\Delta u+|D u|^{\gamma}=0
$$

- $\gamma>1$, [Lions]

$$
-\Delta u+|D u|^{\gamma}=f
$$

Lipschitz bounds depending on L^{q}-norm of $f, q>d$ for classical solutions

Scaling

$\frac{\gamma-2}{\gamma-1}$-Hölder is "sharp": $u(x)=c|x|^{\frac{\gamma-2}{\gamma-1}}$ is a weak sol. of

$$
-\Delta u+|D u|^{\gamma}=0
$$

- $\gamma>1$, [Lions]

$$
-\Delta u+|D u|^{\gamma}=f
$$

Lipschitz bounds depending on L^{q}-norm of $f, q>d$ for classical solutions

- $\gamma>1$, [Capuzzo Dolcetta-Leoni-Porretta]

$$
-\operatorname{tr}\left(A(x) D^{2} u\right)+|D u|^{\gamma}=f
$$

Lipschitz bounds depending on $W^{1, \infty}$-norm of f, for viscosity solutions, $A \geq 0$

Gap in α-Hölder regularity, when $f \in L^{9}, \gamma>2$ and

$$
\alpha \in\left(\frac{\gamma-2}{\gamma-1}, 1\right), \quad q \in\left(\frac{d}{\gamma^{\prime}}, d\right)
$$

Gap in α-Hölder regularity, when $f \in L^{q}, \gamma>2$ and

$$
\alpha \in\left(\frac{\gamma-2}{\gamma-1}, 1\right), \quad q \in\left(\frac{d}{\gamma^{\prime}}, d\right)
$$

■ Need a nonperturbative argument

Gap in α-Hölder regularity, when $f \in L^{q}, \gamma>2$ and

$$
\alpha \in\left(\frac{\gamma-2}{\gamma-1}, 1\right), \quad q \in\left(\frac{d}{\gamma^{\prime}}, d\right)
$$

■ Need a nonperturbative argument
■ Need the "strength" of nondegenerate diffusion

Gap in α-Hölder regularity, when $f \in L^{q}, \gamma>2$ and

$$
\alpha \in\left(\frac{\gamma-2}{\gamma-1}, 1\right), \quad q \in\left(\frac{d}{\gamma^{\prime}}, d\right)
$$

■ Need a nonperturbative argument
■ Need the "strength" of nondegenerate diffusion
■ Need solutions that are better than weak

Gap in α-Hölder regularity, when $f \in L^{q}, \gamma>2$ and

$$
\alpha \in\left(\frac{\gamma-2}{\gamma-1}, 1\right), \quad q \in\left(\frac{d}{\gamma^{\prime}}, d\right)
$$

■ Need a nonperturbative argument
■ Need the "strength" of nondegenerate diffusion
■ Need solutions that are better than weak
■ $\frac{\gamma-2}{\gamma-1}$-Hölder holds up to the boundary, better estimates may not.

Gap in α-Hölder regularity, when $f \in L^{q}, \gamma>2$ and

$$
\alpha \in\left(\frac{\gamma-2}{\gamma-1}, 1\right), \quad q \in\left(\frac{d}{\gamma^{\prime}}, d\right)
$$

■ Need a nonperturbative argument
■ Need the "strength" of nondegenerate diffusion
■ Need solutions that are better than weak

- $\frac{\gamma-2}{\gamma-1}$-Hölder holds up to the boundary, better estimates may not.

■ This gap is crucial in the problem of maximal regularity

Maximal regularity via the Bernstein's method

joint work with A. Goffi (Padova), for the model problem

$$
-\Delta u+|D u|^{\gamma}=f
$$

Theorem
Let $f \in C^{1}\left(\mathbb{T}^{d}\right), \gamma>1$,

$$
q>d \frac{\gamma-1}{\gamma} \quad \text { and } q>2
$$

and $u \in C^{3}\left(\mathbb{T}^{d}\right)$ be a classical periodic solution.
Then, there exists $K=K\left(\|f\|_{q},\|D u\|_{1}, \gamma, q, d\right)>0$ such that

$$
\left\|D^{2} u\right\|_{L q\left(\mathbb{T}^{d}\right)}+\left\||D u|^{\gamma}\right\|_{L^{q}\left(\mathbb{T}^{d}\right)} \leq K .
$$

Proof via an (integral) Bernstein method: look at the equation satisfied by

$$
w=g\left(|D u|^{2}\right) \sim|D u|
$$

on its level sets, i.e. $\left\{w_{k}=(w-k)^{+} \geq 0\right\}$:

$$
-\Delta w_{k}+\gamma|D u|^{\gamma-2} D u \cdot D w_{k}+\frac{\left|D^{2} u\right|^{2}}{|D u|} \leq D f \cdot \frac{D u}{|D u|} .
$$

Proof via an (integral) Bernstein method: look at the equation satisfied by

$$
w=g\left(|D u|^{2}\right) \sim|D u|
$$

on its level sets, i.e. $\left\{w_{k}=(w-k)^{+} \geq 0\right\}$:

$$
-\Delta w_{k}+\gamma|D u|^{\gamma-2} D u \cdot D w_{k}+\frac{\left|D^{2} u\right|^{2}}{|D u|} \leq D f \cdot \frac{D u}{|D u|} .
$$

Equation can be plugged in

$$
\left|D^{2} u\right|^{2} \geq|\Delta u|^{2}=\left(|D u|^{\gamma}-f\right)^{2}
$$

to yield

$$
-\Delta w_{k}+w^{2 \gamma-1} \leq D f \cdot \frac{D u}{|D u|}+\frac{f^{2}}{|D u|}-w^{\gamma-1}\left|D w_{k}\right| .
$$

drawbacks

■ the proof needs regular solutions

drawbacks

■ the proof needs regular solutions
■ Bernstein needs $f \in L^{q}, q>2$

drawbacks

■ the proof needs regular solutions
■ Bernstein needs $f \in L^{q}, q>2$
■ f is assumed to be periodic

drawbacks

■ the proof needs regular solutions
■ Bernstein needs $f \in L^{q}, q>2$
■ f is assumed to be periodic
■ handling general x dependencies, e.g.
$-\operatorname{tr}\left(A(x) D^{2} u\right)+H(x, D u)$, might be painful

drawbacks

■ the proof needs regular solutions
■ Bernstein needs $f \in L^{q}, q>2$
■ f is assumed to be periodic
■ handling general x dependencies, e.g.
$-\operatorname{tr}\left(A(x) D^{2} u\right)+H(x, D u)$, might be painful
■ the argument may break down for different operators div form is ok, but nonlocal, parabolic, ... ??
different approach?

back to Hölder

need to improve the known $\frac{\gamma-2}{\gamma-1}$-Hölder regularity.

back to Hölder

need to improve the known $\frac{\gamma-2}{\gamma-1}$-Hölder regularity.
A remarkable Liouville theorem
Lemma ([Lions, 85])
Let A_{0} be a constant, symmetric and positive definite matrix, $h_{0}>0$, and $w \in W_{\text {loc }}^{2, q}\left(\mathbb{R}^{N}\right), q>d / \gamma^{\prime}$, solve

$$
-\operatorname{tr}\left(A_{0} D^{2} w\right)+h_{0}|D w|^{\gamma}=0 \quad \text { in } \mathbb{R}^{d}
$$

Then w is constant.
Note: no need of growth/sign conditions on w.
joint work with G. Verzini, for the problem

$$
-\operatorname{tr}\left(A(x) D^{2} u\right)+H(x, D u)=f(x)
$$

where

$$
A \in C \cap W^{1, d}, \quad H(x, D u)=h(x)|D u|^{\gamma}+\ldots
$$

joint work with G. Verzini, for the problem

$$
-\operatorname{tr}\left(A(x) D^{2} u\right)+H(x, D u)=f(x)
$$

where

$$
A \in C \cap W^{1, d}, \quad H(x, D u)=h(x)|D u|^{\gamma}+\ldots
$$

Theorem

Let $q>\frac{d}{\gamma^{\prime}}$. For every $M \geq 0$ there exists C such that if $u \in W^{2, q}(\Omega)$ is a strong solution, with $\|f\|_{q} \leq M$, then

$$
\sup _{\bar{x} \neq x}(\operatorname{dist}(\bar{x}, \partial \Omega) \wedge \operatorname{dist}(x, \partial \Omega))^{\alpha-\alpha_{0}} \frac{|u(\bar{x})-u(x)|}{|\bar{x}-x|^{\alpha}} \leq C,
$$

where

$$
\alpha=2-\frac{N}{q} \wedge 1 \quad>\alpha_{0}=\frac{\gamma-2}{\gamma-1}
$$

joint work with G. Verzini, for the problem

$$
-\operatorname{tr}\left(A(x) D^{2} u\right)+H(x, D u)=f(x)
$$

where

$$
A \in C \cap W^{1, d}, \quad H(x, D u)=h(x)|D u|^{\gamma}+\ldots
$$

Theorem

Let $q>\frac{d}{\gamma^{\prime}}$. For every $M \geq 0$ there exists C such that if $u \in W^{2, q}(\Omega)$ is a strong solution, with $\|f\|_{q} \leq M$, then

$$
\sup _{\bar{x} \neq x}(\operatorname{dist}(\bar{x}, \partial \Omega) \wedge \operatorname{dist}(x, \partial \Omega))^{\alpha-\alpha_{0}} \frac{|u(\bar{x})-u(x)|}{|\bar{x}-x|^{\alpha}} \leq C,
$$

where

$$
\alpha=2-\frac{N}{q} \wedge 1 \quad>\alpha_{0}=\frac{\gamma-2}{\gamma-1}
$$

As a straightforward consequence, we obtain a local maximal regularity result

Proof. By contradiction, pick a sequence s.t.

■ $-\operatorname{tr}\left(A(x) D^{2} u_{n}\right)+H\left(x, D u_{n}\right)=f_{n}(x)$;

- $\left\|f_{n}\right\|_{q} \leq M$;

■ $r_{n}=\left|\bar{x}_{n}-x_{n}\right|,\left(\mathrm{d}\left(\bar{x}_{n}, \partial \Omega\right)\right)^{\alpha-\alpha_{0}} \frac{\left|u_{n}\left(x_{n}\right)\right|}{r_{n}^{n}} \rightarrow+\infty$ as $n \rightarrow+\infty$.

Proof. By contradiction, pick a sequence s.t.

■ $-\operatorname{tr}\left(A(x) D^{2} u_{n}\right)+H\left(x, D u_{n}\right)=f_{n}(x) ;$

- $\left\|f_{n}\right\|_{q} \leq M$;

■ $r_{n}=\left|\bar{x}_{n}-x_{n}\right|,\left(\mathrm{d}\left(\bar{x}_{n}, \partial \Omega\right)\right)^{\alpha-\alpha_{0}} \frac{\left|u_{n}\left(x_{n}\right)\right|}{r_{n}^{n}} \rightarrow+\infty$ as $n \rightarrow+\infty$.
and define

$$
w_{n}(y):=\frac{1}{\left|u_{n}\left(x_{n}\right)\right|} u_{n}\left(\bar{x}_{n}+r_{n} y\right), \quad y \in \Omega_{n}:=\frac{\Omega-\bar{x}_{n}}{r_{n}} .
$$

Proof. By contradiction, pick a sequence s.t.
■ $-\operatorname{tr}\left(A(x) D^{2} u_{n}\right)+H\left(x, D u_{n}\right)=f_{n}(x) ;$

- $\left\|f_{n}\right\|_{q} \leq M$;

■ $r_{n}=\left|\bar{x}_{n}-x_{n}\right|,\left(\mathrm{d}\left(\bar{x}_{n}, \partial \Omega\right)\right)^{\alpha-\alpha_{0}} \frac{\left|u_{n}\left(x_{n}\right)\right|}{r_{n}^{n}} \rightarrow+\infty$ as $n \rightarrow+\infty$.
and define

$$
w_{n}(y):=\frac{1}{\left|u_{n}\left(x_{n}\right)\right|} u_{n}\left(\bar{x}_{n}+r_{n} y\right), \quad y \in \Omega_{n}:=\frac{\Omega-\bar{x}_{n}}{r_{n}} .
$$

Step 1: $\frac{\mathrm{d}\left(\overline{\bar{n}}_{n}, \partial \Omega\right)}{r_{n}} \rightarrow+\infty$, hence $\Omega_{n} \rightarrow \mathbb{R}^{d}$.
This is a consequence of $\frac{\gamma-2}{\gamma-1}$-Hölder estimates by [Dall'Aglio-Porretta]

Step 2: w_{n} solves

$$
-\operatorname{tr}\left(A_{n}(y) D^{2} w_{n}\right)+H_{n}\left(y, D w_{n}\right)=g_{n}(y) \quad \text { in } \Omega_{n}
$$

and

$$
H_{n}\left(y, D w_{n}\right) \sim\left(\frac{\left|u_{n}\left(x_{n}\right)\right|}{r_{n}^{\frac{\gamma-2}{\gamma-1}}}\right)^{\gamma-1}\left|D w_{n}\right|^{\gamma}, \quad g_{n} \xrightarrow{L^{q}} 0
$$

Step 2: w_{n} solves

$$
-\operatorname{tr}\left(A_{n}(y) D^{2} w_{n}\right)+H_{n}\left(y, D w_{n}\right)=g_{n}(y) \quad \text { in } \Omega_{n},
$$

and

$$
H_{n}\left(y, D w_{n}\right) \sim\left(\frac{\left|u_{n}\left(x_{n}\right)\right|}{\frac{\gamma-2}{\gamma-1}}\right)^{\gamma-1}\left|D w_{n}\right|^{\gamma}, \quad g_{n} \xrightarrow{\llcorner 9} 0
$$

Step 3: w_{n} is locally bounded in $W^{2,9}$ by an interpolation argument $\leadsto \rightarrow$ compactness.

Step 2: w_{n} solves

$$
-\operatorname{tr}\left(A_{n}(y) D^{2} w_{n}\right)+H_{n}\left(y, D w_{n}\right)=g_{n}(y) \quad \text { in } \Omega_{n},
$$

and

$$
H_{n}\left(y, D w_{n}\right) \sim\left(\frac{\left|u_{n}\left(x_{n}\right)\right|}{\frac{\gamma-2}{\frac{\gamma-2}{\gamma-1}}}\right)^{\gamma-1}\left|D w_{n}\right|^{\gamma}, \quad g_{n} \xrightarrow{\iota^{q}} 0
$$

Step 3: w_{n} is locally bounded in $W^{2,9}$ by an interpolation argument $\leadsto \rightarrow$ compactness.

Step 4: in the limit, w is a nonconstant solution of

$$
-\operatorname{tr}\left(A_{0} D^{2} w\right)+h_{0}|D w|^{\gamma}=0 \quad \text { in } \mathbb{R}^{d}
$$

which is impossible by Liouville.

the critical case $q_{0}=\frac{d}{\gamma^{\prime}}$

$\frac{\gamma-2}{\gamma-1}$-Hölder cannot be improved.

the critical case $q_{0}=\frac{d}{\gamma^{\prime}}$

$\frac{\gamma-2}{\gamma-1}$-Hölder cannot be improved.
Suitable regularizations / truncations u_{n} of $c|x| \frac{r-2}{\mid-1}$ satisfy

$$
-\Delta u_{n}+\left|D u_{n}\right|^{\gamma}=f_{n}, \quad\left\|f_{n}\right\|_{L q_{0}} \leq C, \quad\left\|\left|D u_{n}\right|^{\gamma}\right\| \|_{q_{0}} \rightarrow+\infty,
$$

so Maximal regularity does not hold.

the critical case $q_{0}=\frac{d}{\gamma^{\prime}}$

$\frac{\gamma-2}{\gamma-1}$-Hölder cannot be improved.
Suitable regularizations / truncations u_{n} of $c|x| \frac{r-2}{1-2}$ satisfy

$$
-\Delta u_{n}+\left|D u_{n}\right|^{\gamma}=f_{n}, \quad\left\|f_{n}\right\|_{L} q_{0} \leq C, \quad\left\|\left.D u_{n}\right|^{\gamma}\right\|_{1} q_{0} \rightarrow+\infty,
$$

so Maximal regularity does not hold.
Conjecture (work in progress):
$|D u|^{y}$ remains bounded in L^{q} whenever
f varies in a set of uniformly $L^{L^{9}}$ integrable functions.

True when $\gamma<2$.

Parabolic

$$
\partial_{t} u-\operatorname{tr}\left(A(x) D^{2} u\right)+h(x)|D u|^{\gamma}=f(x, t) .
$$

■ Hölder estimates by [Cardaliaguet-Silvestre, Stokols-Vasseur], for "rough" h,A, but "incompatible" with maximal regularity .

■ Hölder and maximal regularity for "nice" h,A by [C.-Goffi], under non sharp conditions on the rhs integrability:

$$
f \in L^{q}, \quad q \geq \bar{q}>\frac{d+2}{\gamma^{\prime}} .
$$

Parabolic

$$
\partial_{t} u-\operatorname{tr}\left(A(x) D^{2} u\right)+h(x)|D u|^{\gamma}=f(x, t) .
$$

■ Hölder estimates by [Cardaliaguet-Silvestre, Stokols-Vasseur], for "rough" h,A, but "incompatible" with maximal regularity .

■ Hölder and maximal regularity for "nice" h,A by [C.-Goffi], under non sharp conditions on the rhs integrability:

$$
f \in L^{q}, \quad q \geq \bar{q}>\frac{d+2}{\gamma^{\prime}} .
$$

Stationary result is based on

- $\frac{\gamma-2}{\gamma-1}$-Hölder estimates,
- Liouville theorem
both missing now.

$$
\partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \quad \partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma}
$$

scale differently!

$$
\partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \quad \partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma}
$$

scale differently!
[Cardaliaguet-Silvestre] hinges on oscillation estimates: Q_{1} be the unit cylinder,

then $\quad \operatorname{osc}_{Q_{2}} u \leq(1-\theta) \operatorname{osc}_{Q_{1}} u \quad$ for suitable $Q_{2} \subset Q_{1}$.

$$
\partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma} \quad \partial_{t} u-\operatorname{tr}\left(A D^{2} u\right)+|D u|^{\gamma}
$$

scale differently!
[Cardaliaguet-Silvestre] hinges on oscillation estimates:
Q_{1} be the unit cylinder,

then $\quad \operatorname{osc}_{Q_{2}} u \leq(1-\theta) \operatorname{osc}_{Q_{1}} u \quad$ for suitable $Q_{2} \subset Q_{1}$.
By scaling, Hölder estimates follow. Diffusion is perturbative.

Our strategy: prove diminish of suitable seminorms, that is, for $Q_{2} \subset Q_{1}$,

then $\llbracket u \rrbracket_{\alpha, Q_{2}} \leq(1-\theta) \llbracket u \rrbracket_{\alpha, Q_{1}}$ where

$$
\llbracket u \rrbracket_{\alpha} \approx \max \left\{\frac{|u(x, t)-u(\bar{x}, t)|}{|x-\bar{x}|^{\alpha}},\left(\frac{|u(x, t)-u(x, \bar{t})|}{|t-\bar{t}|^{\frac{\alpha}{2}}}\right)^{\frac{2}{v}}\right\}
$$

Our strategy: prove diminish of suitable seminorms, that is, for $Q_{2} \subset Q_{1}$,

then $\llbracket u \rrbracket_{\alpha, Q_{2}} \leq(1-\theta) \llbracket u \rrbracket_{\alpha, Q_{1}}$ where

$$
\llbracket u \rrbracket_{\alpha} \approx \max \left\{\frac{|u(x, t)-u(\bar{x}, t)|}{|x-\bar{x}|^{\alpha}},\left(\frac{|u(x, t)-u(x, \bar{t})|}{|t-\bar{t}|^{\frac{\alpha}{2}}}\right)^{\frac{2}{v}}\right\}
$$

using from the representation formula

$$
u\left(x_{0}, 0\right)=\inf _{b_{s}} \mathbb{E} \int_{0}^{\tau} \ell\left|b_{s}\right|^{\gamma^{\prime}}+f\left(X_{s}, s\right) d s+\mathbb{E} w\left(X_{\tau}, \tau\right)
$$

which reads

$$
u\left(x_{0}, \tau\right)=\iint|b|^{\gamma^{\prime}} \rho+\iint f \rho+\int u(0) \rho(0)
$$

where

$$
-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0, \quad b=-\gamma|D u|^{\gamma-2} D u, \quad \rho(\tau)=\delta_{x_{0}}
$$

which is the dual equation.
which reads

$$
u\left(x_{0}, \tau\right)=\iint|b|^{\gamma^{\prime}} \rho+\iint f \rho+\int u(0) \rho(0)
$$

where

$$
-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0, \quad b=-\gamma|D u|^{\gamma-2} D u, \quad \rho(\tau)=\delta_{x_{0}}
$$

which is the dual equation.

Crucial Lemma:

$$
\|\rho\|_{L^{\left(d+2 / \gamma^{\prime}\right)^{\prime}}} \lesssim \iint|b|^{\gamma^{\prime}} \rho+1
$$

+ control of ρ at the boundary of the unit cylinder.
Then, by estimating $u\left(x_{0}+h, \tau\right)-u\left(x_{0}, \tau\right), \ldots$
which reads

$$
u\left(x_{0}, \tau\right)=\iint|b|^{\gamma^{\prime}} \rho+\iint f \rho+\int u(0) \rho(0)
$$

where

$$
-\partial_{t} \rho-\Delta \rho+\operatorname{div}(b \rho)=0, \quad b=-\gamma|D u|^{\gamma-2} D u, \quad \rho(\tau)=\delta_{x_{0}}
$$

which is the dual equation.
Crucial Lemma:

$$
\|\rho\|_{L\left(d+2 / \gamma^{\prime}\right)^{\prime}} \lesssim \iint|b|^{p^{\prime}} \rho+1
$$

+ control of ρ at the boundary of the unit cylinder.
Then, by estimating $u\left(x_{0}+h, \tau\right)-u\left(x_{0}, \tau\right), \ldots$
... we can complete the program: Hölder estimates, full maximal regularity, and Liouville theorem as a byproduct.

Ongoing work / perspectives

- quasilinear equations (p-Laplacian...)
- fully nonlinear problems
- nonlocal problems

Ongoing work / perspectives

- quasilinear equations (p-Laplacian...)
- fully nonlinear problems
- nonlocal problems

Ongoing work / perspectives

■ quasilinear equations (p-Laplacian...)

- fully nonlinear problems
- nonlocal problems

Thank you for your attention !

