Hölder and maximal regularity for Hamilton-Jacobi equations

Marco Cirant

Università di Padova

May 25, 2023

 $\gamma > 2, A > 0$

For $u : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ satisfying $-tr(A D^2 u) + |Du|^{\gamma} \in L^q(\Omega)$ what can be said about Hölder regularity of u? (when For $u: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ satisfying

 $-\mathrm{tr}(A D^2 u) + |Du|^{\gamma} \in L^q(\Omega)$

what can be said about Hölder regularity of u? (when $\gamma > 2, A > 0$)

About L^q -maximal regularity? Is it true that

 $-\operatorname{tr}(A D^2 u) + |Du|^{\gamma} \in L^q \implies D^2 u, |Du|^{\gamma} \in L^q$?

For $u: \Omega \subseteq \mathbb{R}^n \times (0, T) \rightarrow \mathbb{R}$ satisfying

$$\partial_t u - \operatorname{tr}(A D^2 u) + |Du|^{\gamma} \in L^q(\Omega \times (0, T))$$

what can be said about Hölder regularity? (when $\gamma > 2, A > 0$)

About *L^q*-maximal regularity? Is it true that

 $\partial_t u - \operatorname{tr}(A D^2 u) + |Du|^{\gamma} \in L^q \quad \Rightarrow \quad \partial_t u, \ D^2 u, \ |Du|^{\gamma} \in L^q$?

 Stochastic optimal control and homogenization: Hamilton-Jacobi

- Stochastic optimal control and homogenization: Hamilton-Jacobi
- Theory of growth and roughening of surfaces KPZ, flame propagation models - Michelson-Sivashinsky

- Stochastic optimal control and homogenization: Hamilton-Jacobi
- Theory of growth and roughening of surfaces KPZ, flame propagation models - Michelson-Sivashinsky
- Mean Field Games:

$$\begin{cases} -\partial_t u - \Delta u + |Du|^{\gamma} = f(m(x,t)) \\ \partial_t m - \Delta m - \operatorname{div}(\gamma |Du|^{\gamma-2} Dum) = 0 \end{cases}$$

- Stochastic optimal control and homogenization: Hamilton-Jacobi
- Theory of growth and roughening of surfaces KPZ, flame propagation models - Michelson-Sivashinsky
- Mean Field Games:

$$\begin{cases} -\partial_t u - \Delta u + |Du|^{\gamma} = f(m(x,t)) \\ \partial_t m - \Delta m - \operatorname{div}(\gamma |Du|^{\gamma-2} Dum) = 0 \end{cases}$$

Maximal regularity: conjectured by P.-L. Lions ~ '12-'14 to hold iff

$$q > d \frac{\gamma - 1}{\gamma} =: q_0$$

Gain of regularity

Since $-\Delta u = f - |Du|^{\gamma}$, by Calderón-Zygmund

 $\| U \|_{W^{2,q}} \lesssim \| \, |D U|^{\gamma} \, \|_{L^q} + \| f \|_{L^q}$

Gain of regularity

and

Since $-\Delta u = f - |Du|^{\gamma}$, by Calderón-Zygmund

 $\| U \|_{W^{2,q}} \lesssim \| \, |D u|^{\gamma} \, \|_{L^q} + \| f \|_{L^q}$

Using Sobolev embeddings,

 $\|Du\|_{L^{q^*}} \lesssim \|u\|_{W^{2,q}} \lesssim \||Du|^{\gamma}\|_{L^q} + \|f\|_{L^q} = \|Du\|_{L^{\gamma q}}^{\gamma} + \|f\|_{L^q}$

$$q^* > \gamma q \quad \Leftrightarrow \quad q > \frac{d}{\gamma'}$$

Gain of regularity

Since $-\Delta u = f - |Du|^{\gamma}$, by Calderón-Zygmund

 $\| U \|_{W^{2,q}} \lesssim \| \| D u \|^{\gamma} \|_{L^{q}} + \| f \|_{L^{q}}$

Using Sobolev embeddings,

 $\|Du\|_{L^{q^*}} \lesssim \|u\|_{W^{2,q}} \lesssim \||Du|^{\gamma}\|_{L^{q}} + \|f\|_{L^{q}} = \|Du\|_{L^{\gamma q}}^{\gamma} + \|f\|_{L^{q}}$

$$q^* > \gamma q \quad \Leftrightarrow \quad q > \frac{d}{\gamma'}$$

Using Gagliardo-Nirenberg,

$$\|Du\|_{L^{q^*}} \leq \|u\|_{W^{2,q}}^{\theta} [u]_{\alpha}^{1-\theta} \leq \left(\|Du\|_{L^{\gamma q}}^{\gamma} + \|f\|_{L^{q}}\right)^{\theta} [u]_{\alpha}^{1-\theta}$$

and

and

$$\gamma \theta < 1 \quad \Leftrightarrow \quad \alpha > \frac{\gamma - 2}{\gamma - 1}$$

If $-\Delta u + |Du|^{\gamma} = f$, the α -Hölder scaling $v(x) = \varepsilon^{-\alpha} u(\varepsilon x)$ solves

$$-\Delta V + \varepsilon^{(\alpha-1)\gamma+2-\alpha} |DV|^{\gamma} = \varepsilon^{2-\alpha} f(\varepsilon X)$$

If $-\Delta u + |Du|^{\gamma} = f$, the α -Hölder scaling $v(x) = \varepsilon^{-\alpha} u(\varepsilon x)$ solves $-\Delta v + \varepsilon^{(\alpha-1)\gamma+2-\alpha} |Dv|^{\gamma} = \varepsilon^{2-\alpha} f(\varepsilon x)$

• Subquadratic case: $\gamma < 2$

$$-\Delta v = f_{\varepsilon} + o_{\varepsilon}(1) |Dv|^{\gamma}$$

 α -Hölder bounds depending on L^q -norm of f, q > d/2: [LU].

If $-\Delta u + |Du|^{\gamma} = f$, the α -Hölder scaling $v(x) = \varepsilon^{-\alpha} u(\varepsilon x)$ solves $-\Delta v + \varepsilon^{(\alpha-1)\gamma+2-\alpha} |Dv|^{\gamma} = \varepsilon^{2-\alpha} f(\varepsilon x)$

• Subquadratic case: $\gamma < 2$

$$-\Delta v = f_{\varepsilon} + o_{\varepsilon}(1) |Dv|^{\gamma}$$

 α -Hölder bounds depending on L^q -norm of f, q > d/2: [LU].

• Superquadratic case: $\gamma > 2$

$$|Dv|^{\gamma} = f_{\varepsilon} + o_{\varepsilon}(1)\Delta v$$

universal *a*-Hölder bounds : [Dall'Aglio-Porretta] for

$$\alpha \leq \frac{\gamma - 2}{\gamma - 1} := \alpha, \quad q \leq q_0 := \frac{d}{\gamma'}$$

 $\frac{\gamma-2}{\gamma-1}$ -Hölder is "sharp": $u(x) = c|x|^{\frac{\gamma-2}{\gamma-1}}$ is a weak sol. of

 $-\Delta u + |Du|^{\gamma} = 0$

$$\frac{\gamma-2}{\gamma-1}$$
-Hölder is "sharp": $u(x) = c|x|^{\frac{\gamma-2}{\gamma-1}}$ is a weak sol. of
 $-\Delta u + |Du|^{\gamma} = 0$

• *γ* > 1, [Lions]

 $-\Delta u + |Du|^{\gamma} = f$

Lipschitz bounds depending on L^q -norm of f, q > d for classical solutions

$$\frac{\gamma-2}{\gamma-1}$$
-Hölder is "sharp": $u(x) = c|x|^{\frac{\gamma-2}{\gamma-1}}$ is a weak sol. of

 $-\Delta u + |Du|^{\gamma} = 0$

• *γ* > 1, [Lions]

$$-\Delta u + |Du|^{\gamma} = f$$

Lipschitz bounds depending on L^q -norm of f, q > d for classical solutions

• $\gamma > 1$, [Capuzzo Dolcetta-Leoni-Porretta]

$$-\mathrm{tr}(A(x)D^2u) + |Du|^{\gamma} = f$$

Lipschitz bounds depending on $W^{1,\infty}$ -norm of f, for viscosity solutions, $A \ge 0$

$$\alpha \in \left(\frac{\gamma - 2}{\gamma - 1}, 1\right), \qquad q \in \left(\frac{d}{\gamma'}, d\right)$$

$$\alpha \in \left(\frac{\gamma-2}{\gamma-1}, 1\right), \qquad q \in \left(\frac{d}{\gamma'}, d\right)$$

Need a nonperturbative argument

$$\alpha \in \left(\frac{\gamma-2}{\gamma-1}, 1\right), \qquad q \in \left(\frac{d}{\gamma'}, d\right)$$

- Need a nonperturbative argument
- Need the "strength" of nondegenerate diffusion

$$\alpha \in \left(\frac{\gamma - 2}{\gamma - 1}, 1\right), \qquad q \in \left(\frac{d}{\gamma'}, d\right)$$

- Need a nonperturbative argument
- Need the "strength" of nondegenerate diffusion
- Need solutions that are better than weak

$$\alpha \in \left(\frac{\gamma - 2}{\gamma - 1}, 1\right), \qquad q \in \left(\frac{d}{\gamma'}, d\right)$$

- Need a nonperturbative argument
- Need the "strength" of nondegenerate diffusion
- Need solutions that are better than weak
- $\frac{\gamma-2}{\gamma-1}$ -Hölder holds up to the boundary, better estimates may not.

$$\alpha \in \left(\frac{\gamma - 2}{\gamma - 1}, 1\right), \qquad q \in \left(\frac{d}{\gamma'}, d\right)$$

- Need a nonperturbative argument
- Need the "strength" of nondegenerate diffusion
- Need solutions that are better than weak
- $\frac{\gamma-2}{\gamma-1}$ -Hölder holds up to the boundary, better estimates may not.
- This gap is crucial in the problem of maximal regularity

Maximal regularity via the Bernstein's method

joint work with A. Goffi (Padova), for the model problem

 $-\Delta u + |Du|^{\gamma} = f$

Theorem

Let $f \in C^1(\mathbb{T}^d)$, $\gamma > 1$,

$$q > d \frac{\gamma - 1}{\gamma}$$
 and $q > 2$,

and $u \in C^3(\mathbb{T}^d)$ be a classical periodic solution. Then, there exists $K = K(||f||_q, ||Du||_1, \gamma, q, d) > 0$ such that

 $\|D^{2}u\|_{L^{q}(\mathbb{T}^{d})} + \||Du|^{\gamma}\|_{L^{q}(\mathbb{T}^{d})} \leq K.$

Proof via an (integral) Bernstein method: look at the equation satisfied by

 $w = g(|Du|^2) \sim |Du|$

on its level sets, i.e. $\{w_k = (w - k)^+ \ge 0\}$:

$$-\Delta w_k + \gamma |Du|^{\gamma-2} Du \cdot Dw_k + \frac{|D^2 u|^2}{|Du|} \le Df \cdot \frac{Du}{|Du|}.$$

Proof via an (integral) Bernstein method: look at the equation satisfied by

 $w = g(|Du|^2) \sim |Du|$

on its level sets, i.e. $\{w_k = (w - k)^+ \ge 0\}$:

$$-\Delta w_k + \gamma |Du|^{\gamma-2} Du \cdot Dw_k + \frac{|D^2 u|^2}{|Du|} \le Df \cdot \frac{Du}{|Du|}.$$

Equation can be plugged in

$$|D^2 u|^2 \ge |\Delta u|^2 = (|Du|^{\gamma} - f)^2$$

to yield

$$-\Delta w_k + \mathbf{w}^{2\gamma-1} \le Df \cdot \frac{Du}{|Du|} + \frac{f^2}{|Du|} - \mathbf{w}^{\gamma-1} |Dw_k|$$

•••

■ the proof needs regular solutions

■ the proof needs regular solutions

■ Bernstein needs $f \in L^q$, q > 2

- \blacksquare the proof needs regular solutions
- Bernstein needs $f \in L^q$, q > 2
- \blacksquare *f* is assumed to be periodic

- the proof needs regular solutions
- Bernstein needs $f \in L^q$, q > 2
- \blacksquare *f* is assumed to be periodic
- handling general x dependencies, e.g. $-tr(A(x)D^2u) + H(x, Du)$, might be painful

- the proof needs regular solutions
- Bernstein needs $f \in L^q$, q > 2
- \blacksquare *f* is assumed to be periodic
- handling general x dependencies, e.g. $-tr(A(x)D^2u) + H(x, Du)$, might be painful
- the argument may break down for different operators div form is ok, but nonlocal, parabolic, ... ??

different approach?

need to improve the known $\frac{\gamma-2}{\gamma-1}$ -Hölder regularity.

need to improve the known $\frac{\gamma-2}{\gamma-1}$ -Hölder regularity.

A remarkable Liouville theorem

Lemma ([Lions, 85])

Let A_0 be a constant, symmetric and positive definite matrix, $h_0 > 0$, and $w \in W^{2,q}_{loc}(\mathbb{R}^N)$, $q > d/\gamma'$, solve

$$-\mathrm{tr}\left(A_0D^2w\right)+h_0|Dw|^{\gamma}=0\qquad in\ \mathbb{R}^d.$$

Then w is constant.

Note: no need of growth/sign conditions on w.

joint work with G. Verzini, for the problem

$$-\mathrm{tr}(A(x)D^2u) + H(x, Du) = f(x)$$

where

$$A \in C \cap W^{1,d}$$
, $H(x, Du) = h(x)|Du|^{\gamma} + ...$

joint work with G. Verzini, for the problem

$$-\mathrm{tr}(A(x)D^2u) + H(x, Du) = f(x)$$

where

$$A \in C \cap W^{1,d}$$
, $H(x, Du) = h(x)|Du|^{\gamma} + ...$

Theorem

Let $q > \frac{d}{\gamma'}$. For every $M \ge 0$ there exists C such that if $u \in W^{2,q}(\Omega)$ is a strong solution, with $\|f\|_q \le M$, then

$$\sup_{\bar{x}\neq x} \left(\operatorname{dist}(\bar{x},\partial\Omega) \wedge \operatorname{dist}(x,\partial\Omega) \right)^{\alpha-\alpha_0} \frac{|u(\bar{x}) - u(x)|}{|\bar{x} - x|^{\alpha}} \leq C,$$

where

$$\alpha = 2 - \frac{N}{q} \wedge 1 \qquad > \alpha_0 = \frac{\gamma - 2}{\gamma - 1}$$

joint work with G. Verzini, for the problem

$$-\mathrm{tr}(A(x)D^2u) + H(x, Du) = f(x)$$

where

$$A \in C \cap W^{1,d}$$
, $H(x, Du) = h(x)|Du|^{\gamma} + ...$

Theorem

Let $q > \frac{d}{\gamma'}$. For every $M \ge 0$ there exists C such that if $u \in W^{2,q}(\Omega)$ is a strong solution, with $\|f\|_q \le M$, then

$$\sup_{\bar{x}\neq x} \left(\operatorname{dist}(\bar{x},\partial\Omega) \wedge \operatorname{dist}(x,\partial\Omega) \right)^{\alpha-\alpha_0} \frac{|u(\bar{x}) - u(x)|}{|\bar{x} - x|^{\alpha}} \leq C,$$

where

$$\alpha = 2 - \frac{N}{q} \wedge 1 \qquad > \alpha_0 = \frac{\gamma - 2}{\gamma - 1}$$

As a straightforward consequence, we obtain a local maximal regularity result

Proof. By contradiction, pick a sequence s.t.

$$-\operatorname{tr}(A(x)D^2u_n) + H(x, Du_n) = f_n(x);$$

 $\ \ \, \|f_n\|_q \leq M;$

•
$$r_n = |\bar{x}_n - x_n|$$
, $\left(d(\bar{x}_n, \partial \Omega) \right)^{\alpha - \alpha_0} \frac{|u_n(x_n)|}{r_n^\alpha} \to +\infty$ as $n \to +\infty$.

Proof. By contradiction, pick a sequence s.t.

$$-\operatorname{tr} \left(A(x)D^{2}u_{n} \right) + H(x, Du_{n}) = f_{n}(x);$$

$$||f_{n}||_{q} \leq M;$$

$$r_{n} = |\bar{x}_{n} - x_{n}|, \left(\operatorname{d}(\bar{x}_{n}, \partial\Omega) \right)^{\alpha - \alpha_{0}} \frac{|u_{n}(x_{n})|}{r_{n}^{\alpha}} \to +\infty \text{ as } n \to +\infty.$$

and define

$$w_n(y) := \frac{1}{|u_n(x_n)|} u_n(\bar{x}_n + r_n y), \qquad y \in \Omega_n := \frac{\Omega - \bar{x}_n}{r_n}.$$

Proof. By contradiction, pick a sequence s.t.

$$-\operatorname{tr} \left(A(x)D^{2}u_{n} \right) + H(x, Du_{n}) = f_{n}(x);$$

$$||f_{n}||_{q} \leq M;$$

$$r_{n} = |\bar{x}_{n} - x_{n}|, \left(d(\bar{x}_{n}, \partial\Omega) \right)^{\alpha - \alpha_{0}} \frac{|u_{n}(x_{n})|}{r_{n}^{\alpha}} \to +\infty \text{ as } n \to +\infty.$$

and define

$$w_n(y) := \frac{1}{|u_n(x_n)|} u_n(\bar{x}_n + r_n y), \qquad y \in \Omega_n := \frac{\Omega - \bar{x}_n}{r_n}.$$

<u>Step 1:</u> $\frac{d(\bar{x}_n,\partial\Omega)}{r_n} \to +\infty$, hence $\Omega_n \to \mathbb{R}^d$. This is a consequence of $\frac{\gamma-2}{\gamma-1}$ -Hölder estimates by [Dall'Aglio-Porretta] Step 2: *w_n* solves

$$-\mathrm{tr}(A_n(y)D^2w_n) + H_n(y, Dw_n) = g_n(y) \quad \text{in } \Omega_n,$$

and

$$H_n\left(y, Dw_n\right) \sim \left(\frac{|u_n(x_n)|}{\frac{\gamma^{-2}}{r_n^{\gamma-1}}}\right)^{\gamma-1} |Dw_n|^{\gamma}, \qquad g_n \xrightarrow{L^q} 0$$

Step 2: *w_n* solves

$$-\mathrm{tr}(A_n(y)D^2w_n) + H_n(y, Dw_n) = g_n(y) \qquad \text{in } \Omega_n,$$

and

$$H_n\left(y, Dw_n\right) \sim \left(\frac{|u_n(x_n)|}{\frac{\gamma^{-2}}{r_n^{\gamma^{-1}}}}\right)^{\gamma^{-1}} |Dw_n|^{\gamma}, \qquad g_n \xrightarrow{L^q} 0$$

Step 3: w_n is locally bounded in $W^{2,q}$ by an interpolation argument \rightsquigarrow compactness.

Step 2: *w_n* solves

$$-\mathrm{tr}(A_n(y)D^2w_n) + H_n(y, Dw_n) = g_n(y) \qquad \text{in } \Omega_n,$$

and

$$H_n(y, Dw_n) \sim \left(\frac{|u_n(x_n)|}{\frac{\gamma^{-2}}{r_n^{\gamma-1}}}\right)^{\gamma-1} |Dw_n|^{\gamma}, \qquad g_n \xrightarrow{L^q} 0$$

Step 3: w_n is locally bounded in $W^{2,q}$ by an interpolation argument \rightsquigarrow compactness.

Step 4: in the limit, w is a nonconstant solution of

$$-\mathrm{tr}\left(A_0 D^2 w\right) + h_0 |Dw|^{\gamma} = 0 \qquad \text{in } \mathbb{R}^d,$$

which is impossible by Liouville.

the critical case $q_0 = \frac{d}{\gamma'}$

 $\frac{\gamma-2}{\gamma-1}$ -Hölder cannot be improved.

 $\frac{\gamma-2}{\gamma-1}$ -Hölder cannot be improved.

Suitable regularizations / truncations u_n of $c|x|^{\frac{\gamma-2}{\gamma-1}}$ satisfy

 $-\Delta u_n + |Du_n|^{\gamma} = f_n, \qquad \|f_n\|_{L^{q_0}} \leq C, \qquad \||Du_n|^{\gamma}\|_{L^{q_0}} \rightarrow +\infty,$

so Maximal regularity does not hold.

 $\frac{\gamma-2}{\gamma-1}$ -Hölder cannot be improved.

Suitable regularizations / truncations u_n of $c|x|^{\frac{\gamma-2}{\gamma-1}}$ satisfy

 $-\Delta u_n+|Du_n|^{\gamma}=f_n,\qquad \|f_n\|_{L^{q_0}}\leq C,\qquad \||Du_n|^{\gamma}\|_{L^{q_0}}\rightarrow+\infty,$

so Maximal regularity does not hold.

Conjecture (work in progress):

 $|Du|^{\gamma}$ remains bounded in L^{q} whenever f varies in a set of uniformly L^{q} integrable functions.

True when $\gamma < 2$.

Parabolic

$$\partial_t u - \operatorname{tr}(A(x)D^2u) + h(x)|Du|^{\gamma} = f(x,t).$$

- Hölder estimates by [Cardaliaguet-Silvestre, Stokols-Vasseur], for "rough" h, A, but "incompatible" with maximal regularity.
- Hölder and maximal regularity for "nice" *h*, *A* by [C.-Goffi], under non sharp conditions on the rhs integrability:

$$f \in L^q$$
, $q \ge \overline{q} > \frac{d+2}{\gamma'}$.

Parabolic

$$\partial_t u - \operatorname{tr}(A(x)D^2u) + h(x)|Du|^{\gamma} = f(x,t).$$

- Hölder estimates by [Cardaliaguet-Silvestre, Stokols-Vasseur], for "rough" h, A, but "incompatible" with maximal regularity.
- Hölder and maximal regularity for "nice" *h*, *A* by [C.-Goffi], under non sharp conditions on the rhs integrability:

$$f \in L^q$$
, $q \ge \overline{q} > \frac{d+2}{\gamma'}$.

Stationary result is based on

- $\frac{\gamma-2}{\gamma-1}$ -Hölder estimates,
- Liouville theorem

both missing now.

$$\partial_t u - \operatorname{tr}(AD^2 u) + |Du|^{\gamma}$$

$$\partial_t u - \operatorname{tr}(AD^2 u) + |Du|^{\gamma}$$

scale differently!

$$\partial_t u - \operatorname{tr}(AD^2u) + |Du|^{\gamma}$$
 $\partial_t u - \operatorname{tr}(AD^2u) + |Du|^{\gamma}$

scale differently!

[Cardaliaguet-Silvestre] hinges on oscillation estimates: *Q*₁ be the unit cylinder,

then $\operatorname{osc}_{Q_2} u \leq (1 - \theta) \operatorname{osc}_{Q_1} u$ for suitable $Q_2 \subset Q_1$.

$$\partial_t u - \operatorname{tr}(AD^2u) + |Du|^{\gamma}$$
 $\partial_t u - \operatorname{tr}(AD^2u) + |Du|^{\gamma}$

scale differently!

[Cardaliaguet-Silvestre] hinges on oscillation estimates: Q_1 be the unit cylinder,

then $\operatorname{osc}_{Q_2} u \leq (1 - \theta) \operatorname{osc}_{Q_1} u$ for suitable $Q_2 \subset Q_1$.

By scaling, Hölder estimates follow. Diffusion is perturbative.

Our strategy: prove diminish of suitable seminorms, that is, for $Q_2 \subset Q_1$,

then $\llbracket u \rrbracket_{\alpha,Q_2} \leq (1-\theta)\llbracket u \rrbracket_{\alpha,Q_1}$ where

$$\llbracket u \rrbracket_{\alpha} \approx \max\left\{\frac{|u(x,t) - u(\bar{x},t)|}{|x - \bar{x}|^{\alpha}}, \left(\frac{|u(x,t) - u(x,\bar{t})|}{|t - \bar{t}|^{\frac{\alpha}{2}}}\right)^{\frac{2}{\gamma}}\right\}$$

Our strategy: prove diminish of suitable seminorms, that is, for $Q_2 \subset Q_1$,

then $\llbracket u \rrbracket_{\alpha,Q_2} \leq (1-\theta)\llbracket u \rrbracket_{\alpha,Q_1}$ where

$$\llbracket u \rrbracket_{\alpha} \approx \max\left\{\frac{|u(x,t) - u(\bar{x},t)|}{|x - \bar{x}|^{\alpha}}, \left(\frac{|u(x,t) - u(x,\bar{t})|}{|t - \bar{t}|^{\frac{\alpha}{2}}}\right)^{\frac{2}{\gamma}}\right\}$$

using from the representation formula

$$u(x_0,0) = \inf_{b_s} \mathbb{E} \int_0^\tau \ell |b_s|^{\gamma'} + f(X_s,s) ds + \mathbb{E} w(X_\tau,\tau).$$

which reads

$$u(x_0,\tau) = \iint |b|^{\gamma'}\rho + \iint f\rho + \int u(0)\rho(0)$$

where

 $-\partial_t \rho - \Delta \rho + \operatorname{div}(b\rho) = 0, \qquad b = -\gamma |Du|^{\gamma-2} Du, \quad \rho(\tau) = \delta_{X_0},$

which is the dual equation.

which reads

$$u(x_0,\tau) = \iint |b|^{\gamma'}\rho + \iint f\rho + \int u(0)\rho(0)$$

where

 $-\partial_t
ho - \Delta
ho + \operatorname{div}(b
ho) = 0, \qquad b = -\gamma |Du|^{\gamma-2} Du, \quad
ho(\tau) = \delta_{x_0},$

which is the dual equation.

Crucial Lemma:

$$\|\rho\|_{L^{(d+2/\gamma')'}} \lesssim \iint |b|^{\gamma'} \rho + 1$$

+ control of ρ at the boundary of the unit cylinder.

Then, by estimating $u(x_0 + h, \tau) - u(x_0, \tau)$, ...

which reads

$$u(x_0,\tau) = \iint |b|^{\gamma'}\rho + \iint f\rho + \int u(0)\rho(0)$$

where

 $-\partial_t
ho - \Delta
ho + \operatorname{div}(b
ho) = 0, \qquad b = -\gamma |Du|^{\gamma-2} Du, \quad
ho(\tau) = \delta_{x_0},$

which is the dual equation.

Crucial Lemma:

$$\|\rho\|_{L^{(d+2/\gamma')'}} \lesssim \iint |b|^{\gamma'}\rho + 1$$

+ control of ho at the boundary of the unit cylinder.

Then, by estimating $u(x_0 + h, \tau) - u(x_0, \tau)$, ...

... we can complete the program: Hölder estimates, full maximal regularity, and Liouville theorem as a byproduct.

- quasilinear equations (*p*-Laplacian...)
- fully nonlinear problems
- nonlocal problems

- quasilinear equations (*p*-Laplacian...)
- fully nonlinear problems
- nonlocal problems

- quasilinear equations (*p*-Laplacian...)
- fully nonlinear problems
- nonlocal problems

Thank you for your attention !