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Diffusion



Diffusion

Diffusion

Diffusion equations describe how a continuous medium (say,
a population) spreads to occupy the available space.

Models come from all kinds of applications: fluids, chemicals, bacteria, animal
populations, the momentum of a viscous (Newtonian) fluid diffuses, there is
diffusion in the stock market,...

Diffusion of particles in a water solution

So the question is : what is diffusion for a mathematician? how to analyze
diffusion mathematically?
This question has received two quite different answers in recent history.
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Diffusion

The two ways to diffusion

The two answers:

First direction: Is diffusion more or less related to random walk ? This is a correct
answer, and this approach leads to Brownian motion and Stochastic Processes,
with the famous Ito equation:

dx = bdt +
1
2
σdW .

Second direction: how to explain it with “standard mathematics” based on
Analysis? The answer is PDEs of parabolic type, as explained by A. Kolmogorov
in the 1930s. The mother equation is the Heat Equation:

∂tu = ∆u.

Understanding this double way has been the source of much effort and the work
goes on today.

Here we will follow the way of Analysis with PDEs, inaugurated by Joseph Fourier
(1807, 1822) in an apparently different context, Heat Propagation.
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Diffusion

Expanding the basic model

Some of the problems we face in the PDE approach

How much of it can be explained with linear models, how much is essentially
nonlinear? We have seen in the workshop how prevalent nonlinearity is.

The stationary states of diffusion belong to an important world, elliptic equations.
Elliptic equations, linear and nonlinear, have many relatives: diffusion, fluid
mechanics, waves of all types, quantum mechanics, ... Calculus of variations
plays a key role.

The Laplacian ∆ is really the Main Differential Operators for us.
The fractional Laplacian is close family. How strong is the theory and application
of the so-called nonlocal or long-range operators that include the fractional
Laplacian family?

There is a large number of applications in related topics that are to treated with
these Main Tools :

Modelling, Analysis, Stochastics, Asymptotics and Numerics.
add: Geometry, Physics, Biology.
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Diffusion

The heat equation semigroup and Gauss

When heat propagates in free space the natural problem is the initial value
problem

ut = ∆u, u(x , 0) = f (x) (1)

which is solved by convolution with the evolution version of the Gaussian function

G(x , t) = (4πt)−n/2exp (−|x |2/4t). (2)

Note that G has very nice analytical properties for t > 0, but note that
G(x , 0) = δ(x), a Dirac mass. G works as a kernel (Green, Gauss).

Representation. The maps St : u0 7→ u(t) := u0 ∗G(·, t) form a linear continuous
semigroup of contractions in all Lp spaces 1 ≤ p ≤ ∞.
(This is pure Functional Analysis, XXth century)

Question of Existence and uniqueness. It is very well known in other spaces
different from L1.
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Diffusion

The heat equation semigroup II

Question of Regularity. The maximum principle applies and differentiation of the
equation reproduces the equations. Solutions are C∞ inside the domain. Free
boundaries do not exist in this simple setting.

The maps St : u0 7→ u(t) := u0 ∗G(·, t) form a linear continuous semigroup of
contractions in all Lp spaces 1 ≤ p ≤ ∞.
(A continuous path in function space)

Asymptotic behaviour as t →∞, convergence to the Gaussian. Under very
mild conditions on u0 it is proved that

lim
t→∞
‖u(x , t)−M G(x , t)‖1= 0, (3)

lim
t→∞

tn/2(u(x , t)−M G(x , t)) = 0 (4)

uniformly, if M =
∫

u0(x) dx . For convergence in Lp less is needed. This is the
famous Central Limit Theorem in its continuous form (Probability).
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Diffusion

Heat equation graphs. Conflicting views

The comparison of ordered dissipation vs underlying chaos

Left, the evolution to a nice Gaussian

Right, a sample of random walk, origin of Brownian motion
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Linear and nonlinear equations

Looking for good models. The linear heat Equations

The Heat Equation and the parabolic families of related PDEs

ut =
∑

ij aij∂i∂ju +
∑

i bi∂iu + cu + f

and
ut =

∑
ij ∂i (aij∂ju) +

∑
i ∂i (biu) + cu + f

(where (aij ) is a positive definite matrix, possible variable with space and time) are a
powerful tool in advanced mathematics.

The HE and the Parabolic Equation Models have produced a huge number of
concepts, techniques and connections for pure and applied science. We talk about the
Gaussian function, separation of variables, Fourier analysis, spectral decomposition,
Dirichlet forms, Maximum Principles, Brownian motion, generation of semigroups,
functional inequalities, positive operators in Banach spaces, entropy dissipation, ...

In that sense these equations serve as a basic training tool for students of different
orientations.
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Linear and nonlinear equations

Looking for good models. Nonlinear equations

Let us take a step forward and expand the family of diffusive models in a difficult
direction, that of including nonlinearities.

Indeed, the heat example and the linear models are not representative enough,
since many models of science are nonlinear in a form that is very non-linear. A
general model of nonlinear diffusion takes the divergence form

∂tH(u) = ∇ · ~A(x , u,Du) + B(x , t , u,Du)

with monotonicity conditions on H and ∇p ~A(x , t , u, p) and structural conditions on
~A and B. Posed in the 1960s (Serrin et al.)

In this generality the mathematical theory is too rich to admit a simple description.
This includes the big areas of Nonlinear Diffusion and Reaction Diffusion, where I
have been working.
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Linear and nonlinear equations

Specific nonlinear heat flows

Many specific examples, now considered the “classical nonlinear diffusion
models”, have been investigated to understand in detail the qualitative features
and to introduce the quantitative techniques, that happen to be many and from
very different origins.

Typical nonlinear diffusion: Stefan Problem (phase transition between two fluids
like ice and water), ♥
Hele-Shaw Problem (potential flow in a thin l♥ayer between solid plates),
Porous Medium Equation: ut = ∆(um),
Evolution p-Laplacian Eqn: ut = ∇ · (|∇u|p−2∇u). ♥

Typical reaction diffusion: Fujita model ut = ∆u + up. ♥ Also diffusion+
absorption ut = ∆u − up. ♥
The novel phenomena are blow-up and extinction. A huge community working on
that. I spent part of my life working with them.

The systems are very important and the models are quite different. The
chemotaxis system and aggregation diffusion systems are very popular.

Finally, recall that “elliptic and parabolic problems go together well”. Example:
Obstacle problems. Caffarelli 1977. ♥
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Linear and nonlinear equations

Maestro LUIS CAFFARELLI and the ABEL PRIZE
Just two days ago I was present at Aula of Oslo University while Luis Caffarelli
received from the hands of King Harald the V of Norway a very important prize

• It was announced months ago in https://abelprize.no/ and the mention said

The Abel Prize recognises pioneering scientific achievements in mathematics
of The Abel Prize laureate 2023 is Luis Angel Caffarelli, from the University
of Texas at Austin, USA. Born in Buenos Aires, Argentina. for his ”seminal
contributions to regularity theory for nonlinear partial differential equations
including free-boundary problems and the Monge-Ampère equation.”

• Really big news. For over 40 years Luis Caffarelli has been the driving force
of a very large group of researchers all over the world, a truly global endeavor
with different capitals, the last one Austin, Texas. A group driven to solve the
problems posed by the previous types of applied nonlinear PDEs, specially
with Free Boundaries and Degeneracies. In the last 15 years problems with
nonlocal operators.

• I was his friend, collaborator and I followed him on land and over the seas in
quest of a good problem a good theorem and great conversation.

Juan L. Vázquez (UAM) Nonlin Diff Trondheim, 24–26 May 2023 15 / 50



Linear and nonlinear equations

Maestro LUIS CAFFARELLI and the ABEL PRIZE
Just two days ago I was present at Aula of Oslo University while Luis Caffarelli
received from the hands of King Harald the V of Norway a very important prize

• It was announced months ago in https://abelprize.no/ and the mention said

The Abel Prize recognises pioneering scientific achievements in mathematics
of The Abel Prize laureate 2023 is Luis Angel Caffarelli, from the University
of Texas at Austin, USA. Born in Buenos Aires, Argentina. for his ”seminal
contributions to regularity theory for nonlinear partial differential equations
including free-boundary problems and the Monge-Ampère equation.”

• Really big news. For over 40 years Luis Caffarelli has been the driving force
of a very large group of researchers all over the world, a truly global endeavor
with different capitals, the last one Austin, Texas. A group driven to solve the
problems posed by the previous types of applied nonlinear PDEs, specially
with Free Boundaries and Degeneracies. In the last 15 years problems with
nonlocal operators.

• I was his friend, collaborator and I followed him on land and over the seas in
quest of a good problem a good theorem and great conversation.

Juan L. Vázquez (UAM) Nonlin Diff Trondheim, 24–26 May 2023 15 / 50



Linear and nonlinear equations

El gran Luis

2010 2015
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Linear and nonlinear equations

Den lille store Luis

2023 2023
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Fractional diffusion

Nonlocal operators. Fractional diffusion ♥
Replacing Laplacians by fractional Laplacians is motivated by the need to
represent anomalous diffusion. In probabilistic terms, it replaces next-neighbour
interaction of Random Walks and their limit, the Brownian motion, by
long-distance interaction rates. This leads in probability to the family of Lévy
flights1. The main mathematical models in Analysis are the Fractional Laplacians
that have special symmetry and invariance properties. More general nonlocal
operators can now be considered
The Basic Stationary and Evolution Equations

(−∆)su = f (x ,u) ut + (−∆)su = 0

Historical: Intense work in Stochastic Processes since many decades,
On the other side, the operator called fractional Laplacian was known in
Harmonic Analysis since the the work of Riesz in the 1930s
But research in Analysis of nonlinear PDEs did not start in force until less than
two decades ago. I knew from the work done by and around Prof. Caffarelli in
Texas, in particular his seminal work with L. Silvestre2.

1Applebaum. Lévy processes and stochastic calculus. 2004.
2An extension problem related to the fractional Laplacian. Comm. Partial Diff. Eqns (2007).
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Fractional diffusion

Recalling the fractional Laplacian operator

Different formulas for fractional Laplacian operator.
We assume that the space variable x ∈ Rn, and the fractional exponent
is 0 < s < 1. First, pseudo differential operator given by the Fourier transform:

̂(−∆)su(ξ) = |ξ|2sû(ξ)

Singular integral operator:

(−∆)su(x) = Cn,s
∫
Rn

u(x)−u(y)

|x−y|n+2s dy

With this definition, it is the inverse of the Riesz integral operator (−∆)−su. This
one has kernel C1|x − y |n−2s, which is not integrable in Rn though it is locally
integrable. Basic analysis done ∼ 1970 (E. Stein, N. Landkoff).
Take the random walk for Lévy processes:

un+1
j =

∑
k

Pjk un
k

where Pik denotes the transition function which has a power tail (i.e, power decay
with the distance |i − k |). In the limit you get an operator A as the infinitesimal
generator of a Levy process:
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Fractional diffusion

The fractional Laplacian operator II

if Xt is the isotropic α-stable LÃ©vy process we have

Au(x) = lim
h→0

1/hE(u(x)− u(x + Xh))

The α-harmonic extension: Find first the solution of the (n + 1) problem

∇ · (y1−α∇v) = 0 (x , y) ∈ Rn × R+; v(x , 0) = u(x), x ∈ Rn.

Then, putting α = 2s we have

(−∆)su(x) = −Cα lim
y→0

y1−α ∂v
∂y

When s = 1/2 i.e. α = 1, the extended function v is harmonic (in n + 1 variables)
and the operator is the Dirichlet-to-Neumann map on the base space x ∈ Rn. It
was proposed in PDEs by Caffarelli and Silvestre, 2007.

The semigroup formula in terms of the linear heat flow generated by ∆:

(−∆)sf (x) =
1

Γ(−s)

∫ ∞
0

(
et∆f (x)− f (x)

) dt
t1+s .
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Fractional diffusion

A detailed text expanding my previous work
and a basic theory of

nonlinear and nonlocal diffusion :

J. L. Vázquez. The mathematical theories of diffusion. Nonlinear and
fractional diffusion,

♣ appeared as Chapter 5 of Springer Lecture Notes in Mathematics 2186,
“Nonlocal and Nonlinear Diffusions and Interactions: New Methods and
Directions”, CIME Summer Course in Cetraro, Italy, 2016; pp. 205–278.

Volume Authors: J.A. Carrillo, M. del Pino, A. Figalli, G. Mingione, JLV.
Editors: M. Bonforte, G. Grillo.
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Fractional diffusion

SECOND PART

Summary: A glimpse on recent work

in the world of nonlinear evolution flows

where semigroups do not have a Green function

but they have attracting asymptotics

that solve unusual elliptic problems
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s-p-Laplacian

Gagliardo seminorms

Let us present some recent contributions of the author. In the first topic we
present today, the nonquadratic and nonlocal choice is quite simple. The nonlocal
energy functional

Jp,s(u) =
1
p

∫
Rn

∫
Rn

|u(x)− u(y)|p

|x − y |N+sp dxdy . (5)

is a power-like functional with nonlocal kernel of the s-Laplacian type that has
attracted a great deal of attention in recent years.
It is just the p-power of the Gagliardo seminorm, used in the definition of the W s,p

spaces (fractional Sobolev, Slobodeckii or Gagliardo spaces)

[u]p
s,p = pJp,s(u), ‖u‖p

s,p=

∫
|u|p dx + pJp,s(u).

We may consider it for exponents 0 < s < 1 and 1 < p <∞, in N ≥ 1. 3

3Di Nezza - Palatucci - Valdinoci ’12 – Hitchhiker’s guide to the fractional Sobolev spaces.
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s-p-Laplacian

Gagliardo seminorms and subdifferential operator

The nonquadratic and nonlocal energy functional can be written as

Jp,s(u) =
1
p

∫
Rn

∫
Rn

(
|u(x)− u(x + z)|

|z|s

)p dz
|z|N dx . (6)

is a power-like functional with nonlocal kernel of the s-Laplacian type that has
attracted a great deal of attention in recent years. It is just the p-power of the
Gagliardo seminorm, used in the definition of the W s,p spaces

Its subdifferential (or Euler-Lagrange operator) Ls,p is the nonlinear operator
defined a.e. by the formula

Ls,p(u) := P.V .
∫
Rn

Φ(u(x , t)− u(y , t))

|x − y |N+sp dy , (7)

where Φ(z) = |z|p−2z. Called s-fractional p-Laplacian operator. By general
theory Ls,p is a maximal monotone operator in L2(Rn) with dense domain.
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s-p-Laplacian

I. Gradient flow in the superlinear case
In a first paper : The evolution fractional p-Laplacian equation in Rn.
Fundamental solution and asymptotic behaviour 4 we study the corresponding
gradient flow, i.e., the evolution equation

∂tu + Ls,pu = 0 , (8)

posed in the Euclidean space x ∈ Rn, N ≥ 1, for t > 0. We will often refer to it as
the EFPL equation (evolution fractional p-Laplacian equation). We put initial
datum

lim
t→0

u(x , t) = u0(x), (9)

where in principle u0 ∈ L2(Rn). It is not difficult to prove that this Cauchy problem
is well-posed in all Lq(Rn) spaces, 1 ≤ q <∞. This parallels what is known in the
case of bounded domains. In fact, the problem generates a continuous nonlinear
semigroup in any Lq(Rn) space, 1 ≤ q <∞, a nonexpansive semigroup. We
define the class of continuous strong solutions that correspond to L2 and L1 initial
data and derive its main properties in detail as regularity and boundedness.
Remark. The study in bounded domain is different, see e.g. paper by Mazón et
al. + the JLV paper in JDE (both in 2016). That theory is different from what
follows.

4 JLV, Nonlinear Analysis, 2020.
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s-p-Laplacian

Selfsimilar fundamental solutions. Solitons of the
Problem

Theorem 1 (Existence and uniqueness)

Let p > 2. For every given mass M > 0 there exists a unique self-similar solution of
Problem (8)-(9) with u0 a Dirac delta. It has the form

U(x , t ; M) = Mspβ t−αF (M−(p−2)βx t−β) , (10)

with self-similarity exponents

α = βN, β =
1

N(p − 2) + sp
. (11)

The difficulty lies in finding the profile F (r). It is a continuous, positive, radially
symmetric (r = |x | t−β), and decreasing function such that F (r) ≈ r−(N+sp) as r →∞.

So there is a known fractional diffusive rate for the fundamental solutions of this
semigroup. And it has a definite asymptotic shape that is NOT Gaussian.
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s-p-Laplacian

The graphics for different diffusion rates

Figure: Self-similar fundamental solutions for different p, with s = 0.5. The profiles are
computed in dimension N = 1.
We show standard axes and log plots that reflect the precise power decay. The
numerical treatment is due to Felix del Teso. Numerical theory is in the making.
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s-p-Laplacian

Figure: Self-similar fundamental solutions for different s, with p = 4.
Computed graphics. The second picture in each figure shows clearly the predicted
decay with exponent 1 + sp using the logarithmic scale. Also to be remarked the flat
behaviour of the profile near the origin for large values of p.
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s-p-Laplacian

Asymptotics

The fundamental solution is the key to the study of the long-time behaviour of our
problem with general initial data, since it represents the intermediate asymptotics, as in
Barenblatt’s Self-similarity book 5. This is the sharp asymptotic result we obtain.

Theorem 2 (Asymptotic behaviour)

Let u be a solution of Problem (8)-(9) with initial data u0 ∈ L1(Rn) of integral M, and let
UM be the fundamental solution with that mass. Then,

lim
t→∞
‖u(t)− UM (t)‖1= 0 . (12)

We also have the L∞-estimate

lim
t→∞

tα‖u(·, t)− UM (·, t)‖∞= 0 . (13)

There is no restriction on the sign of the solution. By interpolation, we can are easily obtain
rates in all Lq spaces, 1 < q <∞. Of course, for M = 0 we just say that ‖u(·, t)‖1 goes to
zero.

5G.I. Barenblatt. Similarity, self-similarity, and intermediate asymptotics (1978, 1979, 1996).
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s-p-Laplacian

Details

The construction we do here needs the standard toolbox plus special tricks
the so-called standard evolution tools that have to be proved are

. the L1-L∞ effect,

. conservation of mass,

. derivative estimates that imply compactness,

. scaling transformations, i. e., group invariance

. strict positivity

. and a Lyapunov functional to measure dissipation and prove uniqueness

The most novel tool is the existence of a sharp upper barrier, which is an explicit
function that mimicks the decay behaviour that will be guessed a priori and is a
supersolution to the equation. See more detail below.
Together they produce the main theorems.
We also get an important global Harnack inequality.Regularity questions for this
flow are still in process.

The limits s = 1 and p = 2 give the expected results: plain p-Laplacian, resp.
linear fractional equation.
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s-p-Laplacian

“Fast range” of the fractional p-Laplacian equation

There is a companion paper, dealing with the sublinear case 1 < p < 2. 6

The “fast” or “superdiffusive” case 1 < p < 2 may look like an extension of the
study for p > 2, and the papers begin in a similar way, but experts know better:
fast diffusion is very tricky, the faster the trickier.

The analysis of the most classical fast diffusion model (Fast Porous Medium
Equation) shows that there is a nice theory for powers not far from the linear
case, and a much more complicated theory farther away from linearity7. Here,
this stranger behaviour happens for 1 < p < pc , where pc = 2N/(N + s).

The work we are presenting now takes large space to explain, about 60 pages of
the journal. It only covers systematically the good range pc < p < 2 (i.e., the case
close to 2).

Recall that we want the linear case p = 2 to be recovered as a limit when p → 2.
Indeed, such limits work well and fit with the linear fractional case done before.

6JLV; The fractional p-Laplacian evolution equation in RN in the sublinear case. Calc. Var.
PDES 60 (2021); arXiv:2011.01521.

7See e.g. JLV; Smoothing and decay estimates for nonlinear diffusion equations. Oxford
University Press, 2006.
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s-p-Laplacian

Ideas of proof. Renormalized flow (proper rescaling)

It is interesting to interpret this asymptotic Theorem in terms of the rescaled variables
defined as follows. We apply a zooming to the original solution according to the
self-similar exponents α and β fixed above. More precisely, the change uses the
formulas

u(x , t) = (t + a)−Nβv(y , τ) y = x (t + a)−β , τ = log(t + a), (14)

with β = (N(p − 2) + sp)−1, and any constant a > 0, we mostly use a = 1. Here, τ is
called the new time or logarithmic time. The formulas imply that v(y , τ) is a solution of
the corresponding PDE:

∂τv + Ls,pv − β∇ · (y v) = 0 , (15)

called the renormalized flow. This transformation is also called continuous-in-time
rescaling to mark the difference with the scaling transformations with fixed parameter.

• Note that the mass of the v solution at new time τ ≥ τ0 equals that of the u at the
corresponding time t ≥ 0. Important physical conserved quantities are also conserved
upon renormalization.
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s-p-Laplacian

Renormalized flow II

• In our way of proof of the asymptotic theorem, we rephrase it as saying that the
rescaled solution v(y , τ) converges to the equilibrium state FM (y) of the flow equation
(15) in all Lq-norms, 1 ≤ q ≤ ∞. Indeed, FM solves the nonlinear and nonlocal elliptic
equation

∂τv = 0, Ls,pv − β∇ · (y v) = 0 . (16)

We prove that FM attracts along this renormalized flow all finite-mass solutions with the
same mass. The corresponding results for the standard p-Laplacian, were proved by
Kamin-V (1988) and V (2003).

•We work on the renormalized flow to obtain a stationary upper bound in the form of
an explicit supersolution or barrier. It is there that we have to choose the options in fast
diffsion, (i) pc < p < p1 or (ii) p1 < p < 2, and one in slow diff p > 2, to actually
construct the supersolution that decays as needed (otherwise, it does not work). We
the use a fine L1 Lyapunov functional that needs delicate estimates.
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s-p-Laplacian

Self-similarity and asymptotics. Related results

Fundamental solutions are a basic ingredient in the theory of the heat equation
(Gaussian profile) and other linear parabolic equations posed in the whole space.
They also work for the linear fractional heat equation (JLV, 2018).

In nonlinear diffusion there is no representation theorem, but fundamental
solutions have been constructed in many cases. First, by Barenblatt et al. for
porous medium and p-Laplacian equation, and then the doubly nonlinear
equation. Solutions then were self-similar and explicit.

Asymptotic attraction theorems for the previous items are proved at different
levels in the standard local case. They are difficult for Fast diffusion (Carrillo-V
2003, Blanchet et al, 2009). This means p < 2 or m < 1

For nonlinear fractional diffusion, I have constructed the fundamental solution for
FPME, Model 1 (with Caffarelli, 2011), and also for FPME model 2 (JLV, 2014).
Asymptotic theorems are proved, each needs a different method. Rates of
convergence are obtained only in special cases using Functional Inequalities for
the associated entropies. Like in 8. The problem for the s-p Laplacian evolution is
open.

8Carrillo; Huang; Santos; VÃ¡zquez. Exponential convergence towards stationary states for
the 1D porous medium equation with fractional pressure (2015)
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s-p-Laplacian

Numerics
The following figures show the profiles of the self-similar fundamental solutions in the
two ranges of s and p. They were computed by numerically integrating the evolution
equation starting with smooth initial data with compact support.

Figure: Self-similar fundamental solution for s = 0.5 and p = 1.9 > p1
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s-p-Laplacian

Numerics II

Figure: Self-similar fundamental solution for s = 0.5 and p = 1.4 < p1. The second
graphic in logarithmic scale shows clearly the decay with exponent −sp/(2− p).
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s-p-Laplacian

THE LAST FAMILY OF MODELS

New type of p-Laplacians

Tug-of-war games in Probab. and PDEs
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III. The infinity Laplacian and the infinity fractional Laplacian

The infinity Laplacian
The so-called infinity Laplacian is defined for smooth functions as the operator

∆∞u = |∇u|−2
∑

i,j

∂iu ∂2
ij u ∂ju = 〈D2u

Du
|Du| ,

Du
|Du| 〉. (17)

Informally, this is the second derivative of u in the direction of the gradient of u.
Note. Observe that with the square gradient normalization, ∆∞ coincides with the
ordinary Laplacian ∆ in the one-dimensional case.
The idea is to pass to the limit p →∞ in the standard p-Laplacian operator.

∆pu = ∇ · (|∇u|p−2∇u). (18)

Note the lack of power agreement. Renormalize using the factor |∇u|2−p.
The solutions of ∆∞u = 0 in an open domain U ⊂ Rn were studied by G. Aronsson in
1967, 1968. The type and existence of solutions depend on the type of boundary data
u = g on ∂U. Aronsson showed the equivalence of the classical solutions of this Dirichlet
problem with the solutions of the Problem of Absolute Minimizing Extension such that
the norm is kept, LipU(u) = LipY (g) where Y = ∂U. Jensen proved the general
uniqueness of Lipschitz extensions minimizing the sup norm of the gradient, in 1993.
Note 2. In the study of the homogenous equation ∆∞u = 0, the normalizing factor
|∇u|−2 is sometimes omitted; however, it is important to include it in the
non-homogenous equation ∆∞u = f or in parabolic problems ut = ∆∞u.
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III. The infinity Laplacian and the infinity fractional Laplacian

The tug of war approach
In a famous paper appeared in J. Amer. Math. Soc. (2009), Y. Peres, O.
Schramm, S. Sheffield, and D. B. Wilson introduced the derivation of the infinity
Laplacian by means of a stochastic process called Tug-of-war . More precisely,
the standard infinity Laplace equation is solved by the value function for a
two-players random turn “tug-of-war” game.
The game is as follows: a token is initially placed at a position x0 ∈ Ω, and every
turn a fair coin is tossed to choose which of the players plays. This player moves
the token to any point in the ball of radius ε > 0 around the current position. If,
eventually, iterating this process, the token reaches a point xe ∈ ∂Ω, the players
are awarded (or penalized) g(xe) (payoff function).
The article provides a game theoretic point of view for understanding the infinity
Laplacian equation and a new proof of Jensen’s influential uniqueness result, this
time based on a probabilistic approach. Recall that there is an old probabilistic
interpretation for the harmonic functions, ∆u = 0, based on Brownian motion
(Wiener-Lévy process). Cabré likes that! There is no need for two players.
Two basic references for infinity Laplacians:
M. G. Crandall, A visit with the∞-Laplace equation. Lecture Notes in Math.,
1927, Springer, Berlin, 2008.
P. Lindqvist. Notes on the infinity Laplace equation. Springer, 2016.
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III. The infinity Laplacian and the infinity fractional Laplacian

The tug of war, parabolic setting

The parabolic problem was studied by several authors. We have been motivated
in the work below by two papers of Portilheiro and JLV, one in CPDE (2021) and
CPDE (2013) dealing respectively with

ut = ∆∞(um)

both in bounded domains and the whole space, and the second in CPDE (2013)
dealing with ut = ∆h

∞u, where ∆h
∞ is the h-homogeneous operator associated

with the infinity-Laplacian,

∆h
∞u = |∇u|h−3

∑
i,j

∂iu ∂2
ij u ∂ju h > 1.

In the papers viscosity solutions were used to show well-posedness.
The study of this model in Rn also showed an interesting large time behaviour:
solutions with bounded L1 data arrive at an asymptotic radial shape with a
one-dimensional profile.
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III. The infinity Laplacian and the infinity fractional Laplacian

The infinity fractional Laplacian. Elliptic problem

Bjorland, Caffarelli and Figalli introduced in a paper in CPAM (2012) equations
involving the so-called infinity fractional Laplacian as a model for a nonlocal
version of the “tug-of-war” game. Following their explantation, instead of flipping a
coin at every step, every player chooses a direction and it is an s-stable Levy
process that chooses both the active player and the distance to travel. The
corresponding operator is the infinity fractional Laplacian, with symbol ∆s

∞, it is a
nonlinear integro-differential operator given by

∆s
∞φ(x) := Cs sup

|y|=1
inf
|ỹ|=1

∫ ∞
0

(φ(x + ηy) + φ(x − ηỹ)− 2φ(x))
dη
η1+2s , (19)

where s ∈ (1/2, 1). The constant Cs > 0 is irrelevant here. There are alternative
definitions. Note that the integration is one dimensional, along straight lines. Sup
and inf are shown to be taken in the direction of the gradient. The operator does
not look like a limit of s-p-Laplacian as introduced before. The infinity limit is
tricky.
In their paper the authors study two stationary problems involving the infinity
fractional Laplacian posed in bounded space domains, namely, a Dirichlet
problem and a double-obstacle problem.
Uniqueness and comparison of viscosity solutions are widely open problems.
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The parabolic equation for the
infinity fractional Laplacian

Lastly, I want to announce the results of a new paper:
“Evolution Driven by the Infinity Fractional Laplacian”, a collaboration by Félix del
Teso, Jorgen Endal, Espen Jakobsen, and J.L.V, appeared in Arxiv paper .

We consider the evolution problem

∂tu(x , t) = ∆s
∞u(x , t), x ∈ Rn, t > 0, (20)

u(x , 0) = u0(x), x ∈ Rn, (21)

with s ∈ (1/2, 1). We consider spatial dimension n ≥ 2, since for n = 1 the
operator −∆s

∞ is just the usual linear fractional Laplacian operator (−∆)s of order
s, and equation (20) is just the well-known fractional heat equation, well studied in
the literature. Note that for n ≥ 2 the operator is nonlinear, so a new theory is
needed.

Firstly, we develop an existence theory of suitable viscosity solutions for the
parabolic problem (20)–(21), based on approximation with monotone schemes.
We show that the obtained class of solutions enjoys a number of good properties.
As in the elliptic case (BjCaFi 2012), we lack a general comparison and
uniqueness result in the context of viscosity solutions.
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Project Coauthors

Espen, Felix, Jorgen, Juan Luis in June in Bergen, Norway
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The parabolic equation II

However: we are able to prove an important comparison theorem relating two
types of solutions, classical and viscosity ones.

Theorem 3 (Comparison with smooth solutions)

• Let u ∈ C∞b (Rn × [0,∞)) be a pointwise solution with initial data u0.
• Let u, u ∈ BUC(Rn × [0,∞) be constructed viscosity solutions with initial data u0, u0.
If u0 ≤ u0 ≤ u0 in Rn.

Then u ≤ u ≤ u in Rn × (0,∞).

Moreover, we show that for smooth, radially symmetric functions and
nonincreasing along the radius, the operator −∆s

∞ reduces to the classical
fractional Laplacian (−∆)s in dimension 1. Note that no similar reduction applies
to more general functions, even in the radial case (we produce a radial
counterexample).
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Classical solutions

Theorem 4

Assume that φ ∈ C1,1(x) ∩ B(Rn) is radial, i.e., φ(x) = Φ(|x |) for all x ∈ Rn, where
Φ : R→ R is such that Φ(−r) = Φ(r) for all r ≥ 0 and Φ is radially nonincreasing, i.e.,
Φ(r1) ≥ Φ(r2) if 0 ≤ r1 ≤ r2. Then,

∆s
∞φ(x) = −(−∂2

rr )
sΦ(|x |).

Proof: Assume ∇φ(x) 6= 0. Recall that v := ∇φ(x)
|∇φ(x)| = ± x

|x| .

∆s
∞φ(x) = Cs

∫ ∞
0

(φ (x + ηv) + φ (x − ηv)− 2φ(x))
dη
η1+2s

= Cs

∫ ∞
0

(Φ (r + η) + Φ (r − η)− 2Φ(r))
dη
η1+2s = −(−∂2

rr )
sΦ(|x |).

Now let ∇φ(x) = 0. Note that supz∈∂Bη(x){φ(z)} = φ(x − η x
|x| ). Then

sup
|y|=1

∫ ∞
0

(φ (x + ηy)− φ(x))
dη
η1+2s =

∫ ∞
0

(
φ

(
x − η x

|x |

)
− φ(x)

)
dη
η1+2s . �

Juan L. Vázquez (UAM) Nonlin Diff Trondheim, 24–26 May 2023 45 / 50



III. The infinity Laplacian and the infinity fractional Laplacian

Classical solutions

Theorem 5

Let u0 ∈ C∞b (Rn) be radially symmetric and radially nonincreasing.
• Then there exists a pointwise solution u ∈ C∞b (Rn × [0,∞)).
• Explicit form for the solution: Let U0 : R→ R be defined by U0(r) := u0(|x |) with
r = |x | and U(−r) := U(r), then

u(x , t) = (Ps(·, t) ∗ U0)(r) =

∫ ∞
−∞

Ps(r − y , t)U0(y)dy for all |x |= r ,

where Ps is the fundamental solution of the one dimensional fractional heat equation. .

Comments:
• Now we can compare with radially decreasing solutions of the one dimensional
fractional heat equation.
• The assumption “radially nonincreasing" cannot removed. We can build
counterexamples where

∆s
∞φ(x) 6= −(−∂2

rr )
sΦ(|x |).
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The global Harnack result
Having established the existence of a large class of classical solutions, and the
comparison of classical and smooth solutions, and recalling the convergence of
solutions of the 1D fractional heat equations to its fundamental solution, Ps(r , t),

Theorem 6 (Global Harnack principle)

Let u ∈ BUC(Rn × [0,∞)) be a viscosity solution of (20)–(21), as constructed by the
approximation scheme, with initial data u0 ∈ BUC(Rn) such that u0 6≡ 0 and

0 ≤ u0(x) ≤ (1 + |x |2)−
1+2s

2 for all |x |≥ R ≥ 1.

Then, for all τ > 0,

C1Ps(|x |, t) ≤ u(x , t) ≤ C2Ps(|x |, t) for all (x , t) ∈ Rn × [τ,∞),

where C1,C2 > 0 are constants depending only on s, R, u0. Moreover, for all τ > 0,

C̃1
t

(t
1
s + |x |2)

1+2s
2
≤ u(x , t) ≤ C̃2

t

(t
1
s + |x |2)

1+2s
2

for all (x , t) ∈ Rn × [τ,∞), where C̃1, C̃2 > 0 are constants dep. on s, R, and u0.
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Numerics
Finally, we propose a fully discrete and monotone finite-difference scheme, and
support our theoretical results with numerical evidence, see paper. To our knowledge,
there is no previous study of numerical implementations of the infinity fractional
Laplacian operator, either in the elliptic or parabolic setting.

Figure: Evolution in time with anisotropic initial data with two bumps.
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The saga of diffusive evolutions and its stationary states goes on
unstoppable. It is very active in many countries (like USA, France, Spain, and
Norway).

In her Abel Laudatio lecture on May 24 Professor Sylvia Serfaty talked about
“From diffusions to fluid equations: the question of regularity”in honor of Luis
Caffarelli’ seminal work that inspired so many of us.

The Abel lectures: University of Oslo, Georg Sverdrups hus, Oslo.

Geometry appears as free boundaries, but that is another tale you have
probably heard a lot in Zurich and/or Barcelona. Many open problems.
Professor Alessio Figalli talked in Oslo about “From elastic membranes to ice
melting”.

♦
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Thank you for your attention

Tusen takk, Muchas gracias
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