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The mean field game (MFG) system


−∂tu − Lu + H(x ,Du(t, x)) = F (x ,m(t)) in (t0,T )× Rd ,

∂tm − L∗m − div (mDpH(x ,Du(t, x))) = 0 in (t0,T )× Rd ,

m(t0) = m0, u(T , x) = G(x ,m(T )).

(MFG)

Here H = H(x , p) and L is a Lévy (constant coefficient) operator:

Lu(x) = B · Du(x) + div (A · Du(x)) +

∫
Rd

(u(x + z)− u(x)− Du(x) · z1B(0,1)(z)) ν(dz),

where B ∈ Rd , A  0,
∫

(1 ∧ |x |2) ν(dx) <∞ and L∗ is the formal adjoint of L.

System (MFG) consists of a backward Hamilton–Jacobi (H–J) equation and a
forward Fokker–Planck (F–P) equation.

We say that (u,m) solves (MFG) if u is a classical solution of H–J and m is a
distributional solution of F–P.

F (x ,m(t)), G(x ,m(T )) – nonlocal/smoothing coupling.
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The mean field game system — model


−∂tu − Lu + H(x ,Du(t, x)) = F (x ,m(t)) in (t0,T )× Rd ,

∂tm − L∗m − div (mDpH(x ,Du(t, x))) = 0 in (t0,T )× Rd ,

m(t0) = m0, u(T , x) = G(x ,m(T )).

(MFG)

Purpose: modeling games with large number of similar players with the use of an
“infinite-player” game.

Introduced independently by Lasry and Lions, and Caines, Huang and Malhamé in
mid 2000s.

H–J ∼ value function, F–P ∼ distribution of a generic player.

L ∼ idiosyncratic/individual noise.

Many other models exist, e.g., common noise, no noise at all, games with a major
player.
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The mean field game system — some literature


−∂tu − Lu + H(x ,Du(t, x)) = F (x ,m(t)) in (t0,T )× Rd ,

∂tm − L∗m − div (mDpH(x ,Du(t, x))) = 0 in (t0,T )× Rd ,

m(t0) = m0, u(T , x) = G(x ,m(T )).

(MFG)

L = ∆

P.-L. Lions’ lectures at Collège de France (notes by P. Cardaliaguet).

Lasry–Lions: Jpn. J. Math. (2007), C. R. Acad. Sci. Paris (2006) Td .

. . .

L = (−∆)α/2

Cesaroni et al. (2019), stationary on Td , α ∈ (1, 2).

Cirant–Goffi (2019), time-dependent on Td , α ∈ (0, 2).

Chowdhury–Jakobsen–Krupski (2021), fully nonlinear on Rd .

L – more general Lévy operator

Graber–Ignazio–Neufeld (2021), ∆ + nonlocal perturbation on (0,∞).

Ersland–Jakobsen (2021), time-dependent on Rd , order α ∈ (1, 2).
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The master equation

Q: How to prove that the games with a large number of players “converge” to the mean
field games?

A: Use the master equation!

P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the
convergence problem in mean field games. Annals of Mathematics Studies 201, 2019.

Assume that (u,m) solves (MFG) on (t0,T ) with initial measure m0 and let

U(t0, x ,m0) = u(t0, x).

Formally, it is easy to show that U is the unique solution of the master equation:
∂tU(t, x ,m) = −LxU(t, x ,m) + H(x ,DxU(t, x ,m))− F (x ,m)

+
∫
Rd Dy

δU
δm

(t, x ,m, y)Hp(y ,DyU(t, y ,m))m(dy)

−
∫
Rd Ly

δU
δm

(t, x ,m, y)m(dy) in (0,T )× Rd × P(Rd),

U(T , x ,m) = G(x ,m) in Rd × P(Rd).

(ME)
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The space of probability measures

P(Rd) is the space of all probability measures on Rd . Let m,m′ ∈ P(Rd).

Kantorovich–Rubinstein distance

d0(m,m′) = sup
φ∈Lip1,1

∣∣∣∣ ∫
Rd

φ(x) (m′ −m)(dx)

∣∣∣∣.

Lip1,1 = {φ ∈ Cb(Rd) : ‖φ‖∞ + ‖Dφ‖∞ ¬ 1}.

d0 is a metric for the narrow convergence of measures (tested with Cb(Rd)).

Most of the works on MFGs in the whole space use 1-Wasserstein or 2-Wasserstein
distances, which are equivalent to weak convergence + convergence of 1, resp. 2,
moments. The metric d0 does not require any moments.
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Derivative in the space of probability measures

Derivative in P(Rd)

We say that V : P(Rd)→ R is C 1 if there exists a mapping δV
δm

: P(Rd)× Rd → R,
bounded and continuous in both variables, such that for all m,m′ ∈ P(Rd),

lim
h→0+

V (m + h(m′ −m))− V (m)

h
=

∫
Rd

δV

δm
(m, y) (m′ −m)(dy).

Similar to the Gateaux derivative, but the space is not linear.

The above definition does not give uniqueness of δV
δm

.
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Most relevant references on the master equation

Cardaliaguet–Delarue–Lasry–Lions, chapter 3. Torus/periodic boundary conditions.

M. Ricciardi. The master equation in a bounded domain with Neumann
conditions. Comm. PDE (2022).

Ambrose–Mészáros. Trans. AMS (2023). Sobolev space setting on torus.

Di Persio–Garbelli–Ricciardi. The master equation in a bounded domain with
absorption. arXiv:2203.15583. Dirichlet boundary conditions.

Graber–Sircar. Master equation for Cournot mean field games of control with
absorption. J. Differential Equ. (2023).

All the results above are for local diffusions.

Our contribution to the well-posedness of the master equation:

Nonlocal, local and mixed diffusions.

Handling the whole space for probability measures without moment conditions, using
analytic methods (new even for L = ∆).
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Assumptions on the heat kernel

We adopt the following order condition for L from Ersland and Jakobsen:

There is K > 0 and α ∈ (1, 2], such that the heat kernels K and K∗ of L and L∗
respectively are smooth densities of probability measures, and for K̃ ∈ {K ,K∗} and
β  0 we have

‖DβK̃(t, ·)‖L1(Rd ) ¬ Kt
− |β|
α . (K)

We heavily use (K) in Duhamel’s formula:{
∂tu − Lu = f

u(0) = u0
⇐⇒ u(t, x) = (K(t) ∗ u0)(x) +

∫ t

0

∫
Rd

K(t − s, x − y)f (s, y) dy ds.

Examples:

L = (−∆)α/2 for α ∈ (1, 2],

ν(z) ≈ |z |−d−α for |z | ¬ 1, α ∈ (1, 2), (Grzywny–Szczypkowski, Forum Math. 2020)

L = (∂2
x1x1 )α1/2 + (∂2

x2x2 )α2/2 + . . .+ (∂2
xd xd )αd/2 for α1, α2, . . . , αd > 1,

L = L1 + L2, where L1 satisfies (K) and L2 is any Lévy operator.

Artur Rutkowski (NTNU) Master equation with Lévy diffusions Trondheim 24.05.2023 9 / 21
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Assumptions on H

(H1) H : Rd × Rd → R is smooth and for every l ∈ Nd+1 with |l | ¬ 4,
supx∈Rd |D lH(x , ·)| is locally bounded.

(H2) For every R > 0 there exists CR > 0 such that for x , y ∈ Rd and p ∈ Rd ,

|H(x , p)− H(y , p)| ¬ CR(1 + |p|)|x − y |.
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Assumptions on F ,G
Note: d0 – Rubinstein–Kantorovich distance, α ∈ (1, 2] ∼ order of L. ∃σ ∈ (0, α− 1) :

(F1) F : Rd × P(Rd)→ R satisfies

sup
m∈P(Rd )

‖F (·,m)‖C2
b
(Rd ) <∞,

sup
x∈Rd ,m 6=m′

|F (x ,m)− F (x ,m′)|
d0(m,m′)

<∞.

(F2) There exists C > 0 such that for all m,m′ ∈ P(Rd),∥∥∥∥ δFδm (·,m, ·)
∥∥∥∥
C2+σ
b

(Rd ,C2+σ
b

(Rd ))

¬ C ,∥∥∥∥ δFδm (·,m, ·)− δF

δm
(·,m′, ·)

∥∥∥∥
C2+σ
b

(Rd ,C2+σ
b

(Rd ))

¬ Cd0(m,m′).

(G1) G : Rd × P(Rd)→ R satisfies

sup
m∈P(Rd )

‖G(·,m)‖C3+σ
b

(Rd ) <∞,

sup
x∈Rd ,m 6=m′

|G(x ,m)− G(x ,m′)|
d0(m,m′)

<∞.

(G2) There exists C > 0 such that for all m,m′ ∈ P(Rd),∥∥∥∥ δGδm (·,m, ·)
∥∥∥∥
C3+σ
b

(Rd ,C3+σ
b

(Rd ))

¬ C ,∥∥∥∥ δGδm (·,m, ·)− δG

δm
(·,m′, ·)

∥∥∥∥
C3+σ
b

(Rd ,C2+σ
b

(Rd ))

¬ Cd0(m,m′).
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Monotonicity conditions

(M1) The Lasry–Lions monotonicity condition holds for F and G , that is, for
all m,m′ ∈ P(Rd),∫

Rd

(F (x ,m′)− F (x ,m))(m′ −m)(dx)  0,∫
Rd

(G(x ,m′)− G(x ,m))(m′ −m)(dx)  0.

(M2) (F2) and (G2) hold and for every ρ ∈ C−2−σ
b (Rd) := (C 2+σ

b (Rd))∗ and
m ∈ P(Rd) we have 〈〈δF (·,m, ·)

δm
, ρ
〉
y
, ρ

〉
x

 0,〈〈δG(·,m, ·)
δm

, ρ
〉
y
, ρ

〉
x

 0,

where 〈·, ·〉x , 〈·, ·〉y are the pairings between C 2+σ
b (Rd) and C−2−σ

b (Rd) in
x and y respectively.

(M3) There exists c1  1 such that for all x ∈ Rd

1
c1
Id ¬ D2

ppH(x , ·) ¬ c1Id .
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Digression: monotonicity conditions vs normalization of δUδm∫
Rd

(F (x ,m′)− F (x ,m))(m′ −m)(dx)  0, m,m′ ∈ P(Rd), (M1)〈〈δF (·,m, ·)
δm

, ρ
〉
y
, ρ

〉
x

 0, ρ ∈ C−2−σ
b (Rd). (M2)

The following condition is often used in the literature to ensure uniqueness of δU
δm

:∫
δU

δm
(m, y)m(dx) = 0, m ∈ P(Rd). (1)

Example

If ρ ∈ C∞c (Rd) and F (x ,m) = ρ ∗m(x), then under (1),

δF

δm
(x ,m, y) = ρ(x − y)− ρ ∗m(x).

For nontrivial odd φ (M1) is always satisfied, but (M2) is never satisfied.

In particular, (M1) does not imply (M2).
We do not adopt condition (1).
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Main results — well-posedness for the MFG system

Theorem (Well-posedness of the MFG system)

Assume that (H1), (H2), (K), (F1), and (G1) hold. Then,

for any m0 ∈ P(Rd) the system (MFG) has a solution (u,m) such that

‖∂tu‖L∞(Rd ) + sup
t∈[t0,T ]

‖u(t, ·)‖C3+σ
b

(Rd ) ¬ C(d ,T ,F ,G ,H,L, σ),

d0(m(t),m(s)) ¬ C(d ,T ,F ,G ,H,L)|t − s|
1
2 , t, s ∈ [t0,T ].

If in addition (M1) and (M3) are true, then the solution is unique.

We allow H = H(x , u, p) here under appropriate additional assumptions. Uniqueness
follows from a modified monotonicity argument, but it seems too weak to obtain stability
needed for the master equation.
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Main results — well-posedness for the master equation

Theorem (Well-posedness for the master equation)

Assume that (H1), (H2), (K), (F1), (F2), (G1), (G2), (M1), (M2), and (M3) hold and
let (u,m) be the solution to the MFG system on (t0,T ) with initial measure
m0 ∈ P(Rd). Then U defined as

U(t0, x ,m0) = u(t0, x)

is the unique classical solution of the master equation
∂tU(t, x ,m) = −LxU(t, x ,m) + H(x ,DxU(t, x ,m))− F (x ,m)

+
∫
Rd Dy

δU
δm

(t, x ,m, y)Hp(y ,DyU(t, y ,m))m(dy)

−
∫
Rd Ly

δU
δm

(t, x ,m, y)m(dy) in (0,T )× Rd × P(Rd),

U(T , x ,m) = G(x ,m) in Rd × P(Rd).

In the remainder of the talk we will discuss the main ingredients of the proof of the above
theorem.
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Auxiliary results

We use (and prove) several results for single equations.

Schauder estimates for linear equations and Hamilton–Jacobi equations. We gain
α− ε derivatives over f , but it seems that (K) might be too weak to gain α.
Linear: Mikulevičius–Pragarauskas (1992), supercritical case: Chaudru de Raynal–Menozzi
–Priola (2020), nonlinear case: Dong–Jin–Zhang (2018).

Existence, uniqueness and time regularity for F–P in P(Rd) with m0 ∈ P(Rd).

Certain versions of the above were done in Ersland–Jakobsen.

. . .
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Auxiliary results: well-posedness in L1

Lemma

Assume (K) and let V1 ∈ Cb([0,T ]× Rd), V2 ∈ L∞([0,T ], L1(Rd)), and ρ0 ∈ L1(Rd).
Then there exists a unique mild solution (satisfying Duhamel) ρ ∈ C([0,T ], L1(Rd)) to{

∂tρ− Lρ− div (V1ρ)− div (V2) = 0, in (0,T )× Rd ,

ρ(0) = ρ0, in Rd .

The mild solution is also a distributional solution.

In addition to that we get (Kolmogorov–Riesz) compactness properties:

uniform equicontinuity of translations:

sup
t∈[0,T ]

‖ρ(t, ·+ z)− ρ(t, ·)‖L1(Rd ) ¬ ‖ρ0(·+ z)− ρ0‖L1(Rd ) + c|z |α−1,

uniform equicontinuity in time: ‖ρ(t)− ρ(s)‖L1(Rd ) ¬ Cω(|t − s|),

uniform tightness by a generalized moment bound.
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Existence of δUδm and the linearized system

In order to get existence and regularity of δU
δm
,Dy

δU
δm
,Ly

δU
δm

we use estimates for the
following forward-backward linear system:

Theorem (Well-posedness of the linearized system)

Assume (K), (F2), (G2), and (roughly)

Γ ∈ C([t0,T ],C 1
b (Rd)) and 0 ¬ Γ ¬ C Id, V ∈ L∞([t0,T ],C 2+σ

b (Rd)),

b ∈ L∞([t0,T ],C 2+σ
b (Rd)), zT ∈ C 3+σ

b (Rd),

c ∈ L1([t0,T ],C−1−σ+ε
b (Rd)), ρ0 ∈ C−2

b (Rd).

Then, the following system has a unique solution:
−∂tz − Lz + V (t, x) · Dz = 〈 δF

δm
(x ,m(t)), ρ(t)〉+ b(t, x) in (t0,T )× Rd ,

∂tρ− L∗ρ− div (ρV )− div (mΓDz + c) = 0 in (t0,T )× Rd ,

z(T , x) = 〈 δG
δm

(x ,m(T )), ρ(T )〉+ zT (x), ρ(t0) = ρ0.

Furthermore, z ∈ B([0,T ],C 3+σ
b (Rd)) and ρ ∈ B([0,T ],C−2−σ

b (Rd)).

Recall: C−γb (Rd) = (Cγb (Rd))∗ for γ  0.

General recipe for solving: Cardaliaguet–Delarue–Lasry–Lions (∆ on torus).
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Linearized system – comments

On the proof:
I Approximate the data and use the Leray–Schauder theorem.
Problem: since we are in the whole space, ρ0 and c may be so bad (e.g. Banach limits)
that convolving with a C∞c function does not regularize them.
Solution: Use the so-called measure representable functionals.

I Need compactness in negative Hölder spaces. Arzelà–Ascoli does not work because we
do not have ‖ · ‖C−γ . ‖ · ‖∞. Instead we use ‖ · ‖C−γ ¬ ‖ · ‖L1 and Kolmogorov–Riesz.
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Linearized system – more comments

Irregular c appear while studying continuity in m0 and t0 of δU
δm

, Dy
δU
δm

, D2
y
δU
δm

.

Ricciardi: in the linearized system result use L1 instead of a uniform bound in time
for c =⇒ less regularity required from the data.

To apply and improve/fix that idea we prove the following result.

Lemma

Assume that (K) holds, V1 ∈ C([0,T ],C 2
b (Rd)), V2 ∈ C([0,T ], (M(Rd), d0)) and

bounded in total variation, and ρ0 ∈ C−2
b (Rd). Then the problem{

∂tρ− Lρ− div (ρV1)− div (V2) = 0, on (0,T )× Rd ,

ρ(0) = ρ0.

has a distributional solution ρ such that ρ ∈ C((0,T ],Cγ−2
b (Rd)) ∩ B([0,T ],C−2

b (Rd))
for every γ ∈ (0, α) and

sup
t∈(0,T ]

‖t
γ
α ρ(t)‖

C
γ−2
b

(Rd )
¬ C(V1)( sup

t∈[0,T ]

‖V2(t)‖TV + ‖ρ0‖C−2
b

(Rd )
).

If ρ0 is measure representable, then ρ(t) is as well for all t ∈ [0,T ].
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Thank you for your attention!
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Existence for the master equation

Recall that U(t0, x ,m0) = u(t0, x) where (u,m) solves the system (MFG). For h > 0,

U(t0 + h, x ,m0)− U(t0, x ,m0)

h
=

U(t0 + h, x ,m(t0 + h))− U(t0, x ,m0)

h

− U(t0 + h, x ,m(t0 + h))− U(t0 + h, x ,m0)

h
= I h1 − I h2 .

Note that U(t0 + h, x ,m(t0 + h)) = u(t0 + h, x), hence by H–J,

I h1 −→
h→0+

∂tu(t0, x) = −Lu + H(x ,Du)− F (x ,m).

By the fundamental theorem of calculus for m and F–P (∂tm − L∗m − div (mDpH(x, Du)) = 0),

I h2 =
1
h

∫ 1

0

∫
Rd

t independent, use as test function in F–P︷ ︸︸ ︷
δU

δm
(t0 + h, x , λm(t0 + h) + (1− λ)m0, y) (m(t0 + h)−m0)(dy) dλ

−→
h→0+

∫
Rd

(
Hp(y ,DyU(t, y ,m))Dy

δU

δm
(t, x ,m, y)− Ly

δU

δm
(t, x ,m, y)

)
m(dy).
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Uniqueness

The uniqueness proof consists in showing that every solution V of ME can be related to
the MFG system:

1 For m0 ∈ P(Rd) construct a flow of measures (m̃(t)) such that{
∂tm̃(t)− L∗m̃(t)− div (m̃(t)DpH(x ,DxV (t, x , m̃(t))) = 0, in [t0,T ]× Rd ,

m̃(t0) = m0.

2 Let v(t, x) = V (t, x , m̃(t)) and use the master equation to show that v solves H–J.

3 Then (v , m̃) solves the same MFG system as (u,m), so by uniqueness for (MFG)
(u,m) = (v , m̃) and therefore V = U.
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