The master equation for the mean field games with Lévy diffusions. Joint work with Espen R. Jakobsen

Artur Rutkowski

NTNU (Trondheim)/WUST (Wrocław)

Workshop: On Nonlinear and Nonlocal Equations
Trondheim 24-26.05.2023

The mean field game (MFG) system

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

The mean field game (MFG) system

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Here $H=H(x, p)$ and \mathcal{L} is a Lévy (constant coefficient) operator:

$$
\mathcal{L} u(x)=B \cdot D u(x)+\operatorname{div}(A \cdot D u(x))+\int_{\mathbb{R}^{d}}\left(u(x+z)-u(x)-D u(x) \cdot z \mathbf{1}_{B(0,1)}(z)\right) \nu(d z)
$$

where $B \in \mathbb{R}^{d}, A \geqslant 0, \int\left(1 \wedge|x|^{2}\right) \nu(d x)<\infty$ and \mathcal{L}^{*} is the formal adjoint of \mathcal{L}.

The mean field game (MFG) system

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Here $H=H(x, p)$ and \mathcal{L} is a Lévy (constant coefficient) operator:

$$
\mathcal{L} u(x)=B \cdot D u(x)+\operatorname{div}(A \cdot D u(x))+\int_{\mathbb{R}^{d}}\left(u(x+z)-u(x)-D u(x) \cdot z \mathbf{1}_{B(0,1)}(z)\right) \nu(d z),
$$

where $B \in \mathbb{R}^{d}, A \geqslant 0, \int\left(1 \wedge|x|^{2}\right) \nu(d x)<\infty$ and \mathcal{L}^{*} is the formal adjoint of \mathcal{L}.

- System (MFG) consists of a backward Hamilton-Jacobi (H-J) equation and a forward Fokker-Planck (F-P) equation.

The mean field game (MFG) system

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Here $H=H(x, p)$ and \mathcal{L} is a Lévy (constant coefficient) operator:
$\mathcal{L} u(x)=B \cdot D u(x)+\operatorname{div}(A \cdot D u(x))+\int_{\mathbb{R}^{d}}\left(u(x+z)-u(x)-D u(x) \cdot z \mathbf{1}_{B(0,1)}(z)\right) \nu(d z)$,
where $B \in \mathbb{R}^{d}, A \geqslant 0, \int\left(1 \wedge|x|^{2}\right) \nu(d x)<\infty$ and \mathcal{L}^{*} is the formal adjoint of \mathcal{L}.
- System (MFG) consists of a backward Hamilton-Jacobi (H-J) equation and a forward Fokker-Planck (F-P) equation.
- We say that (u, m) solves (MFG) if u is a classical solution of $\mathrm{H}-\mathrm{J}$ and m is a distributional solution of F-P.

The mean field game (MFG) system

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Here $H=H(x, p)$ and \mathcal{L} is a Lévy (constant coefficient) operator:
$\mathcal{L} u(x)=B \cdot D u(x)+\operatorname{div}(A \cdot D u(x))+\int_{\mathbb{R}^{d}}\left(u(x+z)-u(x)-D u(x) \cdot z \mathbf{1}_{B(0,1)}(z)\right) \nu(d z)$,
where $B \in \mathbb{R}^{d}, A \geqslant 0, \int\left(1 \wedge|x|^{2}\right) \nu(d x)<\infty$ and \mathcal{L}^{*} is the formal adjoint of \mathcal{L}.
- System (MFG) consists of a backward Hamilton-Jacobi (H-J) equation and a forward Fokker-Planck (F-P) equation.
- We say that (u, m) solves (MFG) if u is a classical solution of $\mathrm{H}-\mathrm{J}$ and m is a distributional solution of F-P.
- $F(x, m(t)), G(x, m(T))$ - nonlocal/smoothing coupling.

The mean field game system - model

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Purpose: modeling games with large number of similar players with the use of an "infinite-player" game.

The mean field game system - model

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Purpose: modeling games with large number of similar players with the use of an "infinite-player" game.
- Introduced independently by Lasry and Lions, and Caines, Huang and Malhamé in mid 2000s.

The mean field game system - model

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Purpose: modeling games with large number of similar players with the use of an "infinite-player" game.
- Introduced independently by Lasry and Lions, and Caines, Huang and Malhamé in mid 2000s.
- $\mathrm{H}-\mathrm{J} \sim$ value function, $\mathrm{F}-\mathrm{P} \sim$ distribution of a generic player.

The mean field game system - model

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Purpose: modeling games with large number of similar players with the use of an "infinite-player" game.
- Introduced independently by Lasry and Lions, and Caines, Huang and Malhamé in mid 2000s.
- H-J \sim value function, F-P \sim distribution of a generic player.
- $\mathcal{L} \sim$ idiosyncratic/individual noise.

The mean field game system - model

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

- Purpose: modeling games with large number of similar players with the use of an "infinite-player" game.
- Introduced independently by Lasry and Lions, and Caines, Huang and Malhamé in mid 2000s.
- H-J \sim value function, F-P \sim distribution of a generic player.
- $\mathcal{L} \sim$ idiosyncratic/individual noise.
- Many other models exist, e.g., common noise, no noise at all, games with a major player.

The mean field game system - some literature

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

$\mathcal{L}=\Delta$

- P.-L. Lions' lectures at Collège de France (notes by P. Cardaliaguet).
- Lasry-Lions: Jpn. J. Math. (2007), C. R. Acad. Sci. Paris (2006) \mathbb{T}^{d}.
- ...

The mean field game system - some literature

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

$\mathcal{L}=\Delta$

- P.-L. Lions' lectures at Collège de France (notes by P. Cardaliaguet).
- Lasry-Lions: Jpn. J. Math. (2007), C. R. Acad. Sci. Paris (2006) \mathbb{T}^{d}.
- ...
$\mathcal{L}=(-\Delta)^{\alpha / 2}$
- Cesaroni et al. (2019), stationary on $\mathbb{T}^{d}, \alpha \in(1,2)$.
- Cirant-Goffi (2019), time-dependent on $\mathbb{T}^{d}, \alpha \in(0,2)$.
- Chowdhury-Jakobsen-Krupski (2021), fully nonlinear on \mathbb{R}^{d}.

The mean field game system - some literature

$$
\begin{cases}-\partial_{t} u-\mathcal{L} u+H(x, D u(t, x))=F(x, m(t)) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \tag{MFG}\\ \partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u(t, x))\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ m\left(t_{0}\right)=m_{0}, \quad u(T, x)=G(x, m(T)) & \end{cases}
$$

$\mathcal{L}=\Delta$

- P.-L. Lions' lectures at Collège de France (notes by P. Cardaliaguet).
- Lasry-Lions: Jpn. J. Math. (2007), C. R. Acad. Sci. Paris (2006) \mathbb{T}^{d}.
- ...
$\mathcal{L}=(-\Delta)^{\alpha / 2}$
- Cesaroni et al. (2019), stationary on $\mathbb{T}^{d}, \alpha \in(1,2)$.
- Cirant-Goffi (2019), time-dependent on $\mathbb{T}^{d}, \alpha \in(0,2)$.
- Chowdhury-Jakobsen-Krupski (2021), fully nonlinear on \mathbb{R}^{d}.
\mathcal{L} - more general Lévy operator
- Graber-lgnazio-Neufeld (2021), $\Delta+$ nonlocal perturbation on $(0, \infty)$.
- Ersland-Jakobsen (2021), time-dependent on \mathbb{R}^{d}, order $\alpha \in(1,2)$.

The master equation

Q: How to prove that the games with a large number of players "converge" to the mean field games?

The master equation

Q: How to prove that the games with a large number of players "converge" to the mean field games?

A: Use the master equation!
P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the convergence problem in mean field games. Annals of Mathematics Studies 201, 2019.

The master equation

Q: How to prove that the games with a large number of players "converge" to the mean field games?

A: Use the master equation!
P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the convergence problem in mean field games. Annals of Mathematics Studies 201, 2019.

Assume that (u, m) solves (MFG) on $\left(t_{0}, T\right)$ with initial measure m_{0} and let

$$
U\left(t_{0}, x, m_{0}\right)=u\left(t_{0}, x\right)
$$

The master equation

Q: How to prove that the games with a large number of players "converge" to the mean field games?

A: Use the master equation!
P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the convergence problem in mean field games. Annals of Mathematics Studies 201, 2019.

Assume that (u, m) solves (MFG) on $\left(t_{0}, T\right)$ with initial measure m_{0} and let

$$
U\left(t_{0}, x, m_{0}\right)=u\left(t_{0}, x\right)
$$

Formally, it is easy to show that U is the unique solution of the master equation:

$$
\left\{\begin{align*}
\partial_{t} U(t, x, m)= & -\mathcal{L}_{x} U(t, x, m)+H\left(x, D_{x} U(t, x, m)\right)-F(x, m) \\
& +\int_{\mathbb{R}^{d}} D_{y} \frac{\delta U}{\delta m}(t, x, m, y) H_{p}\left(y, D_{y} U(t, y, m)\right) m(d y) \tag{ME}\\
& -\int_{\mathbb{R}^{d}} \mathcal{L}_{y} \frac{\delta U}{\delta m}(t, x, m, y) m(d y) \text { in }(0, T) \times \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right), \\
U(T, x, m)= & G(x, m) \text { in } \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) .
\end{align*}\right.
$$

The space of probability measures

$\mathcal{P}\left(\mathbb{R}^{d}\right)$ is the space of all probability measures on \mathbb{R}^{d}. Let $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$.
Kantorovich-Rubinstein distance

$$
d_{0}\left(m, m^{\prime}\right)=\sup _{\phi \in L p_{1,1},}\left|\int_{\mathbb{R}^{d}} \phi(x)\left(m^{\prime}-m\right)(d x)\right| .
$$

The space of probability measures

$\mathcal{P}\left(\mathbb{R}^{d}\right)$ is the space of all probability measures on \mathbb{R}^{d}. Let $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$.
Kantorovich-Rubinstein distance

$$
d_{0}\left(m, m^{\prime}\right)=\sup _{\phi \in L p_{1,1}}\left|\int_{\mathbb{R}^{d}} \phi(x)\left(m^{\prime}-m\right)(d x)\right| .
$$

- $L i p_{1,1}=\left\{\phi \in C_{b}\left(\mathbb{R}^{d}\right):\|\phi\|_{\infty}+\|D \phi\|_{\infty} \leqslant 1\right\}$.

The space of probability measures
$\mathcal{P}\left(\mathbb{R}^{d}\right)$ is the space of all probability measures on \mathbb{R}^{d}. Let $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$.
Kantorovich-Rubinstein distance

$$
d_{0}\left(m, m^{\prime}\right)=\sup _{\phi \in L p_{1}, 1}\left|\int_{\mathbb{R}^{d}} \phi(x)\left(m^{\prime}-m\right)(d x)\right| .
$$

- $L i p_{1,1}=\left\{\phi \in C_{b}\left(\mathbb{R}^{d}\right):\|\phi\|_{\infty}+\|D \phi\|_{\infty} \leqslant 1\right\}$.
- d_{0} is a metric for the narrow convergence of measures (tested with $C_{b}\left(\mathbb{R}^{d}\right)$).

The space of probability measures

$\mathcal{P}\left(\mathbb{R}^{d}\right)$ is the space of all probability measures on \mathbb{R}^{d}. Let $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$.

Kantorovich-Rubinstein distance

$$
d_{0}\left(m, m^{\prime}\right)=\sup _{\phi \in L p_{1,1},}\left|\int_{\mathbb{R}^{d}} \phi(x)\left(m^{\prime}-m\right)(d x)\right| .
$$

- $L i p_{1,1}=\left\{\phi \in C_{b}\left(\mathbb{R}^{d}\right):\|\phi\|_{\infty}+\|D \phi\|_{\infty} \leqslant 1\right\}$.
- d_{0} is a metric for the narrow convergence of measures (tested with $C_{b}\left(\mathbb{R}^{d}\right)$).
- Most of the works on MFGs in the whole space use 1-Wasserstein or 2-Wasserstein distances, which are equivalent to weak convergence + convergence of 1 , resp. 2, moments. The metric d_{0} does not require any moments.

Derivative in the space of probability measures

Derivative in $\mathcal{P}\left(\mathbb{R}^{d}\right)$

We say that $V: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is C^{1} if there exists a mapping $\frac{\delta V}{\delta m}: \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, bounded and continuous in both variables, such that for all $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
\lim _{h \rightarrow 0^{+}} \frac{V\left(m+h\left(m^{\prime}-m\right)\right)-V(m)}{h}=\int_{\mathbb{R}^{d}} \frac{\delta V}{\delta m}(m, y)\left(m^{\prime}-m\right)(d y)
$$

Derivative in the space of probability measures

Derivative in $\mathcal{P}\left(\mathbb{R}^{d}\right)$

We say that $V: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is C^{1} if there exists a mapping $\frac{\delta V}{\delta m}: \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, bounded and continuous in both variables, such that for all $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
\lim _{h \rightarrow 0^{+}} \frac{V\left(m+h\left(m^{\prime}-m\right)\right)-V(m)}{h}=\int_{\mathbb{R}^{d}} \frac{\delta V}{\delta m}(m, y)\left(m^{\prime}-m\right)(d y)
$$

- Similar to the Gateaux derivative, but the space is not linear.

Derivative in the space of probability measures

Derivative in $\mathcal{P}\left(\mathbb{R}^{d}\right)$

We say that $V: \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is C^{1} if there exists a mapping $\frac{\delta V}{\delta m}: \mathcal{P}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, bounded and continuous in both variables, such that for all $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
\lim _{h \rightarrow 0^{+}} \frac{V\left(m+h\left(m^{\prime}-m\right)\right)-V(m)}{h}=\int_{\mathbb{R}^{d}} \frac{\delta V}{\delta m}(m, y)\left(m^{\prime}-m\right)(d y)
$$

- Similar to the Gateaux derivative, but the space is not linear.
- The above definition does not give uniqueness of $\frac{\delta V}{\delta m}$.

Most relevant references on the master equation

- Cardaliaguet-Delarue-Lasry-Lions, chapter 3. Torus/periodic boundary conditions.
- M. Ricciardi. The master equation in a bounded domain with Neumann conditions. Comm. PDE (2022).
- Ambrose-Mészáros. Trans. AMS (2023). Sobolev space setting on torus.
- Di Persio-Garbelli-Ricciardi. The master equation in a bounded domain with absorption. arXiv:2203.15583. Dirichlet boundary conditions.
- Graber-Sircar. Master equation for Cournot mean field games of control with absorption. J. Differential Equ. (2023).

All the results above are for local diffusions.

Most relevant references on the master equation

- Cardaliaguet-Delarue-Lasry-Lions, chapter 3. Torus/periodic boundary conditions.
- M. Ricciardi. The master equation in a bounded domain with Neumann conditions. Comm. PDE (2022).
- Ambrose-Mészáros. Trans. AMS (2023). Sobolev space setting on torus.
- Di Persio-Garbelli-Ricciardi. The master equation in a bounded domain with absorption. arXiv:2203.15583. Dirichlet boundary conditions.
- Graber-Sircar. Master equation for Cournot mean field games of control with absorption. J. Differential Equ. (2023).
All the results above are for local diffusions.
Our contribution to the well-posedness of the master equation:
- Nonlocal, local and mixed diffusions.
- Handling the whole space for probability measures without moment conditions, using analytic methods (new even for $\mathcal{L}=\Delta$).

Assumptions on the heat kernel

We adopt the following order condition for \mathcal{L} from Ersland and Jakobsen:
There is $\mathcal{K}>0$ and $\alpha \in(1,2]$, such that the heat kernels K and K^{*} of \mathcal{L} and \mathcal{L}^{*} respectively are smooth densities of probability measures, and for $\tilde{K} \in\left\{K, K^{*}\right\}$ and $\beta \geqslant 0$ we have

$$
\begin{equation*}
\left\|D^{\beta} \tilde{K}(t, \cdot)\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leqslant \mathcal{K} t^{-\frac{|\beta|}{\alpha}} . \tag{K}
\end{equation*}
$$

Assumptions on the heat kernel

We adopt the following order condition for \mathcal{L} from Ersland and Jakobsen:
There is $\mathcal{K}>0$ and $\alpha \in(1,2]$, such that the heat kernels K and K^{*} of \mathcal{L} and \mathcal{L}^{*} respectively are smooth densities of probability measures, and for $\tilde{K} \in\left\{K, K^{*}\right\}$ and $\beta \geqslant 0$ we have

$$
\begin{equation*}
\left\|D^{\beta} \tilde{K}(t, \cdot)\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leqslant \mathcal{K} t^{-\frac{|\beta|}{\alpha}} . \tag{K}
\end{equation*}
$$

We heavily use (K) in Duhamel's formula:

$$
\left\{\begin{array}{l}
\partial_{t} u-\mathcal{L} u=f \\
u(0)=u_{0}
\end{array} \Longleftrightarrow u(t, x)=\left(K(t) * u_{0}\right)(x)+\int_{0}^{t} \int_{\mathbb{R}^{d}} K(t-s, x-y) f(s, y) d y d s\right.
$$

Assumptions on the heat kernel

We adopt the following order condition for \mathcal{L} from Ersland and Jakobsen:
There is $\mathcal{K}>0$ and $\alpha \in(1,2]$, such that the heat kernels K and K^{*} of \mathcal{L} and \mathcal{L}^{*} respectively are smooth densities of probability measures, and for $\tilde{K} \in\left\{K, K^{*}\right\}$ and $\beta \geqslant 0$ we have

$$
\begin{equation*}
\left\|D^{\beta} \tilde{K}(t, \cdot)\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leqslant \mathcal{K} t^{-\frac{|\beta|}{\alpha}} . \tag{K}
\end{equation*}
$$

We heavily use (K) in Duhamel's formula:

$$
\left\{\begin{array}{l}
\partial_{t} u-\mathcal{L} u=f \\
u(0)=u_{0}
\end{array} \Longleftrightarrow u(t, x)=\left(K(t) * u_{0}\right)(x)+\int_{0}^{t} \int_{\mathbb{R}^{d}} K(t-s, x-y) f(s, y) d y d s\right.
$$

Examples:

- $\mathcal{L}=(-\Delta)^{\alpha / 2}$ for $\alpha \in(1,2]$,
- $\nu(z) \approx|z|^{-d-\alpha}$ for $|z| \leqslant 1, \alpha \in(1,2)$, (Grzywny-Szczypkowski, Forum Math. 2020)
- $\mathcal{L}=\left(\partial_{x_{1} x_{1}}^{2}\right)^{\alpha_{1} / 2}+\left(\partial_{x_{2} x_{2}}^{2}\right)^{\alpha_{2} / 2}+\ldots+\left(\partial_{x_{d} x_{d}}^{2}\right)^{\alpha_{d} / 2}$ for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}>1$,
- $\mathcal{L}=\mathcal{L}_{1}+\mathcal{L}_{2}$, where \mathcal{L}_{1} satisfies (\mathbf{K}) and \mathcal{L}_{2} is any Lévy operator.

Assumptions on H

(H1) $H: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth and for every $I \in \mathbb{N}^{d+1}$ with $|I| \leqslant 4$, $\sup _{x \in \mathbb{R}^{d}}\left|D^{\prime} H(x, \cdot)\right|$ is locally bounded.
(H2) For every $R>0$ there exists $C_{R}>0$ such that for $x, y \in \mathbb{R}^{d}$ and $p \in \mathbb{R}^{d}$,

$$
|H(x, p)-H(y, p)| \leqslant C_{R}(1+|p|)|x-y| .
$$

Assumptions on F, G

Note: d_{0} - Rubinstein-Kantorovich distance, $\alpha \in(1,2] \sim$ order of \mathcal{L}. $\exists \sigma \in(0, \alpha-1)$:
(F1) $F: \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ satisfies

$$
\begin{gathered}
\sup _{m \in \mathcal{P}\left(\mathbb{R}^{d}\right)}\|F(\cdot, m)\|_{C_{b}^{2}\left(\mathbb{R}^{d}\right)}<\infty, \\
\sup _{x \in \mathbb{R}^{d}, m \neq m^{\prime}} \frac{\left|F(x, m)-F\left(x, m^{\prime}\right)\right|}{d_{0}\left(m, m^{\prime}\right)}<\infty .
\end{gathered}
$$

(F2) There exists $C>0$ such that for all $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\left\|\frac{\delta F}{\delta m}(\cdot, m, \cdot)\right\|_{c_{b}^{2+\sigma}\left(\mathbb{R}^{d}, c_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right)} & \leqslant C, \\
\left\|\frac{\delta F}{\delta m}(\cdot, m, \cdot)-\frac{\delta F}{\delta m}\left(\cdot, m^{\prime}, \cdot\right)\right\|_{c_{b}^{2+\sigma}\left(\mathbb{R}^{d}, c_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right)} & \leqslant C d_{0}\left(m, m^{\prime}\right) .
\end{aligned}
$$

(G1) $G: \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ satisfies

$$
\begin{gathered}
\sup _{m \in \mathcal{P}\left(\mathbb{R}^{d}\right)}\|G(\cdot, m)\|_{C_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)}<\infty \\
\sup _{x \in \mathbb{R}^{d}, m \neq m^{\prime}} \frac{\left|G(x, m)-G\left(x, m^{\prime}\right)\right|}{d_{0}\left(m, m^{\prime}\right)}<\infty .
\end{gathered}
$$

(G2) There exists $C>0$ such that for all $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\left\|\frac{\delta G}{\delta m}(\cdot, m, \cdot)\right\|_{C_{b}^{3+\sigma}\left(\mathbb{R}^{d}, c_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)\right)} & \leqslant C, \\
\left\|\frac{\delta G}{\delta m}(\cdot, m, \cdot)-\frac{\delta G}{\delta m}\left(\cdot, m^{\prime}, \cdot\right)\right\|_{C_{b}^{3+\sigma}\left(\mathbb{R}^{d}, c_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right)} & \leqslant C d_{0}\left(m, m^{\prime}\right) .
\end{aligned}
$$

Monotonicity conditions

(M1) The Lasry-Lions monotonicity condition holds for F and G, that is, for all $m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left(F\left(x, m^{\prime}\right)-F(x, m)\right)\left(m^{\prime}-m\right)(d x) \geqslant 0 \\
& \int_{\mathbb{R}^{d}}\left(G\left(x, m^{\prime}\right)-G(x, m)\right)\left(m^{\prime}-m\right)(d x) \geqslant 0
\end{aligned}
$$

(M2) (F2) and (G2) hold and for every $\rho \in C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right):=\left(C_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right)^{*}$ and $m \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{aligned}
& \left\langle\left\langle\frac{\delta F(\cdot, m, \cdot)}{\delta m}, \rho\right\rangle_{y}, \rho\right\rangle_{x} \geqslant 0 \\
& \left\langle\left\langle\frac{\delta G(\cdot, m, \cdot)}{\delta m}, \rho\right\rangle_{y}, \rho\right\rangle_{x} \geqslant 0
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle_{x},\langle\cdot, \cdot\rangle_{y}$ are the pairings between $C_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)$ and $C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right)$ in x and y respectively.
(M3) There exists $c_{1} \geqslant 1$ such that for all $x \in \mathbb{R}^{d}$

$$
\frac{1}{c_{1}} I_{d} \leqslant D_{p p}^{2} H(x, \cdot) \leqslant c_{1} I_{d}
$$

Digression: monotonicity conditions vs normalization of $\frac{\delta U}{\delta m}$

$$
\begin{align*}
\int_{\mathbb{R}^{d}}\left(F\left(x, m^{\prime}\right)-\right. & F(x, m))\left(m^{\prime}-m\right)(d x) \geqslant 0, \quad m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right) \tag{M1}\\
& \left\langle\left\langle\frac{\delta F(\cdot, m, \cdot)}{\delta m}, \rho\right\rangle_{y}, \rho\right\rangle_{x} \geqslant 0, \quad \rho \in C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right) \tag{M2}
\end{align*}
$$

Digression: monotonicity conditions vs normalization of $\frac{\delta U}{\delta m}$

$$
\begin{align*}
\int_{\mathbb{R}^{d}}\left(F\left(x, m^{\prime}\right)-F(x, m)\right)\left(m^{\prime}-m\right)(d x) \geqslant 0, \quad m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right) \tag{M1}\\
\left\langle\left\langle\frac{\delta F(\cdot, m, \cdot)}{\delta m}, \rho\right\rangle_{y}, \rho\right\rangle_{x} \geqslant 0, \quad \rho \in C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right) \tag{M2}
\end{align*}
$$

The following condition is often used in the literature to ensure uniqueness of $\frac{\delta U}{\delta m}$:

$$
\begin{equation*}
\int \frac{\delta U}{\delta m}(m, y) m(d x)=0, \quad m \in \mathcal{P}\left(\mathbb{R}^{d}\right) \tag{1}
\end{equation*}
$$

Digression: monotonicity conditions vs normalization of $\frac{\delta U}{\delta m}$

$$
\begin{align*}
& \int_{\mathbb{R}^{d}}\left(F\left(x, m^{\prime}\right)-F(x, m)\right)\left(m^{\prime}-m\right)(d x) \geqslant 0, \quad m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right) \tag{M1}\\
&\left\langle\left\langle\frac{\delta F(\cdot, m, \cdot)}{\delta m}, \rho\right\rangle_{y}, \rho\right\rangle_{x} \geqslant 0, \quad \rho \in C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right) \tag{M2}
\end{align*}
$$

The following condition is often used in the literature to ensure uniqueness of $\frac{\delta U}{\delta m}$:

$$
\begin{equation*}
\int \frac{\delta U}{\delta m}(m, y) m(d x)=0, \quad m \in \mathcal{P}\left(\mathbb{R}^{d}\right) \tag{1}
\end{equation*}
$$

Example

If $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and $F(x, m)=\rho * m(x)$, then under (1),

$$
\frac{\delta F}{\delta m}(x, m, y)=\rho(x-y)-\rho * m(x)
$$

For nontrivial odd ϕ (M1) is always satisfied, but (M2) is never satisfied.

- In particular, (M1) does not imply (M2).

Digression: monotonicity conditions vs normalization of $\frac{\delta U}{\delta m}$

$$
\begin{align*}
& \int_{\mathbb{R}^{d}}\left(F\left(x, m^{\prime}\right)-F(x, m)\right)\left(m^{\prime}-m\right)(d x) \geqslant 0, \quad m, m^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right) \tag{M1}\\
&\left\langle\left\langle\frac{\delta F(\cdot, m, \cdot)}{\delta m}, \rho\right\rangle_{y}, \rho\right\rangle_{x} \geqslant 0, \quad \rho \in C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right) \tag{M2}
\end{align*}
$$

The following condition is often used in the literature to ensure uniqueness of $\frac{\delta U}{\delta m}$:

$$
\begin{equation*}
\int \frac{\delta U}{\delta m}(m, y) m(d x)=0, \quad m \in \mathcal{P}\left(\mathbb{R}^{d}\right) \tag{1}
\end{equation*}
$$

Example

If $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and $F(x, m)=\rho * m(x)$, then under (1),

$$
\frac{\delta F}{\delta m}(x, m, y)=\rho(x-y)-\rho * m(x)
$$

For nontrivial odd ϕ (M1) is always satisfied, but (M2) is never satisfied.

- In particular, (M1) does not imply (M2).
- We do not adopt condition (1).

Main results - well-posedness for the MFG system

Theorem (Well-posedness of the MFG system)

Assume that (H1), (H2), (K), (F1), and (G1) hold. Then,

- for any $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ the system (MFG) has a solution (u, m) such that

$$
\begin{aligned}
& \left\|\partial_{t} u\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}+\sup _{t \in\left[t_{0}, T\right]}\|u(t,)\|_{c_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)} \leqslant C(d, T, F, G, H, \mathcal{L}, \sigma), \\
& d_{0}(m(t), m(s)) \leqslant C(d, T, F, G, H, \mathcal{L})|t-s|^{\frac{1}{2}}, \quad t, s \in\left[t_{0}, T\right] .
\end{aligned}
$$

- If in addition (M1) and (M3) are true, then the solution is unique.

Main results - well-posedness for the MFG system

Theorem (Well-posedness of the MFG system)

Assume that (H1), (H2), (K), (F1), and (G1) hold. Then,

- for any $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ the system (MFG) has a solution (u, m) such that

$$
\begin{aligned}
& \left\|\partial_{t} u\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}+\sup _{t \in\left[t_{0}, T\right]}\|u(t, \cdot)\|_{C_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)} \leqslant C(d, T, F, G, H, \mathcal{L}, \sigma), \\
& d_{0}(m(t), m(s)) \leqslant C(d, T, F, G, H, \mathcal{L})|t-s|^{\frac{1}{2}}, \quad t, s \in\left[t_{0}, T\right]
\end{aligned}
$$

- If in addition (M 1$)$ and $(\mathrm{M} 3)$ are true, then the solution is unique.

We allow $H=H(x, u, p)$ here under appropriate additional assumptions. Uniqueness follows from a modified monotonicity argument, but it seems too weak to obtain stability needed for the master equation.

Main results - well-posedness for the master equation

Theorem (Well-posedness for the master equation)

Assume that (H1), (H2), (K), (F1), (F2), (G1), (G2), (M1), (M2), and (M3) hold and let (u, m) be the solution to the MFG system on $\left(t_{0}, T\right)$ with initial measure $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$. Then U defined as

$$
U\left(t_{0}, x, m_{0}\right)=u\left(t_{0}, x\right)
$$

is the unique classical solution of the master equation

$$
\left\{\begin{aligned}
\partial_{t} U(t, x, m)= & -\mathcal{L}_{x} U(t, x, m)+H\left(x, D_{x} U(t, x, m)\right)-F(x, m) \\
& +\int_{\mathbb{R}^{d}} D_{y} \frac{\delta U}{\delta m}(t, x, m, y) H_{p}\left(y, D_{y} U(t, y, m)\right) m(d y) \\
& -\int_{\mathbb{R}^{d}} \mathcal{L}_{y} \frac{\delta U}{\delta m}(t, x, m, y) m(d y) \quad \text { in }(0, T) \times \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right), \\
U(T, x, m)= & G(x, m) \text { in } \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) .
\end{aligned}\right.
$$

Main results - well-posedness for the master equation

Theorem (Well-posedness for the master equation)

Assume that (H1), (H2), (K), (F1), (F2), (G1), (G2), (M1), (M2), and (M3) hold and let (u, m) be the solution to the MFG system on $\left(t_{0}, T\right)$ with initial measure $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$. Then U defined as

$$
U\left(t_{0}, x, m_{0}\right)=u\left(t_{0}, x\right)
$$

is the unique classical solution of the master equation

$$
\left\{\begin{aligned}
\partial_{t} U(t, x, m)= & -\mathcal{L}_{x} U(t, x, m)+H\left(x, D_{x} U(t, x, m)\right)-F(x, m) \\
& +\int_{\mathbb{R}^{d}} D_{y} \frac{\delta U}{\delta m}(t, x, m, y) H_{p}\left(y, D_{y} U(t, y, m)\right) m(d y) \\
& -\int_{\mathbb{R}^{d}} \mathcal{L}_{y} \frac{\delta U}{\delta m}(t, x, m, y) m(d y) \quad \text { in }(0, T) \times \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right), \\
U(T, x, m)= & G(x, m) \text { in } \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) .
\end{aligned}\right.
$$

In the remainder of the talk we will discuss the main ingredients of the proof of the above theorem.

Auxiliary results

We use (and prove) several results for single equations.

- Schauder estimates for linear equations and Hamilton-Jacobi equations. We gain $\alpha-\varepsilon$ derivatives over f, but it seems that (\mathbf{K}) might be too weak to gain α. Linear: Mikulevičius-Pragarauskas (1992), supercritical case: Chaudru de Raynal-Menozzi -Priola (2020), nonlinear case: Dong-Jin-Zhang (2018).

Auxiliary results

We use (and prove) several results for single equations.

- Schauder estimates for linear equations and Hamilton-Jacobi equations. We gain $\alpha-\varepsilon$ derivatives over f, but it seems that (K) might be too weak to gain α. Linear: Mikulevičius-Pragarauskas (1992), supercritical case: Chaudru de Raynal-Menozzi -Priola (2020), nonlinear case: Dong-Jin-Zhang (2018).
- Existence, uniqueness and time regularity for $\mathrm{F}-\mathrm{P}$ in $\mathcal{P}\left(\mathbb{R}^{d}\right)$ with $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$.

Certain versions of the above were done in Ersland-Jakobsen.

Auxiliary results

We use (and prove) several results for single equations.

- Schauder estimates for linear equations and Hamilton-Jacobi equations. We gain $\alpha-\varepsilon$ derivatives over f, but it seems that (K) might be too weak to gain α. Linear: Mikulevičius-Pragarauskas (1992), supercritical case: Chaudru de Raynal-Menozzi -Priola (2020), nonlinear case: Dong-Jin-Zhang (2018).
- Existence, uniqueness and time regularity for $\mathrm{F}-\mathrm{P}$ in $\mathcal{P}\left(\mathbb{R}^{d}\right)$ with $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$.

Certain versions of the above were done in Ersland-Jakobsen.

Auxiliary results: well-posedness in L^{1}

Lemma

Assume (K) and let $V_{1} \in C_{b}\left([0, T] \times \mathbb{R}^{d}\right), V_{2} \in L^{\infty}\left([0, T], L^{1}\left(\mathbb{R}^{d}\right)\right)$, and $\rho_{0} \in L^{1}\left(\mathbb{R}^{d}\right)$. Then there exists a unique mild solution (satisfying Duhamel) $\rho \in C\left([0, T], L^{1}\left(\mathbb{R}^{d}\right)\right)$ to

$$
\begin{cases}\partial_{t} \rho-\mathcal{L} \rho-\operatorname{div}\left(V_{1} \rho\right)-\operatorname{div}\left(V_{2}\right)=0, & \text { in }(0, T) \times \mathbb{R}^{d}, \\ \rho(0)=\rho_{0}, & \text { in } \mathbb{R}^{d} .\end{cases}
$$

The mild solution is also a distributional solution.

Auxiliary results: well-posedness in L^{1}

Lemma

Assume (K) and let $V_{1} \in C_{b}\left([0, T] \times \mathbb{R}^{d}\right), V_{2} \in L^{\infty}\left([0, T], L^{1}\left(\mathbb{R}^{d}\right)\right)$, and $\rho_{0} \in L^{1}\left(\mathbb{R}^{d}\right)$. Then there exists a unique mild solution (satisfying Duhamel) $\rho \in C\left([0, T], L^{1}\left(\mathbb{R}^{d}\right)\right)$ to

$$
\begin{cases}\partial_{t} \rho-\mathcal{L} \rho-\operatorname{div}\left(V_{1} \rho\right)-\operatorname{div}\left(V_{2}\right)=0, & \text { in }(0, T) \times \mathbb{R}^{d}, \\ \rho(0)=\rho_{0}, & \text { in } \mathbb{R}^{d} .\end{cases}
$$

The mild solution is also a distributional solution.
In addition to that we get (Kolmogorov-Riesz) compactness properties:

- uniform equicontinuity of translations:

$$
\sup _{t \in[0, T]}\|\rho(t, \cdot+z)-\rho(t, \cdot)\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leqslant\left\|\rho_{0}(\cdot+z)-\rho_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}+c|z|^{\alpha-1}
$$

- uniform equicontinuity in time: $\|\rho(t)-\rho(s)\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leqslant C \omega(|t-s|)$,
- uniform tightness by a generalized moment bound.

Existence of $\frac{\delta U}{\delta m}$ and the linearized system
In order to get existence and regularity of $\frac{\delta U}{\delta m}, D_{y} \frac{\delta U}{\delta m}, \mathcal{L}_{y} \frac{\delta U}{\delta m}$ we use estimates for the following forward-backward linear system:

Existence of $\frac{\delta U}{\delta m}$ and the linearized system
In order to get existence and regularity of $\frac{\delta U}{\delta m}, D_{y} \frac{\delta U}{\delta m}, \mathcal{L}_{y} \frac{\delta U}{\delta m}$ we use estimates for the following forward-backward linear system:

Theorem (Well-posedness of the linearized system)

Assume (K), (F2), (G2), and (roughly)

- $\Gamma \in C\left(\left[t_{0}, T\right], C_{b}^{1}\left(\mathbb{R}^{d}\right)\right)$ and $0 \leqslant \Gamma \leqslant C I_{d}, \quad V \in L^{\infty}\left(\left[t_{0}, T\right], C_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right)$,
- $b \in L^{\infty}\left(\left[t_{0}, T\right], C_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right), \quad z_{T} \in C_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)$,
- $c \in L^{1}\left(\left[t_{0}, T\right], C_{b}^{-1-\sigma+\varepsilon}\left(\mathbb{R}^{d}\right)\right), \quad \rho_{0} \in C_{b}^{-2}\left(\mathbb{R}^{d}\right)$.

Then, the following system has a unique solution:

$$
\begin{cases}-\partial_{t} z-\mathcal{L} z+V(t, x) \cdot D z=\left\langle\frac{\delta F}{\delta m}(x, m(t)), \rho(t)\right\rangle+b(t, x) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \\ \partial_{t} \rho-\mathcal{L}^{*} \rho-\operatorname{div}(\rho V)-\operatorname{div}(m \Gamma D z+c)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \\ z(T, x)=\left\langle\frac{\delta G}{\delta m}(x, m(T)), \rho(T)\right\rangle+z_{T}(x), \quad \rho\left(t_{0}\right)=\rho_{0} & \end{cases}
$$

Furthermore, $z \in B\left([0, T], C_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)\right)$ and $\rho \in B\left([0, T], C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right)\right)$.
Recall: $C_{b}^{-\gamma}\left(\mathbb{R}^{d}\right)=\left(C_{b}^{\gamma}\left(\mathbb{R}^{d}\right)\right)^{*}$ for $\gamma \geqslant 0$.

Existence of $\frac{\delta U}{\delta m}$ and the linearized system
In order to get existence and regularity of $\frac{\delta U}{\delta m}, D_{y} \frac{\delta U}{\delta m}, \mathcal{L}_{y} \frac{\delta U}{\delta m}$ we use estimates for the following forward-backward linear system:

Theorem (Well-posedness of the linearized system)

Assume (K), (F2), (G2), and (roughly)

- $\Gamma \in C\left(\left[t_{0}, T\right], C_{b}^{1}\left(\mathbb{R}^{d}\right)\right)$ and $0 \leqslant \Gamma \leqslant C I_{d}, \quad V \in L^{\infty}\left(\left[t_{0}, T\right], C_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right)$,
- $b \in L^{\infty}\left(\left[t_{0}, T\right], C_{b}^{2+\sigma}\left(\mathbb{R}^{d}\right)\right), \quad z_{T} \in C_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)$,
- $c \in L^{1}\left(\left[t_{0}, T\right], C_{b}^{-1-\sigma+\varepsilon}\left(\mathbb{R}^{d}\right)\right), \quad \rho_{0} \in C_{b}^{-2}\left(\mathbb{R}^{d}\right)$.

Then, the following system has a unique solution:

$$
\begin{cases}-\partial_{t} z-\mathcal{L} z+V(t, x) \cdot D z=\left\langle\frac{\delta F}{\delta m}(x, m(t)), \rho(t)\right\rangle+b(t, x) & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \\ \partial_{t} \rho-\mathcal{L}^{*} \rho-\operatorname{div}(\rho V)-\operatorname{div}(m \Gamma D z+c)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \\ z(T, x)=\left\langle\frac{\delta G}{\delta m}(x, m(T)), \rho(T)\right\rangle+z_{T}(x), \quad \rho\left(t_{0}\right)=\rho_{0} & \end{cases}
$$

Furthermore, $z \in B\left([0, T], C_{b}^{3+\sigma}\left(\mathbb{R}^{d}\right)\right)$ and $\rho \in B\left([0, T], C_{b}^{-2-\sigma}\left(\mathbb{R}^{d}\right)\right)$.
Recall: $C_{b}^{-\gamma}\left(\mathbb{R}^{d}\right)=\left(C_{b}^{\gamma}\left(\mathbb{R}^{d}\right)\right)^{*}$ for $\gamma \geqslant 0$.
General recipe for solving: Cardaliaguet-Delarue-Lasry-Lions (Δ on torus).

Linearized system - comments

- On the proof:
- Approximate the data and use the Leray-Schauder theorem.

Problem: since we are in the whole space, ρ_{0} and c may be so bad (e.g. Banach limits) that convolving with a C_{c}^{∞} function does not regularize them.
Solution: Use the so-called measure representable functionals.

Linearized system - comments

- On the proof:
- Approximate the data and use the Leray-Schauder theorem.

Problem: since we are in the whole space, ρ_{0} and c may be so bad (e.g. Banach limits) that convolving with a C_{c}^{∞} function does not regularize them.
Solution: Use the so-called measure representable functionals.

- Need compactness in negative Hölder spaces. Arzelà-Ascoli does not work because we do not have $\|\cdot\|_{C^{-\gamma}} \lesssim\|\cdot\|_{\infty}$. Instead we use $\|\cdot\|_{C^{-\gamma}} \leqslant\|\cdot\|_{L^{1}}$ and Kolmogorov-Riesz.

Linearized system - comments

- On the proof:
- Approximate the data and use the Leray-Schauder theorem.

Problem: since we are in the whole space, ρ_{0} and c may be so bad (e.g. Banach limits) that convolving with a C_{c}^{∞} function does not regularize them.
Solution: Use the so-called measure representable functionals.

- Need compactness in negative Hölder spaces. Arzelà-Ascoli does not work because we do not have $\|\cdot\|_{C^{-\gamma}} \lesssim\|\cdot\|_{\infty}$. Instead we use $\|\cdot\|_{C^{-\gamma}} \leqslant\|\cdot\|_{L^{1}}$ and Kolmogorov-Riesz.
- Why is the data so bad?

Linearized system - comments

- On the proof:
- Approximate the data and use the Leray-Schauder theorem.

Problem: since we are in the whole space, ρ_{0} and c may be so bad (e.g. Banach limits) that convolving with a C_{c}^{∞} function does not regularize them.
Solution: Use the so-called measure representable functionals.

- Need compactness in negative Hölder spaces. Arzelà-Ascoli does not work because we do not have $\|\cdot\|_{C^{-\gamma}} \lesssim\|\cdot\|_{\infty}$. Instead we use $\|\cdot\|_{C^{-\gamma}} \leqslant\|\cdot\|_{L^{1}}$ and Kolmogorov-Riesz.
- Why is the data so bad? If (u, m) solves (MFG), then $\frac{\delta U}{\delta m}$ is obtained from:

$$
\begin{cases}-\partial_{t} z-\mathcal{L} z+D_{p} H(x, D u) \cdot D z=\left\langle\frac{\delta F}{\delta m}(x, m(t)), \rho(t)\right\rangle & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ \partial_{t} \rho-\mathcal{L}^{*} \rho-\operatorname{div}\left(\rho D_{p} H(x, D u)\right)-\operatorname{div}\left(m D_{p p}^{2} H(x, D u) D z\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d} \\ z(T, x)=\left\langle\frac{\delta G}{\delta m}(x, m(T)), \rho(T)\right\rangle, \quad \rho\left(t_{0}\right)=\rho_{0} & \end{cases}
$$

Linearized system - comments

- On the proof:
- Approximate the data and use the Leray-Schauder theorem.

Problem: since we are in the whole space, ρ_{0} and c may be so bad (e.g. Banach limits) that convolving with a C_{c}^{∞} function does not regularize them.
Solution: Use the so-called measure representable functionals.

- Need compactness in negative Hölder spaces. Arzelà-Ascoli does not work because we do not have $\|\cdot\|_{C^{-\gamma}} \lesssim\|\cdot\|_{\infty}$. Instead we use $\|\cdot\|_{C^{-\gamma}} \leqslant\|\cdot\|_{L^{1}}$ and Kolmogorov-Riesz.
- Why is the data so bad? If (u, m) solves (MFG), then $\frac{\delta U}{\delta m}$ is obtained from:

$$
\left\{\begin{array}{cc}
-\partial_{t} z-\mathcal{L} z+D_{p} H(x, D u) \cdot D z=\left\langle\frac{\delta F}{\delta m}(x, m(t)), \rho(t)\right\rangle & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \\
\partial_{t} \rho-\mathcal{L}^{*} \rho-\operatorname{div}\left(\rho D_{p} H(x, D u)\right)-\operatorname{div}\left(m D_{p p}^{2} H(x, D u) D z\right)=0 & \text { in }\left(t_{0}, T\right) \times \mathbb{R}^{d}, \\
z(T, x)=\left\langle\frac{\delta G}{\delta m}(x, m(T)), \rho(T)\right\rangle, & \rho\left(t_{0}\right)=\rho_{0} \\
\rho_{0}=\delta_{y} & \Longrightarrow \quad z\left(t_{0}, x\right)=\frac{\delta U}{\delta m}\left(t_{0}, x, m_{0}, y\right), \\
\rho_{0}=\partial^{\alpha} \delta_{y} & \Longrightarrow \quad z\left(t_{0}, x\right)=\partial_{y}^{\alpha} \frac{\delta U}{\delta m}\left(t_{0}, x, m_{0}, y\right)
\end{array}\right.
$$

In the worst case we use two derivatives in y, so $|\alpha|=2 \Longrightarrow \rho_{0} \in C_{b}^{-2}\left(\mathbb{R}^{d}\right)$.

Linearized system - more comments

- Irregular c appear while studying continuity in m_{0} and t_{0} of $\frac{\delta U}{\delta m}, D_{y} \frac{\delta U}{\delta m}, D_{y}^{2} \frac{\delta U}{\delta m}$.

Linearized system - more comments

- Irregular c appear while studying continuity in m_{0} and t_{0} of $\frac{\delta U}{\delta m}, D_{y} \frac{\delta U}{\delta m}, D_{y}^{2} \frac{\delta U}{\delta m}$.
- Ricciardi: in the linearized system result use L^{1} instead of a uniform bound in time for $c \Longrightarrow$ less regularity required from the data.

Linearized system - more comments

- Irregular c appear while studying continuity in m_{0} and t_{0} of $\frac{\delta U}{\delta m}, D_{y} \frac{\delta U}{\delta m}, D_{y}^{2} \frac{\delta U}{\delta m}$.
- Ricciardi: in the linearized system result use L^{1} instead of a uniform bound in time for $c \Longrightarrow$ less regularity required from the data.
- To apply and improve/fix that idea we prove the following result.

Lemma

Assume that (K) holds, $V_{1} \in C\left([0, T], C_{b}^{2}\left(\mathbb{R}^{d}\right)\right), V_{2} \in C\left([0, T],\left(\mathcal{M}\left(\mathbb{R}^{d}\right), d_{0}\right)\right)$ and bounded in total variation, and $\rho_{0} \in C_{b}^{-2}\left(\mathbb{R}^{d}\right)$. Then the problem

$$
\left\{\begin{array}{l}
\partial_{t} \rho-\mathcal{L} \rho-\operatorname{div}\left(\rho V_{1}\right)-\operatorname{div}\left(V_{2}\right)=0, \quad \text { on }(0, T) \times \mathbb{R}^{d}, \\
\rho(0)=\rho_{0} .
\end{array}\right.
$$

has a distributional solution ρ such that $\rho \in C\left((0, T], C_{b}^{\gamma-2}\left(\mathbb{R}^{d}\right)\right) \cap B\left([0, T], C_{b}^{-2}\left(\mathbb{R}^{d}\right)\right)$ for every $\gamma \in(0, \alpha)$ and

$$
\sup _{t \in(0, T]}\left\|t^{\frac{\gamma}{\alpha}} \rho(t)\right\|_{C_{b}^{\gamma-2}\left(\mathbb{R}^{d}\right)} \leqslant C\left(V_{1}\right)\left(\sup _{t \in[0, T]}\left\|V_{2}(t)\right\|_{T V}+\left\|\rho_{0}\right\|_{C_{b}^{-2}\left(\mathbb{R}^{d}\right)}\right) .
$$

If ρ_{0} is measure representable, then $\rho(t)$ is as well for all $t \in[0, T]$.

Thank you for your attention!

Existence for the master equation

Recall that $U\left(t_{0}, x, m_{0}\right)=u\left(t_{0}, x\right)$ where (u, m) solves the system (MFG). For $h>0$,

$$
\begin{aligned}
\frac{U\left(t_{0}+h, x, m_{0}\right)-U\left(t_{0}, x, m_{0}\right)}{h} & =\frac{U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)-U\left(t_{0}, x, m_{0}\right)}{h} \\
& -\frac{U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)-U\left(t_{0}+h, x, m_{0}\right)}{h}=I_{1}^{h}-I_{2}^{h}
\end{aligned}
$$

Existence for the master equation

Recall that $U\left(t_{0}, x, m_{0}\right)=u\left(t_{0}, x\right)$ where (u, m) solves the system (MFG). For $h>0$,

$$
\begin{aligned}
\frac{U\left(t_{0}+h, x, m_{0}\right)-U\left(t_{0}, x, m_{0}\right)}{h} & =\frac{U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)-U\left(t_{0}, x, m_{0}\right)}{h} \\
& -\frac{U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)-U\left(t_{0}+h, x, m_{0}\right)}{h}=I_{1}^{h}-I_{2}^{h}
\end{aligned}
$$

Note that $U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)=u\left(t_{0}+h, x\right)$, hence by $\mathrm{H}-\mathrm{J}$,

$$
I_{1}^{h} \underset{h \rightarrow 0^{+}}{\longrightarrow} \partial_{t} u\left(t_{0}, x\right)=-\mathcal{L} u+H(x, D u)-F(x, m)
$$

Existence for the master equation

Recall that $U\left(t_{0}, x, m_{0}\right)=u\left(t_{0}, x\right)$ where (u, m) solves the system (MFG). For $h>0$,

$$
\begin{aligned}
\frac{U\left(t_{0}+h, x, m_{0}\right)-U\left(t_{0}, x, m_{0}\right)}{h} & =\frac{U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)-U\left(t_{0}, x, m_{0}\right)}{h} \\
& -\frac{U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)-U\left(t_{0}+h, x, m_{0}\right)}{h}=I_{1}^{h}-I_{2}^{h}
\end{aligned}
$$

Note that $U\left(t_{0}+h, x, m\left(t_{0}+h\right)\right)=u\left(t_{0}+h, x\right)$, hence by $\mathrm{H}-\mathrm{J}$,

$$
I_{1}^{h} \underset{h \rightarrow 0^{+}}{\longrightarrow} \partial_{t} u\left(t_{0}, x\right)=-\mathcal{L} u+H(x, D u)-F(x, m)
$$

By the fundamental theorem of calculus for m and F-P $\left(\partial_{t} m-\mathcal{L}^{*} m-\operatorname{div}\left(m D_{p} H(x, D u)\right)=0\right)$,

$$
\begin{aligned}
& I_{2}^{h}=\frac{1}{h} \int_{0}^{1} \int_{\mathbb{R}^{d}} \overbrace{\frac{\delta U}{\delta m}\left(t_{0}+h, x, \lambda m\left(t_{0}+h\right)+(1-\lambda) m_{0}, y\right)}^{t \text { independent, use as test function in F-P }}\left(m\left(t_{0}+h\right)-m_{0}\right)(d y) d \lambda \\
& \underset{h \rightarrow 0^{+}}{\longrightarrow} \int_{\mathbb{R}^{d}}\left(H_{p}\left(y, D_{y} U(t, y, m)\right) D_{y} \frac{\delta U}{\delta m}(t, x, m, y)-\mathcal{L}_{y} \frac{\delta U}{\delta m}(t, x, m, y)\right) m(d y)
\end{aligned}
$$

Uniqueness

The uniqueness proof consists in showing that every solution V of $M E$ can be related to the MFG system:

Uniqueness

The uniqueness proof consists in showing that every solution V of ME can be related to the MFG system:
(1) For $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ construct a flow of measures $(\tilde{m}(t))$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \widetilde{m}(t)-\mathcal{L}^{*} \widetilde{m}(t)-\operatorname{div}\left(\widetilde{m}(t) D_{p} H\left(x, D_{x} V(t, x, \widetilde{m}(t))\right)=0, \quad \text { in }\left[t_{0}, T\right] \times \mathbb{R}^{d},\right. \\
\widetilde{m}\left(t_{0}\right)=m_{0}
\end{array}\right.
$$

Uniqueness

The uniqueness proof consists in showing that every solution V of ME can be related to the MFG system:
(1) For $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ construct a flow of measures $(\tilde{m}(t))$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \widetilde{m}(t)-\mathcal{L}^{*} \widetilde{m}(t)-\operatorname{div}\left(\widetilde{m}(t) D_{p} H\left(x, D_{x} V(t, x, \widetilde{m}(t))\right)=0, \quad \text { in }\left[t_{0}, T\right] \times \mathbb{R}^{d}\right. \\
\widetilde{m}\left(t_{0}\right)=m_{0}
\end{array}\right.
$$

(2) Let $v(t, x)=V(t, x, \widetilde{m}(t))$ and use the master equation to show that v solves $\mathrm{H}-\mathrm{J}$.

Uniqueness

The uniqueness proof consists in showing that every solution V of ME can be related to the MFG system:
(1) For $m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ construct a flow of measures $(\widetilde{m}(t))$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \widetilde{m}(t)-\mathcal{L}^{*} \widetilde{m}(t)-\operatorname{div}\left(\widetilde{m}(t) D_{p} H\left(x, D_{x} V(t, x, \widetilde{m}(t))\right)=0, \quad \text { in }\left[t_{0}, T\right] \times \mathbb{R}^{d}\right. \\
\widetilde{m}\left(t_{0}\right)=m_{0}
\end{array}\right.
$$

(2) Let $v(t, x)=V(t, x, \tilde{m}(t))$ and use the master equation to show that v solves $\mathrm{H}-\mathrm{J}$.
(3) Then (v, \widetilde{m}) solves the same MFG system as (u, m), so by uniqueness for (MFG) $(u, m)=(v, \tilde{m})$ and therefore $V=U$.

