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Part |: Classical mean field games
and their heuristic derivation



“Classical” mean field games

—0iu = Au+ H(Vu) + f(m) on [0,T] x RY,
u(T) = g(m(T)) on R%,
Oym = Am + div(H' (Vu) m) on [0, 7] x R4,

m(0) = mog on R

® Agents control (individually, but interchangeably) the drift of a Wiener process

describing their positions.



Controlled Wiener process

e Controlled Wiener process Y{"®7 =z 4+ W® 4 (s, )(s — t) — at each point
(s,-) we choose a direction v, i.e. v: (s,-) — A C R%

® Y7 is a Markov process associated with the families of operators PY and

transition probabilities p7 (¢, z,s, A) = P(Y?"™7 € A),
P p(x) = /Rd o(y) P (t, 2,5, dy) = ES(Y™7), ¢ € Cp(R?).

® We may compute the “generator”

lim Pt’y+h7t¢(w) - d)(.’E)

=A . .
Jim h u+v(t,z) - Vu



Dynamic programming
Total gain functional
T
J(t,z,y) = E(/ Z(s, Yo 'y) ds + g(thJI"Y)).
t

Value function u (the optimal value of J) is given by

u(t,z) = sup J(t, z,7).

v

Dynamic programming principle — assume the “tail” is already optimized

t+h
’ll,(?f7 :E) = Sng(Z [(S7YSLZ,"/7,Y) ds + ’LL(t +h, tha’»zh”y)>

In the limit we get the Bellman equation

— Otu = Au+ sup ('y -Vu + £(t, z, 'y)),
y(t,x)EA

1



Hamilton—Jacobi—Bellman

We now assume that

f(tva:’Y) = 7L(’Y)+f(tvm)7 (2)

where L : R® — R U {oo} is a convex, lower-semicontinuous function.

Legendre—Fenchel transform H of L (v disappears, but we will need it later)

H(z) = sup (Cz — L(C)),

CERd
The Bellman equation becomes
—du = Au+ H(Vu) + f(t,z),
u(T,z) = Eg(YqT’z) = g(x).

Backward-in-time evolution equation. Because of A it has unique, smooth

solutions.



Fokker—Planck—Kolmogorov

Under reasonable assumptions on L, by the properties of LF transform, we have

(the optimal control) v* = VH(Vu) for every (t,x) € [0,00) x RY

For initial condition m(0) = mo € P(R?), input distribution m of Y satisfies
[ e@msndn) = [ [ o) o+ hdymi.do)
Rd Rd JRd
This leads to
Ot / p(t,x)m(t,dz) = / (AL,D + VH(Vu)Vep + 8t<p(t,x)) m(t, dx).
Rd Rd
By duality m is a very weak solution of
Orm = Au +div (VH(Vu)m), m(0) = mo,

m describes the joint distribution of all players, each of whom moves according to

their own copy of Y — this leads to the mean field game.



Part Il: Fully nonlinear, nonlocal mean
field games



Fully nonlinear (parabolic, local/nonlocal) MFG

—0iu = F(Lu) + f(m) on [0,T] x RY,
u(T) = g(m(T)) on R%,
Om = L*(F'(Lu) m) on [0,T] x RY,

m(0) = mog on RY.

Agents control the time rate 0 of any Lévy process (L)

0 is a stochastic process such that 6(t) is a stopping time
“Local-in-time generator” ¢’ (t)L — not Lévy, but Markov (inhomog.)
Same for any number of Lévy processes

To get the classical model: A, dz1, ...dxgq, —dz1,... — dxg



Lévy processes

Definition

A stochastic process X = {X; : ¢ > 0} with law P on R[9:°°) is a Lévy process if

X has P-almost surely right-continuous paths with left-limits.
P(Xo=0)=1
X¢ — Xs = X¢—s in distribution

Xt — X, is independent of {X,: r < s}

A Lévy process is a Wiener process if it has P-almost surely continuous paths.

Lévy—Khintchine—Courrége formula for the generator

LP(z) = - Vp(x)+tr (aaTD2¢(x))+/Rd <¢(x+z)—¢(x)—]131 (2) z~V¢(:L‘)> v(dz).

Order 20 & L : C20ta — O«
Non-degenerate < v < |2| =927 dz

Degenerate < v < |2|~9727 dz (or analogue if singular)



Controlled Lévy process

t,x

0(s)

0(s) is an random time change, i.e. a stochastic process which is almost surely

Controlled Lévy process Y7 =z + X

non-negative, non-decreasing, and is a finite stopping time for each fixed s.

We assume 0 is absolutely continuous, i.e. there exists an Fs-adapted process 6’
such that 6(s) — 0(0) = [ 6'(7) dr.

Then (with technical assumptions on ), Y7 is Markov

Operators P and transition probabilities p7 (¢, z, s, A) = P(Y2™7 € A)

PL0ta) = [ 097 (s dy) = Bo(YE™), 6 € CymY.

We may compute the “generator” using Dynkin's formula

Plonsd(@) = 6(@) _ Bo(V5") = (@) _ 5( [ cotxtn ar)
h h B h Ji "

- E(% /t T ee(xte) e (r) df) S0/ (1) Lo()



Mean field game

In the same way as before we obtain the pairs of equations
—dtu = F(Lu) + f(t,z), Oym = L*(F'(Lu)m),
(T, 2) = g(a). m(0) = mo,
L* is the formal adjoint of £

Since the process is one-dimensional, VH is replaced by F’ (Legendre—Fenchel

transform of L). F is convex.
Since the time control has non-negative values, F is also non-decreasing.

Mean field game: the cost functions f and g depend on m — individual players
move according to the joint distribution m of all players.

Each player may percieve the distribution as m, but in the equilibrium for all of
them it should overlap with m.

We put f = f(m) and g = g(m(T)) and we require §, g to be continuous,

monotone operators with values in continuous functions.



Part IIl: Well-posedness



MFG — uniqueness

® Take (mi,u1), (m2,u2) and test m's against u's

(m1(T) = ma(T)) [ur (T) = uz(T)] = (m1(0) = m2(0)) [u1(0) — u2(0)]

- /OT <m1 [Osu + F'(Lur ) Lu] — ma [Opu + F’(Cug)ﬁu]) (r)dr=...=0
® F —convex, non-decreasing, C1T7(R), §, g — monotone
® Then

m1 = L*(bm1) and mz = L*(bmz), m1(0) = m2(0) = mo,

where
F(Lui(t,z)) — F(Lua(t,z))
b(t,x) = Luy (t,x) — Luz(t, ) ’
F'(Lui(t, 2)), if Lui(t,z) = Lua(t, )

if Lui(t,z) # Lua(t,z),

® We need: uniqueness of FPK, regularity of HJB.



Fokker—Planck—Kolmogorov

— /* m n d
{Btmﬁ (bm)  on [0,T] x RY, (FPK)

m(0) = mo on R

b= F'(Lu)

be C([0,T] x RY) and b >0
Natural space to look for solutions: m € C([0, T], P(R)):

t
m(t)[p(t)] = mol#(0)] +/O m(7)[0e(T) + b(T)(Le)()] dr.
Existence: “easy” — set of solutions is convex, compact and non-empty.

Uniqueness by Holmgren: existence of classical solutions to the dual equation
drw = —bLw, w(t) =1 € CXRY)

Non-deg: b € C%, b> Kk >0, Mikulevi¢ius & Pragarauskas PotAnl4

Deg: be C%, b>0, L of order at most 20 < 775/§

If b, — b locally uniformly, then M,, — M as closed sets (K — limsup")




Hamilton—Jacobi—Bellman

— du=F(Lu)+ f(t,@)  on [0,T] x RY, (HJB)
w(T, z) = g(z) on R%.

f=fm), g= g(m(T))

Fully nonlinear equation — viscosity solutions.
Comparison principle (VS uniquely exist): Chasseigne & Jakobsen JDE17
But we need classical solutions and a bit more

Deg: for 20 < 1 the comparison principle is enough; no regularization
fgeC? ™t = du,LucC*

Non-deg, local: Schauder-Caccioppoli estimates (interior regularity)
fec/22®RY = 8, D?>ue C¥B;) (Wang CPAMO2)

Non-deg, non-local: Conjecture: Schauder estimates as above (works under
additional assumptions).

(we end up assuming f € C1® to get global boundedness, but this is bad)



MFG — existence

We use Kakutani-Glicksberg—Fan fixed point theorem (i.e. Schauder, but for

set-valued maps; solutions to FPK are compact, convex, non-empty sets)
Take p € C([0,T], P(R?)), solve HIB: K1 (k) = u.

Take u and solve FPK: K2(u) = m

Look for a fixed point of K(u) = Ka(K1(p)).

Compactness of the map is easy (Prohorov theorem)

For (semi-)continuity:

K K
Hn — f(lln)7g(ﬂn) — Lup — by = F’(,Cun) ackt s

Jweak luniform lloc uni f lloc unif lelim sup

o i), () Lu b=F'(Lu) — 25 M




Thank youl




