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Part I: Classical mean field games
and their heuristic derivation



“Classical” mean field games



−∂tu = ∆u+H(∇u) + f(m) on [0, T ]× Rd,

u(T ) = g
(
m(T )

)
on Rd,

∂tm = ∆m+ div(H′(∇u)m) on [0, T ]× Rd,

m(0) = m0 on Rd.

• Agents control (individually, but interchangeably) the drift of a Wiener process

describing their positions.



Controlled Wiener process

• Controlled Wiener process Y t,x,γ
s = x+W t,x

s + γ(s, · )(s− t) — at each point

(s, · ) we choose a direction γ, i.e. γ : (s, · ) 7→ A ⊂ Rd.

• Y γ is a Markov process associated with the families of operators P γ and

transition probabilities pγ(t, x, s, A) = P(Y t,x,γ
s ∈ A),

P γ
t,sϕ(x) =

∫
Rd
ϕ(y) pγ(t, x, s, dy) = Eϕ

(
Y t,x,γ
s

)
, ϕ ∈ Cb(Rd).

• We may compute the “generator”

lim
h→0

P γ
t+h,tϕ(x)− ϕ(x)

h
= ∆u+ γ(t, x) · ∇u.



Dynamic programming

• Total gain functional

J(t, x, γ) = E

(∫ T

t
ℓ
(
s, Y t,x,γ

s , γ
)
ds+ g

(
Y t,x,γ
T

))
.

• Value function u (the optimal value of J) is given by

u(t, x) = sup
γ
J(t, x, γ).

• Dynamic programming principle — assume the “tail” is already optimized

u(t, x) = sup
γ
E

(∫ t+h

t
ℓ
(
s, Y t,x,γ

s , γ
)
ds+ u

(
t+ h, Y t,x,γ

t+h

))
.

• In the limit we get the Bellman equation

− ∂tu = ∆u+ sup
γ(t,x)∈A

(
γ · ∇u+ ℓ(t, x, γ)

)
, (1)



Hamilton–Jacobi–Bellman

• We now assume that

ℓ(t, x, γ) = −L(γ) + f(t, x), (2)

where L : Rd → R ∪ {∞} is a convex, lower-semicontinuous function.

• Legendre–Fenchel transform H of L (γ disappears, but we will need it later)

H(z) = sup
ζ∈Rd

(
ζz − L(ζ)

)
,

• The Bellman equation becomes −∂tu = ∆u+H
(
∇u

)
+ f(t, x),

u(T, x) = Eg
(
Y T,x
T

)
= g(x).

• Backward-in-time evolution equation. Because of ∆ it has unique, smooth

solutions.



Fokker–Planck–Kolmogorov

• Under reasonable assumptions on L, by the properties of LF transform, we have

(the optimal control) γ∗ = ∇H(∇u) for every (t, x) ∈ [0,∞)× Rd

• For initial condition m(0) = m0 ∈ P(Rd), input distribution m of Y satisfies∫
Rd
φ(x)m(t+ h, dx) =

∫
Rd

∫
Rd
φ(y) pγ

∗
(t, x, t+ h, dy)m(t, dx),

• This leads to

∂t

∫
Rd
φ(t, x)m(t, dx) =

∫
Rd

(
∆φ+∇H(∇u)∇φ+ ∂tφ(t, x)

)
m(t, dx).

• By duality m is a very weak solution of

∂tm = ∆u+ div
(
∇H(∇u)m

)
, m(0) = m0,

• m describes the joint distribution of all players, each of whom moves according to

their own copy of Y – this leads to the mean field game.



Part II: Fully nonlinear, nonlocal mean
field games



Fully nonlinear (parabolic, local/nonlocal) MFG



−∂tu = F (Lu) + f(m) on [0, T ]× Rd,

u(T ) = g
(
m(T )

)
on Rd,

∂tm = L∗(F ′(Lu)m) on [0, T ]× Rd,

m(0) = m0 on Rd.

• Agents control the time rate θ of any Lévy process (L)

• θ is a stochastic process such that θ(t) is a stopping time

• “Local-in-time generator” θ′(t)L — not Lévy, but Markov (inhomog.)

• Same for any number of Lévy processes

• To get the classical model: ∆, dx1, . . . dxd, −dx1, . . .− dxd



Lévy processes

Definition
A stochastic process X = {Xt : t ≥ 0} with law P on R[0,∞) is a Lévy process if

• X has P-almost surely right-continuous paths with left-limits.

• P(X0 = 0) = 1

• Xt −Xs = Xt−s in distribution

• Xt −Xs is independent of {Xr: r ≤ s}

• A Lévy process is a Wiener process if it has P-almost surely continuous paths.

• Lévy–Khintchine–Courrège formula for the generator

Lϕ(x) = c·∇ϕ(x)+tr
(
aaTD2ϕ(x)

)
+

∫
Rd

(
ϕ(x+z)−ϕ(x)−1B1

(z) z·∇ϕ(x)
)
ν(dz).

• Order 2σ ⇔ L : C2σ+α → Cα

• Non-degenerate ⇔ ν ≍ |z|−d−2σ dz

• Degenerate ⇔ ν ≤ |z|−d−2σ dz (or analogue if singular)



Controlled Lévy process

• Controlled Lévy process Y t,x,γ
s = x+Xt,x

θ(s)

• θ(s) is an random time change, i.e. a stochastic process which is almost surely

non-negative, non-decreasing, and is a finite stopping time for each fixed s.

• We assume θ is absolutely continuous, i.e. there exists an Fs-adapted process θ′

such that θ(s)− θ(0) =
∫ s
0 θ

′(τ) dτ .

• Then (with technical assumptions on θ), Y γ is Markov

• Operators P γ and transition probabilities pγ(t, x, s, A) = P(Y t,x,γ
s ∈ A)

P γ
t,sϕ(x) =

∫
Rd
ϕ(y) pγ(t, x, s, dy) = Eϕ

(
Y t,x,γ
s

)
, ϕ ∈ Cb(Rd).

• We may compute the “generator” using Dynkin’s formula

P γ
t+h,tϕ(x)− ϕ(x)

h
=
Eϕ

(
Y t,x,γ
t+h

)
− ϕ(x)

h
= E

(
1

h

∫ θs

t
Lϕ(Xt,x

τ ) dτ

)
= E

(
1

h

∫ t+h

t
Lϕ

(
Xt,x

τ

)
θ′(τ) dτ

)
→ θ′(t)Lϕ(x)



Mean field game

• In the same way as before we obtain the pairs of equations −∂tu = F
(
Lu

)
+ f(t, x),

u(T, x) = g(x).

 ∂tm = L∗(F ′(Lu)m
)
,

m(0) = m0,

• L∗ is the formal adjoint of L

• Since the process is one-dimensional, ∇H is replaced by F ′ (Legendre–Fenchel

transform of L). F is convex.

• Since the time control has non-negative values, F is also non-decreasing.

• Mean field game: the cost functions f and g depend on m – individual players

move according to the joint distribution m of all players.

• Each player may percieve the distribution as m̂, but in the equilibrium for all of

them it should overlap with m.

• We put f = f(m) and g = g(m(T )) and we require f, g to be continuous,

monotone operators with values in continuous functions.



Part III: Well-posedness



MFG – uniqueness

• Take (m1, u1), (m2, u2) and test m’s against u’s(
m1(T )−m2(T )

)[
u1(T )− u2(T )

]
−

(
m1(0)−m2(0)

)[
u1(0)− u2(0)

]
=

∫ T

0

(
m1

[
∂tu+ F ′(Lu1)Lu

]
−m2

[
∂tu+ F ′(Lu2)Lu

])
(τ) dτ = . . . = 0

• F —convex, non-decreasing, C1+γ(R), f, g — monotone

• Then

m1 = L∗(bm1) and m2 = L∗(bm2), m1(0) = m2(0) = m0,

where

b(t, x) =


F
(
Lu1(t, x)

)
− F

(
Lu2(t, x)

)
Lu1(t, x)− Lu2(t, x)

, if Lu1(t, x) ̸= Lu2(t, x),

F ′(Lu1(t, x)), if Lu1(t, x) = Lu2(t, x)

• We need: uniqueness of FPK, regularity of HJB.



Fokker–Planck–Kolmogorov

∂tm = L∗(bm) on [0, T ]× Rd,

m(0) = m0 on Rd.
(FPK)

b = F ′(Lu)

• b ∈ C
(
[0, T ]× Rd

)
and b ≥ 0

• Natural space to look for solutions: m ∈ C
(
[0, T ],P(Rd)

)
:

m(t)[ϕ(t)] = m0[ϕ(0)] +

∫ t

0
m(τ)

[
∂tϕ(τ) + b(τ)(Lϕ)(τ)

]
dτ.

• Existence: “easy” – set of solutions is convex, compact and non-empty.

• Uniqueness by Holmgren: existence of classical solutions to the dual equation

∂tw = −bLw, w(t) = ψ ∈ C∞
c (Rd)

• Non-deg: b ∈ Cα, b ≥ κ > 0, Mikulevičius & Pragarauskas PotAn14

• Deg: b ∈ Cα, b ≥ 0, L of order at most 2σ < 7−
√
33

4

• If bn → b locally uniformly, then Mn → M as closed sets (“K − lim sup”)



Hamilton–Jacobi–Bellman

− ∂tu = F (Lu) + f(t, x) on [0, T ]× Rd,

u(T, x) = g(x) on Rd.
(HJB)

f = f(m), g = g
(
m(T )

)
• Fully nonlinear equation → viscosity solutions.
• Comparison principle (VS uniquely exist): Chasseigne & Jakobsen JDE17
• But we need classical solutions and a bit more
• Deg: for 2σ < 1 the comparison principle is enough; no regularization

f, g ∈ C2σ+α ⇒ ∂tu,Lu ∈ Cα

• Non-deg, local: Schauder–Caccioppoli estimates (interior regularity)

f ∈ Cα/2,α(Rd) ⇒ ∂tu,D
2u ∈ Cα(B1) (Wang CPAM92)

• Non-deg, non-local: Conjecture: Schauder estimates as above (works under

additional assumptions).
• (we end up assuming f ∈ C1.α to get global boundedness, but this is bad)



MFG – existence

• We use Kakutani–Glicksberg–Fan fixed point theorem (i.e. Schauder, but for

set-valued maps; solutions to FPK are compact, convex, non-empty sets)

• Take µ ∈ C
(
[0, T ],P(Rd)

)
, solve HJB: K1(µ) = u.

• Take u and solve FPK: K2(u) = m

• Look for a fixed point of K(µ) = K2(K1(µ)).

• Compactness of the map is easy (Prohorov theorem)

• For (semi-)continuity:

µn f(µn), g(µn) Lun bn = F ′(Lun) Mn

µ f(µ), g(µ) Lu b = F ′(Lu) M
weak

K1

uniform loc unif loc unif

K2

K−lim sup

K1 K2



Thank you!


