Lévy processes, controlled time rate and mean field games

Miłosz Krupski
University of Wrocław

Joint work with Indranil Chowdhury and Espen Jakobsen

NTNU, May 2023

Part I: Classical mean field games and their heuristic derivation

"Classical" mean field games

$$
\left\{\begin{aligned}
-\partial_{t} u & =\Delta u+H(\nabla u)+\mathfrak{f}(m) & & \text { on }[0, T] \times \mathbb{R}^{d} \\
u(T) & =\mathfrak{g}(m(T)) & & \text { on } \mathbb{R}^{d}, \\
\partial_{t} m & =\Delta m+\operatorname{div}\left(H^{\prime}(\nabla u) m\right) & & \text { on }[0, T] \times \mathbb{R}^{d} \\
m(0) & =m_{0} & & \text { on } \mathbb{R}^{d} .
\end{aligned}\right.
$$

- Agents control (individually, but interchangeably) the drift of a Wiener process describing their positions.

Controlled Wiener process

- Controlled Wiener process $Y_{s}^{t, x, \gamma}=x+W_{s}^{t, x}+\gamma(s, \cdot)(s-t)$ - at each point (s, \cdot) we choose a direction γ, i.e. $\gamma:(s, \cdot) \mapsto \mathcal{A} \subset \mathbb{R}^{d}$.
- Y^{γ} is a Markov process associated with the families of operators P^{γ} and transition probabilities $p^{\gamma}(t, x, s, A)=\mathrm{P}\left(Y_{s}^{t, x, \gamma} \in A\right)$,

$$
P_{t, s}^{\gamma} \phi(x)=\int_{\mathbb{R}^{d}} \phi(y) p^{\gamma}(t, x, s, d y)=E \phi\left(Y_{s}^{t, x, \gamma}\right), \quad \phi \in C_{b}\left(\mathbb{R}^{d}\right)
$$

- We may compute the "generator"

$$
\lim _{h \rightarrow 0} \frac{P_{t+h, t}^{\gamma} \phi(x)-\phi(x)}{h}=\Delta u+\gamma(t, x) \cdot \nabla u .
$$

Dynamic programming

- Total gain functional

$$
J(t, x, \gamma)=E\left(\int_{t}^{T} \ell\left(s, Y_{s}^{t, x, \gamma}, \gamma\right) d s+g\left(Y_{T}^{t, x, \gamma}\right)\right)
$$

- Value function u (the optimal value of J) is given by

$$
u(t, x)=\sup _{\gamma} J(t, x, \gamma)
$$

- Dynamic programming principle - assume the "tail" is already optimized

$$
u(t, x)=\sup _{\gamma} E\left(\int_{t}^{t+h} \ell\left(s, Y_{s}^{t, x, \gamma}, \gamma\right) d s+u\left(t+h, Y_{t+h}^{t, x, \gamma}\right)\right)
$$

- In the limit we get the Bellman equation

$$
\begin{equation*}
-\partial_{t} u=\Delta u+\sup _{\gamma(t, x) \in \mathcal{A}}(\gamma \cdot \nabla u+\ell(t, x, \gamma)) \tag{1}
\end{equation*}
$$

Hamilton-Jacobi-Bellman

- We now assume that

$$
\begin{equation*}
\ell(t, x, \gamma)=-L(\gamma)+f(t, x) \tag{2}
\end{equation*}
$$

where $L: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ is a convex, lower-semicontinuous function.

- Legendre-Fenchel transform H of L (γ disappears, but we will need it later)

$$
H(z)=\sup _{\zeta \in \mathbb{R}^{d}}(\zeta z-L(\zeta))
$$

- The Bellman equation becomes

$$
\left\{\begin{aligned}
-\partial_{t} u & =\Delta u+H(\nabla u)+f(t, x), \\
u(T, x) & =E g\left(Y_{T}^{T, x}\right)=g(x)
\end{aligned}\right.
$$

- Backward-in-time evolution equation. Because of Δ it has unique, smooth solutions.

Fokker-Planck-Kolmogorov

- Under reasonable assumptions on L, by the properties of LF transform, we have (the optimal control) $\gamma^{*}=\nabla H(\nabla u)$ for every $(t, x) \in[0, \infty) \times \mathbb{R}^{d}$
- For initial condition $m(0)=m_{0} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$, input distribution m of Y satisfies

$$
\int_{\mathbb{R}^{d}} \varphi(x) m(t+h, d x)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \varphi(y) p^{\gamma^{*}}(t, x, t+h, d y) m(t, d x),
$$

- This leads to

$$
\partial_{t} \int_{\mathbb{R}^{d}} \varphi(t, x) m(t, d x)=\int_{\mathbb{R}^{d}}\left(\Delta \varphi+\nabla H(\nabla u) \nabla \varphi+\partial_{t} \varphi(t, x)\right) m(t, d x)
$$

- By duality m is a very weak solution of

$$
\partial_{t} m=\Delta u+\operatorname{div}(\nabla H(\nabla u) m), \quad m(0)=m_{0}
$$

- m describes the joint distribution of all players, each of whom moves according to their own copy of Y - this leads to the mean field game.

Part II: Fully nonlinear, nonlocal mean field games

Fully nonlinear (parabolic, local/nonlocal) MFG

$$
\left\{\begin{aligned}
-\partial_{t} u & =F(\mathcal{L} u)+\mathfrak{f}(m) & & \text { on }[0, T] \times \mathbb{R}^{d} \\
u(T) & =\mathfrak{g}(m(T)) & & \text { on } \mathbb{R}^{d}, \\
\partial_{t} m & =\mathcal{L}^{*}\left(F^{\prime}(\mathcal{L} u) m\right) & & \text { on }[0, T] \times \mathbb{R}^{d} \\
m(0) & =m_{0} & & \text { on } \mathbb{R}^{d} .
\end{aligned}\right.
$$

- Agents control the time rate θ of any Lévy process (\mathcal{L})
- θ is a stochastic process such that $\theta(t)$ is a stopping time
- "Local-in-time generator" $\theta^{\prime}(t) \mathcal{L}$ — not Lévy, but Markov (inhomog.)
- Same for any number of Lévy processes
- To get the classical model: $\Delta, d x_{1}, \ldots d x_{d},-d x_{1}, \ldots-d x_{d}$

Lévy processes

Definition

A stochastic process $X=\left\{X_{t}: t \geq 0\right\}$ with law P on $\mathbb{R}^{[0, \infty)}$ is a Lévy process if

- X has P -almost surely right-continuous paths with left-limits.
- $\mathrm{P}\left(X_{0}=0\right)=1$
- $X_{t}-X_{s}=X_{t-s}$ in distribution
- $X_{t}-X_{s}$ is independent of $\left\{X_{r}: r \leq s\right\}$
- A Lévy process is a Wiener process if it has P-almost surely continuous paths.
- Lévy-Khintchine-Courrège formula for the generator

$$
\mathcal{L} \phi(x)=c \cdot \nabla \phi(x)+\operatorname{tr}\left(a a^{T} D^{2} \phi(x)\right)+\int_{\mathbb{R}^{d}}\left(\phi(x+z)-\phi(x)-\mathbb{1}_{B_{1}}(z) z \cdot \nabla \phi(x)\right) \nu(d z) .
$$

- Order $2 \sigma \Leftrightarrow \mathcal{L}: C^{2 \sigma+\alpha} \rightarrow C^{\alpha}$
- Non-degenerate $\Leftrightarrow \nu \asymp|z|^{-d-2 \sigma} d z$
- Degenerate $\Leftrightarrow \nu \leq|z|^{-d-2 \sigma} d z$ (or analogue if singular)

Controlled Lévy process

- Controlled Lévy process $Y_{s}^{t, x, \gamma}=x+X_{\theta(s)}^{t, x}$
- $\theta(s)$ is an random time change, i.e. a stochastic process which is almost surely non-negative, non-decreasing, and is a finite stopping time for each fixed s.
- We assume θ is absolutely continuous, i.e. there exists an \mathcal{F}_{s}-adapted process θ^{\prime} such that $\theta(s)-\theta(0)=\int_{0}^{s} \theta^{\prime}(\tau) d \tau$.
- Then (with technical assumptions on θ), Y^{γ} is Markov
- Operators P^{γ} and transition probabilities $p^{\gamma}(t, x, s, A)=\mathrm{P}\left(Y_{s}^{t, x, \gamma} \in A\right)$

$$
P_{t, s}^{\gamma} \phi(x)=\int_{\mathbb{R}^{d}} \phi(y) p^{\gamma}(t, x, s, d y)=E \phi\left(Y_{s}^{t, x, \gamma}\right), \quad \phi \in C_{b}\left(\mathbb{R}^{d}\right) .
$$

- We may compute the "generator" using Dynkin's formula

$$
\begin{aligned}
\frac{P_{t+h, t}^{\gamma} \phi(x)-\phi(x)}{h}= & \frac{E \phi\left(Y_{t+h}^{t, x, \gamma}\right)-\phi(x)}{h}=E\left(\frac{1}{h} \int_{t}^{\theta_{s}} \mathcal{L} \phi\left(X_{\tau}^{t, x}\right) d \tau\right) \\
& =E\left(\frac{1}{h} \int_{t}^{t+h} \mathcal{L} \phi\left(X_{\tau}^{t, x}\right) \theta^{\prime}(\tau) d \tau\right) \rightarrow \theta^{\prime}(t) \mathcal{L} \phi(x)
\end{aligned}
$$

Mean field game

- In the same way as before we obtain the pairs of equations

$$
\left\{\begin{array} { r l }
{ - \partial _ { t } u } & { = F (\mathcal { L } u) + f (t , x) , } \\
{ u (T , x) } & { = g (x) . }
\end{array} \left\{\begin{array}{rl}
\partial_{t} m & =\mathcal{L}^{*}\left(F^{\prime}(\mathcal{L} u) m\right), \\
m(0) & =m_{0},
\end{array}\right.\right.
$$

- \mathcal{L}^{*} is the formal adjoint of \mathcal{L}
- Since the process is one-dimensional, ∇H is replaced by F^{\prime} (Legendre-Fenchel transform of L). F is convex.
- Since the time control has non-negative values, F is also non-decreasing.
- Mean field game: the cost functions f and g depend on m - individual players move according to the joint distribution m of all players.
- Each player may percieve the distribution as \widehat{m}, but in the equilibrium for all of them it should overlap with m.
- We put $f=\mathfrak{f}(m)$ and $g=\mathfrak{g}(m(T))$ and we require $\mathfrak{f}, \mathfrak{g}$ to be continuous, monotone operators with values in continuous functions.

Part III: Well-posedness

MFG - uniqueness

- Take $\left(m_{1}, u_{1}\right),\left(m_{2}, u_{2}\right)$ and test m 's against u 's

$$
\begin{aligned}
& \left(m_{1}(T)-m_{2}(T)\right)\left[u_{1}(T)-u_{2}(T)\right]-\left(m_{1}(0)-m_{2}(0)\right)\left[u_{1}(0)-u_{2}(0)\right] \\
& =\int_{0}^{T}\left(m_{1}\left[\partial_{t} u+F^{\prime}\left(\mathcal{L} u_{1}\right) \mathcal{L} u\right]-m_{2}\left[\partial_{t} u+F^{\prime}\left(\mathcal{L} u_{2}\right) \mathcal{L} u\right]\right)(\tau) d \tau=\ldots=0
\end{aligned}
$$

- F-convex, non-decreasing, $C^{1+\gamma}(\mathbb{R}), \mathfrak{f}, \mathfrak{g}$ - monotone
- Then

$$
m_{1}=\mathcal{L}^{*}\left(b m_{1}\right) \text { and } m_{2}=\mathcal{L}^{*}\left(b m_{2}\right), \quad m_{1}(0)=m_{2}(0)=m_{0}
$$

where

$$
b(t, x)= \begin{cases}\frac{F\left(\mathcal{L} u_{1}(t, x)\right)-F\left(\mathcal{L} u_{2}(t, x)\right)}{\mathcal{L} u_{1}(t, x)-\mathcal{L} u_{2}(t, x)}, & \text { if } \mathcal{L} u_{1}(t, x) \neq \mathcal{L} u_{2}(t, x) \\ F^{\prime}\left(\mathcal{L} u_{1}(t, x)\right), & \text { if } \mathcal{L} u_{1}(t, x)=\mathcal{L} u_{2}(t, x)\end{cases}
$$

- We need: uniqueness of FPK, regularity of HJB.

Fokker-Planck-Kolmogorov

$$
\begin{align*}
& \left\{\begin{array}{lr}
\partial_{t} m=\mathcal{L}^{*}(b m) & \text { on }[0, T] \times \mathbb{R}^{d}, \\
m(0)=m_{0} & \text { on } \mathbb{R}^{d} .
\end{array}\right. \tag{FPK}\\
& b=F^{\prime}(\mathcal{L} u)
\end{align*}
$$

- $b \in C\left([0, T] \times \mathbb{R}^{d}\right)$ and $b \geq 0$
- Natural space to look for solutions: $m \in C\left([0, T], \mathcal{P}\left(\mathbb{R}^{d}\right)\right)$:

$$
m(t)[\phi(t)]=m_{0}[\phi(0)]+\int_{0}^{t} m(\tau)\left[\partial_{t} \phi(\tau)+b(\tau)(\mathcal{L} \phi)(\tau)\right] d \tau
$$

- Existence: "easy" - set of solutions is convex, compact and non-empty.
- Uniqueness by Holmgren: existence of classical solutions to the dual equation

$$
\partial_{t} w=-b \mathcal{L} w, \quad w(t)=\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

- Non-deg: $b \in C^{\alpha}, \quad b \geq \kappa>0$, Mikulevičius \& Pragarauskas PotAn14
- Deg: $b \in C^{\alpha}, b \geq 0, \quad \mathcal{L}$ of order at most $2 \sigma<\frac{7-\sqrt{33}}{4}$
- If $b_{n} \rightarrow b$ locally uniformly, then $\mathcal{M}_{n} \rightarrow \mathcal{M}$ as closed sets (" $K-\lim$ sup")

Hamilton-Jacobi-Bellman

$$
\left\{\begin{array}{lr}
-\partial_{t} u=F(\mathcal{L} u)+f(t, x) & \text { on }[0, T] \times \mathbb{R}^{d} \tag{HJB}\\
u(T, x)=g(x) & \text { on } \mathbb{R}^{d}
\end{array}\right.
$$

- Fully nonlinear equation \rightarrow viscosity solutions.
- Comparison principle (VS uniquely exist): Chasseigne \& Jakobsen JDE17
- But we need classical solutions and a bit more
- Deg: for $2 \sigma<1$ the comparison principle is enough; no regularization

$$
f, g \in C^{2 \sigma+\alpha} \quad \Rightarrow \quad \partial_{t} u, \mathcal{L} u \in C^{\alpha}
$$

- Non-deg, local: Schauder-Caccioppoli estimates (interior regularity)

$$
f \in C^{\alpha / 2, \alpha}\left(\mathbb{R}^{d}\right) \quad \Rightarrow \quad \partial_{t} u, D^{2} u \in C^{\alpha}\left(B_{1}\right) \quad \text { (Wang CPAM92) }
$$

- Non-deg, non-local: Conjecture: Schauder estimates as above (works under additional assumptions).
- (we end up assuming $f \in C^{1 . \alpha}$ to get global boundedness, but this is bad)

MFG - existence

- We use Kakutani-Glicksberg-Fan fixed point theorem (i.e. Schauder, but for set-valued maps; solutions to FPK are compact, convex, non-empty sets)
- Take $\mu \in C\left([0, T], \mathcal{P}\left(\mathbb{R}^{d}\right)\right)$, solve HJB: $\mathcal{K}_{1}(\mu)=u$.
- Take u and solve FPK: $\mathcal{K}_{2}(u)=m$
- Look for a fixed point of $\mathcal{K}(\mu)=\mathcal{K}_{2}\left(\mathcal{K}_{1}(\mu)\right)$.
- Compactness of the map is easy (Prohorov theorem)
- For (semi-)continuity:

$$
\begin{aligned}
& \mu_{n} \stackrel{\mathcal{K}_{1}}{\longmapsto} \mathfrak{f}\left(\mu_{n}\right), \mathfrak{g}\left(\mu_{n}\right) \longmapsto \mathcal{L} u_{n} \longmapsto b_{n}=F^{\prime}\left(\mathcal{L} u_{n}\right) \stackrel{\mathcal{K}_{2}}{\longmapsto} \mathcal{M}_{n}
\end{aligned}
$$

Thank you!

