# A convergent discretization of the porous medium equation with fractional pressure 

Félix del Teso
Universidad Autónoma de Madrid (UAM)

Workshop: On nonlocal and nonlinear PDEs
Trondheim, May 25, 2023

Based on a joint work with:

- E. R. Jakobsen - NTNU (Trondheim, Norway)


## 1 Introduction

## 2 Numerical scheme (Part 1)

3 Numerical scheme (Part 2)

## Porous Medium Equation / Fast Diffusion Equation

$$
u_{t}-\Delta u^{m}=0 \quad \text { in } \quad \mathbb{R}^{N} \times(0, T)
$$

Self Similar solutions:

$$
\mathscr{U}(x, t)=t^{-\alpha} F\left(|x| t^{-\beta}\right)
$$

Finite/Infinite speed of propagation with $m=1$ as borderline cases

Slow Diffusion: $m>1$

$$
F(y) \sim\left(R^{2}-|y|^{2}\right)_{+}^{1 /(m-1)}
$$



Fast Diffusion : $m<1$

$$
F(y) \sim\left(R^{2}+|y|^{2}\right)^{-1 /(1-m)}
$$



Reference: Vázquez's book 2007 on the PME

## Fractional porous medium models

$$
\begin{gathered}
u_{t}-\Delta u^{m}=0 \\
\downarrow \\
u_{t}+(-\Delta)^{s} u^{m}=0
\end{gathered}
$$

de Pablo, Quirós, Rodriguez and Vázquez

Infinite speed of propagation for all $m>0$.

## Fractional porous medium models

$$
\begin{array}{cc}
u_{t}-\Delta u^{m}=0 & u_{t}=\nabla \cdot\left(u^{m-1} \nabla u\right) \\
\downarrow & \downarrow \\
u_{t}+(-\Delta)^{s} u^{m}=0 & u_{t}=\nabla \cdot\left(u^{m-1} \nabla(-\Delta)^{-\sigma} u\right) \\
\text { de Pablo, Quirós, Rodriguez } & \text { Caffarelli and Vázquez }(m=2) \\
\text { and Vázquez } & \& \text { Stan, del Teso, and Vázque } \\
m \in(1, \infty) \\
\text { Infinite speed of } & \\
\text { propagation for all } m>0 . &
\end{array}
$$

## Fractional porous medium models

$$
\begin{array}{ccc}
u_{t}-\Delta u^{m}=0 & u_{t}=\nabla \cdot\left(u^{m-1} \nabla u\right) & u_{t}=\nabla \cdot\left(u \nabla u^{m-1}\right) \\
\downarrow & \downarrow & \downarrow \\
u_{t}+(-\Delta)^{s} u^{m}=0 & u_{t}=\nabla \cdot\left(u^{m-1} \nabla(-\Delta)^{-\sigma} u\right) & u_{t}=\nabla \cdot\left(u \nabla(-\Delta)^{-\sigma} u^{m-1}\right)
\end{array}
$$

de Pablo, Quirós, Rodriguez and Vázquez

Infinite speed of propagation for all $m>0$.

Caffarelli and Vázquez ( $m=2$ )
\& Stan, del Teso, and Vázquez $m \in(1, \infty)$

$$
u_{t}=\nabla \cdot\left(u^{m-1} \nabla(-\Delta)^{-\sigma} u\right)
$$

Continuity equation: $u_{t}=-\nabla \cdot(u \mathbf{v})$

$$
u \equiv \text { density (mass per unit volume), } \quad \mathbf{v} \equiv \text { flow velocity field. }
$$

In this case

$$
\mathbf{v}=u^{m-2} \nabla(-\Delta)^{-\sigma} u
$$

$$
\mathbf{v}=u^{m-2} \nabla(-\Delta)^{-\sigma} u
$$

Some observations:

- The velocity field $\mathbf{v}$ is degenerated if $m>2$ and singular if $m<2$.

$$
\mathbf{v}=u^{m-2} \nabla(-\Delta)^{-\sigma} u
$$

Some observations:

- The velocity field $\mathbf{v}$ is degenerated if $m>2$ and singular if $m<2$.
- The velocity field is nonlocal.

$$
\nabla(-\Delta)^{-\sigma} f(x)=\nabla^{1-2 \sigma} f(x)=\int(f(x)-f(y)) \frac{x-y}{|x-y|^{N+2-2 \sigma}} \mathrm{~d} y
$$

$$
\mathbf{v}=u^{m-2} \nabla(-\Delta)^{-\sigma} u
$$

Some observations:

- The velocity field $\mathbf{v}$ is degenerated if $m>2$ and singular if $m<2$.
- The velocity field is nonlocal.

$$
\nabla(-\Delta)^{-\sigma} f(x)=\nabla^{1-2 \sigma} f(x)=\int(f(x)-f(y)) \frac{x-y}{|x-y|^{N+2-2 \sigma}} \mathrm{~d} y
$$

Consequences:

- Finite speed of propagation if $m>2$ (also $m=2$, Caffarelli and Vázquez 11')
- Infinite speed of propagation if $m \in(1,2)$.

$$
\mathbf{v}=u^{m-2} \nabla(-\Delta)^{-\sigma} u
$$

Some observations:

- The velocity field $\mathbf{v}$ is degenerated if $m>2$ and singular if $m<2$.
- The velocity field is nonlocal.

$$
\nabla(-\Delta)^{-\sigma} f(x)=\nabla^{1-2 \sigma} f(x)=\int(f(x)-f(y)) \frac{x-y}{|x-y|^{N+2-2 \sigma}} \mathrm{~d} y
$$

Consequences:

- Finite speed of propagation if $m>2$ (also $m=2$, Caffarelli and Vázquez 11')
- Infinite speed of propagation if $m \in(1,2)$.
- No comparison principle (Caffarelli and Vázquez 11')




$$
\begin{aligned}
\partial_{t} u-\nabla \cdot\left(u^{m-1} \nabla(-\Delta)^{-\sigma} u\right) & =0 \\
u(\cdot, 0) & =\mu_{0}
\end{aligned}
$$

Weak solution

$$
\int_{0}^{T} \int_{\mathbb{R}^{d}} u \phi_{t}-\int_{0}^{T} \int_{\mathbb{R}^{d}} u^{m-1} \nabla(-\Delta)^{-\sigma} u \nabla \phi+\int_{\mathbb{R}^{d}} \phi(x, 0) d \mu_{0}(x)=0
$$

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot\left(u^{m-1} \nabla(-\Delta)^{-\sigma} u\right) & =0 \\
u(\cdot, 0) & =\mu_{0}
\end{aligned}
$$

Weak solution

$$
\int_{0}^{T} \int_{\mathbb{R}^{d}} u \phi_{t}-\int_{0}^{T} \int_{\mathbb{R}^{d}} u^{m-1} \nabla(-\Delta)^{-\sigma} u \nabla \phi+\int_{\mathbb{R}^{d}} \phi(x, 0) d \mu_{0}(x)=0
$$

Properties (Stan, dT \& Vázquez - 19')

- Existence of nonnegative weak solutions for $\mu_{0} \in \mathscr{M}_{+}\left(\mathbb{R}^{d}\right)$.
- Conservation of mass.
- $L^{\infty}$-decay

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot\left(u^{m-1} \nabla(-\Delta)^{-\sigma} u\right) & =0 \\
u(\cdot, 0) & =\mu_{0}
\end{aligned}
$$

Weak solution

$$
\int_{0}^{T} \int_{\mathbb{R}^{d}} u \phi_{t}-\int_{0}^{T} \int_{\mathbb{R}^{d}} u^{m-1} \nabla(-\Delta)^{-\sigma} u \nabla \phi+\int_{\mathbb{R}^{d}} \phi(x, 0) d \mu_{0}(x)=0
$$

Properties (Stan, dT \& Vázquez - 19')

- Existence of nonnegative weak solutions for $\mu_{0} \in \mathscr{M}_{+}\left(\mathbb{R}^{d}\right)$.
- Conservation of mass.
- $L^{\infty}$-decay
- $L^{1}-L^{\infty}$ smoothing effect: $\|u(\cdot, t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C_{N, s, m} t^{-\gamma} \mu_{0}\left(\mathbb{R}^{d}\right)^{\delta}$.

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot\left(u^{m-1} \nabla(-\Delta)^{-\sigma} u\right) & =0 \\
u(\cdot, 0) & =\mu_{0}
\end{aligned}
$$

Weak solution

$$
\int_{0}^{T} \int_{\mathbb{R}^{d}} u \phi_{t}-\int_{0}^{T} \int_{\mathbb{R}^{d}} u^{m-1} \nabla(-\Delta)^{-\sigma} u \nabla \phi+\int_{\mathbb{R}^{d}} \phi(x, 0) d \mu_{0}(x)=0
$$

Properties (Stan, dT \& Vázquez - 19')

- Existence of nonnegative weak solutions for $\mu_{0} \in \mathscr{M}_{+}\left(\mathbb{R}^{d}\right)$.
- Conservation of mass.
- $L^{\infty}$-decay
- $L^{1}-L^{\infty}$ smoothing effect: $\|u(\cdot, t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C_{N, s, m} t^{-\gamma} \mu_{0}\left(\mathbb{R}^{d}\right)^{\delta}$.
- (dT, Jakobsen) Tightness: For every $\varepsilon, T>0$ there exists $R=R\left(\varepsilon, \mu_{0}, T\right)>0$ s.t.

$$
\sup _{t \in[0, T]} \int_{|x|>R} u(x, t) \mathrm{d} x<\varepsilon
$$

## Cumulative density in dimension $d=1$

$$
u_{t}=\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)
$$

## Cumulative density in dimension $d=1$

$$
u_{t}=\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)
$$

Let us consider the cumulative density function,

$$
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \quad \text { so that } \quad v_{x}(x, t)=u(x, t) .
$$

## Cumulative density in dimension $d=1$

$$
u_{t}=\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)
$$

Let us consider the cumulative density function,

$$
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \quad \text { so that } \quad v_{x}(x, t)=u(x, t) .
$$

It satisfies

$$
\left(\partial_{x} \nu\right)_{t}=\partial_{x}(\left(\partial_{x} \nu\right)^{m-1} \underbrace{\partial_{x}\left(-\partial_{x x}\right)^{-\sigma}\left(\partial_{x}\right.}_{-\left(-\partial_{x x}\right)^{1-\sigma}} \nu))
$$

## Cumulative density in dimension $d=1$

$$
u_{t}=\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)
$$

Let us consider the cumulative density function,

$$
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \quad \text { so that } \quad v_{x}(x, t)=u(x, t)
$$

It satisfies

$$
\left(\partial_{x} v\right)_{t}=\partial_{x}(\left(\partial_{x} v\right)^{m-1} \underbrace{\partial_{x}\left(-\partial_{x x}\right)^{-\sigma}\left(\partial_{x}\right.}_{-\left(-\partial_{x x}\right)^{1-\sigma}} v))
$$

Integrating the equation

$$
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0
$$

with $s=1-\sigma$.

$$
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0
$$

- The equation, for $m=2$, was first studied in (Biller, Karch and Monneau 10') as a model for nonlinear dislocation dynamics.

$$
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0
$$

- The equation, for $m=2$, was first studied in (Biller, Karch and Monneau 10') as a model for nonlinear dislocation dynamics.
- It is not in divergence form, and well-possedness has to be understood in the viscosity solution sense.

$$
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0
$$

- The equation, for $m=2$, was first studied in (Biller, Karch and Monneau 10') as a model for nonlinear dislocation dynamics.
- It is not in divergence form, and well-possedness has to be understood in the viscosity solution sense.
- A general class of nonlocal quasilinear equations including this one was studied in (Chasseigne and Jakobsen 17'):

$$
\begin{aligned}
L[\phi](x) & =\int_{|z|>0}(\phi(x+f(\nabla \phi(x)) z)-\phi(x)) \frac{\mathrm{d} z}{|z|^{d+2 s}} \\
& =-f(\nabla \phi(x))^{2 s}(-\Delta)^{s} \phi(x)
\end{aligned}
$$

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi
$$

- Let us recall the definition of the $p$-Laplacian

$$
\Delta_{p} \phi=\nabla \cdot\left(|\nabla \phi|^{p-2} \nabla \phi\right)
$$

that in dimension $d=1$ can we expressed as

$$
\Delta_{p} \phi=\left|\partial_{x} \phi\right|^{p-2} \partial_{x x} \phi
$$

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi
$$

- Let us recall the definition of the $p$-Laplacian

$$
\Delta_{p} \phi=\nabla \cdot\left(|\nabla \phi|^{p-2} \nabla \phi\right)
$$

that in dimension $d=1$ can we expressed as

$$
\Delta_{p} \phi=\left|\partial_{x} \phi\right|^{p-2} \partial_{x x} \phi
$$

- (Chasseigne and Jakobsen 17') The operator $L$ is a nonlocal version of the $p$-Laplacian.

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi
$$

- Let us recall the definition of the $p$-Laplacian

$$
\Delta_{p} \phi=\nabla \cdot\left(|\nabla \phi|^{p-2} \nabla \phi\right)
$$

that in dimension $d=1$ can we expressed as

$$
\Delta_{p} \phi=\left|\partial_{x} \phi\right|^{p-2} \partial_{x x} \phi
$$

- (Chasseigne and Jakobsen 17') The operator $L$ is a nonlocal version of the $p$-Laplacian. It does not coincide with other ones in the literature
(Variational) $\quad(-\Delta)_{p}^{s} \phi(x)=\int \frac{|\phi(x)-\phi(x+z)|^{p-2}(\phi(x)-\phi(x+z))}{|z|^{d+s p}} \mathrm{~d} z$
(Game th.) $-\Delta_{p}^{s} \phi(x)=\sup _{|y|=1} \int_{\mathscr{C}(x, y)} \frac{\phi(x)-\phi(x+z)}{|z|^{d+s p}} \mathrm{~d} z+\inf _{|\tilde{y}|=1} \int_{\mathscr{C}(x, \tilde{y})} \frac{\phi(x)-\phi(x+z)}{|z|^{d+s p}} \mathrm{~d} z$

$$
\begin{array}{r}
\left.u_{t}-\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)=0 \quad \text { (FPE }\right) \\
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \Downarrow \quad \Uparrow \quad u=\partial_{x} v \\
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0 \quad \text { (IP) } \tag{IP}
\end{array}
$$

$$
\begin{array}{r}
u_{t}-\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)=0 \quad(\mathrm{FPE}) \\
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \quad \Downarrow \quad \Uparrow \quad u=\partial_{x} v \\
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0 \quad(\mathrm{IP}) \tag{IP}
\end{array}
$$

- $u \geq 0$ (nonnegative weak sol.) $\Longleftrightarrow \partial_{x} \nu \geq 0$ (nondecreasing viscosity sol.) By (Chasseigne and Jakobsen 17'):

$$
\begin{array}{r}
u_{t}-\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)=0 \quad \text { (FPE) } \\
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \quad \Downarrow \quad \Uparrow \quad u=\partial_{x} v \\
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0 \quad \text { (IP) } \tag{IP}
\end{array}
$$

- $u \geq 0$ (nonnegative weak sol.) $\Longleftrightarrow \partial_{x} v \geq 0$ (nondecreasing viscosity sol.) By (Chasseigne and Jakobsen 17'):
- (IP) has existence and uniqueness of viscosity solutions.

$$
\begin{array}{r}
\left.u_{t}-\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)=0 \quad \text { (FPE }\right) \\
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \Downarrow \quad \Uparrow \quad u=\partial_{x} v \\
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0 \quad \text { (IP) } \tag{IP}
\end{array}
$$

- $u \geq 0$ (nonnegative weak sol.) $\Longleftrightarrow \partial_{x} \nu \geq 0$ (nondecreasing viscosity sol.) By (Chasseigne and Jakobsen 17'):
- (IP) has existence and uniqueness of viscosity solutions.
- (IP) has comparison principle for sub and super solutions.

This seems to be a right context for numerical schemes!

## 2 Numerical scheme (Part 1)

## 3 Numerical scheme (Part 2)

How to discretize

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi
$$

so that it preserves the monotonicity property:
If $\psi(x)=\phi(x)$ and $\psi \geq \phi$ then $L[\psi](x) \geq L[\phi](x)$.

How to discretize

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi
$$

so that it preserves the monotonicity property:
If $\psi(x)=\phi(x)$ and $\psi \geq \phi$ then $L[\psi](x) \geq L[\phi](x)$.

- Discretization of the fractional Laplacian:

$$
\begin{aligned}
& -(-\Delta)^{s} \phi(x)=\text { P.V } \int_{|z|>0}(\phi(x+z)-\phi(x)) \frac{\mathrm{d} z}{|z|^{1+2 s}} \\
& -(-\Delta)_{h}^{s} \phi(x) \sim \sum_{k \neq 0}\left(\phi\left(x+z_{k}\right)-\phi(x)\right) \omega_{k} \quad \text { with } \quad \omega_{k}=\omega_{-k} \geq 0 .
\end{aligned}
$$

such that for $\phi \in C^{2} \cap C_{b}$

$$
(-\Delta)_{h}^{s} \phi \xrightarrow{h \rightarrow 0}(-\Delta)^{s} \phi \quad \text { in } \quad L_{\mathrm{loc}}^{\infty} .
$$

- Discretization of $\partial_{x}$ : We think of $L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi$ as

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1} b(x, t),
$$

with $b$ changing signs.

- Discretization of $\partial_{x}$ : We think of $L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi$ as

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1} b(x, t),
$$

with $b$ changing signs. Thus, we choose an UPWIND-type discretization:

$$
\partial_{x} \phi(x) \sim D_{h} \phi(x):=\left\{\begin{array}{lll}
\frac{\phi(x+h)-\phi(x)}{h} & \text { if } & (-\Delta)_{h}^{s} \phi(x) \leq 0 \\
\frac{\phi(x)-\phi(x-h)}{h} & \text { if } & (-\Delta)_{h}^{s} \phi(x)>0
\end{array}\right.
$$

- Discretization of $\partial_{x}$ : We think of $L[\phi]=\left(\partial_{x} \phi\right)^{m-1}(-\Delta)^{s} \phi$ as

$$
L[\phi]=\left(\partial_{x} \phi\right)^{m-1} b(x, t)
$$

with $b$ changing signs. Thus, we choose an UPWIND-type discretization:

$$
\partial_{x} \phi(x) \sim D_{h} \phi(x):=\left\{\begin{array}{lll}
\frac{\phi(x+h)-\phi(x)}{h} & \text { if } & (-\Delta)_{h}^{s} \phi(x) \leq 0 \\
\frac{\phi(x)-\phi(x-h)}{h} & \text { if } & (-\Delta)_{h}^{s} \phi(x)>0
\end{array}\right.
$$

- Complete discretization

$$
L_{h}[\phi](x)=\left(D_{h} \phi(x)\right)^{m-1}(-\Delta)_{h}^{s} \phi(x)
$$

- (Consistent) For $\phi \in C^{2} \cap C_{b}, L_{h}[\phi] \xrightarrow{h \rightarrow 0} L[\phi]$ in $L_{\text {loc }}^{\infty}$
- (Monotone) If $\psi(x)=\phi(x)$ and $\psi \geq \phi$ then $L_{h}[\psi](x) \geq L_{h}[\phi](x)$
but only for nondecreasing functions $\phi$ and $\psi$ !


## Numerical scheme

Given discretization parameters $h, \tau>0$, a uniform grids $x_{k}=k h$ and $t_{j}=j \tau$ :

$$
\begin{aligned}
V_{k}^{j+1} & =V_{k}^{j}-\tau L_{h} V_{k}^{j}, \\
V_{k}^{0} & =\int_{-\infty}^{x_{k}} \mathrm{~d} \mu_{0}(x) .
\end{aligned}
$$

## Numerical scheme

Given discretization parameters $h, \tau>0$, a uniform grids $x_{k}=k h$ and $t_{j}=j \tau$ :

$$
\begin{aligned}
V_{k}^{j+1} & =V_{k}^{j}-\tau L_{h} V_{k}^{j} \\
V_{k}^{0} & =\int_{-\infty}^{x_{k}} \mathrm{~d} \mu_{0}(x)
\end{aligned}
$$

Key result - Comparison for nondecreasing solutions: For $V^{j}, W^{j}$ nondecreasing,

$$
V^{j} \leq W^{j} \Longrightarrow V^{j+1} \leq W^{j+1} .
$$

provided CFL-type conditions:

$$
\tau \leq h^{2 s+m-1} \quad(V, W \text { bounded }) \quad \text { or } \quad \tau \leq h^{\max \{1,2 s\}} \quad(V, W \text { Lipschitz })
$$

## Theorem

Let $\left\{V_{i}^{0}\right\}_{i \in \mathbb{Z}}$ and $\left\{W_{i}^{0}\right\}_{i \in \mathbb{Z}}$ are nondecreasing and satisfying one of the following:

$$
\begin{array}{lll}
\left|V_{i}^{0}\right|,\left|W_{i}^{0}\right| \leq M, i \in \mathbb{Z}, & \text { and } & \tau \leq C_{1} h^{2 s+m-1}, \\
\left|V_{i}^{0}\right|,\left|W_{i}^{0}\right| \leq M, \frac{\left|V_{i+1}^{0}-V_{i}^{0}\right|}{h}, \frac{\left|W_{i+1}^{0}-W_{i}^{0}\right|}{h} \leq L, i \in \mathbb{Z}, & \text { and } & \tau \leq C_{2} h^{\max \{2 s, 1\}},
\end{array}
$$

Then
(a) (Nondecreasing) $V_{i}^{j} \leq V_{i+1}^{j}$.
(b) $\left(\ell^{\infty}\right.$-stability) $\left|V_{i}^{j}\right| \leq M$.
(c) (Nonegative) If $V_{i}^{0} \geq 0$ then $V_{i}^{j} \geq 0$.
(d) ( $\ell^{\infty}$-contraction) $\sup _{i \in \mathbb{Z}, j \in \mathbb{N}}\left|W_{i}^{j}-V_{i}^{j}\right| \leq \sup _{i \in \mathbb{Z}}\left|W_{i}^{0}-V_{i}^{0}\right|$.
(c) (Lipschitz-stability) $\sup _{i \in \mathbb{Z}, j \in \mathbb{N}} \frac{\left|V_{i+1}^{j}-V_{i}^{j}\right|}{h} \leq \sup _{i \in \mathbb{Z}} \frac{\left|V_{i+1}^{0}-V_{i}^{0}\right|}{h}$.

Let $\bar{V}$ be an interpolation of $V$ (p.w. linear in space and p.w. constant in time).

## Theorem

(a) (Continuous case) If $v_{0} \in B U C\left(\mathbb{R}^{d}\right)$ then:
(i) (Convergence) $\bar{V}_{h} \xrightarrow{h \rightarrow 0} v \quad$ locally uniformly in $\overline{Q_{T}}$.
(ii) (Limit) $v \in B U C\left(\mathbb{R}^{d}\right)$ is a viscosity solution of (IP).

Let $\bar{V}$ be an interpolation of $V$ (p.w. linear in space and p.w. constant in time).

## Theorem

(a) (Continuous case) If $\nu_{0} \in B U C\left(\mathbb{R}^{d}\right)$ then:
(i) (Convergence) $\bar{V}_{h} \xrightarrow{h \rightarrow 0} v \quad$ locally uniformly in $\overline{Q_{T}}$.
(ii) (Limit) $v \in B U C\left(\mathbb{R}^{d}\right)$ is a viscosity solution of (IP).
(b) (Jump discontinuity) If

$$
v_{0}(x)= \begin{cases}0 & \text { if } \quad x<a, \\ M & \text { if } \quad x \geq a .\end{cases}
$$

(i) (Convergence) $\bar{V}_{h} \xrightarrow{h \rightarrow 0} v \quad$ locally uniformly in $\overline{Q_{T}} \backslash\{(a, 0)\}$.
(ii) (Limit) $v \in C_{b}\left(\bar{Q}_{T} \backslash\{(a, 0)\}\right)$ is a discontinuous viscosity solution of (IP).

Convergence by half-relaxed limit method (Barles, Perthame, Souganidis). [1] Uniform-in- $h L^{\infty}$ bounds. Then

$$
\underline{v}(x, t):=\liminf _{(y, \rho, h) \rightarrow(x, t, 0)} \bar{V}_{h}(y, s) \quad \bar{v}(x, t):=\limsup _{(y, \rho, h) \rightarrow(x, t, 0)} \bar{V}_{h}(y, s)
$$

and $\underline{\nu} \leq \bar{\nu}$.
[2] Monotonicity and consistency. Then

$$
\begin{aligned}
& \underline{v} \text { discontinuous viscosity supersolution } \\
& \bar{v} \text { discontinuous viscosity subsolution }
\end{aligned}
$$

[3] Comparison principle for (IP). Then

$$
\bar{v} \leq \underline{v}
$$

[4] All together:

$$
\bar{v}=\underline{v}=: v=\lim _{h \rightarrow 0} \bar{V}_{h}
$$

## $\overline{2}$ Numerical scheme (Part 1)

3 Numerical scheme (Part 2)

$$
\begin{array}{r}
u_{t}-\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)=0 \quad(\mathrm{FPE}) \\
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \Downarrow \quad \Uparrow \quad u=\partial_{x} v \\
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0 \quad \text { (IP) }
\end{array}
$$

$$
\begin{array}{r}
\left.u_{t}-\partial_{x}\left(u^{m-1} \partial_{x}\left(-\partial_{x x}\right)^{-\sigma} u\right)=0 \quad \text { (FPE }\right) \\
v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y \quad \Downarrow \quad \Uparrow \quad u=\partial_{x} v \\
\partial_{t} v+\left(\partial_{x} v\right)^{m-1}(-\Delta)^{s} v=0 \quad \text { (IP) }
\end{array}
$$

Once a numerical method for (IP) is provided, the approximation for (FPE) is naturally given by numerical differentiation

$$
U_{i}^{j}=\frac{V_{i+1}^{j}-V_{i}^{k}}{h}
$$

and $\bar{U}$ the corresponding p.w. constant interpolation.

Rubinstein-Kantorovich metric

$$
d_{0}\left(f_{1}, f_{2}\right)=\sup _{\varphi \in \operatorname{Lip}}^{1,1}(\mathbb{R}), ~ \int_{\mathbb{R}}\left(f_{1}(x)-f_{2}(x)\right) \varphi(x) \mathrm{d} x,
$$

where $\operatorname{Lip}_{1,1}(\mathbb{R})=\left\{\varphi \in C(\mathbb{R}):\|\varphi\|_{L^{\infty}} \leq 1,\|D \varphi\|_{L^{\infty}} \leq 1\right\}$ and $D$ is the weak derivative.

Rubinstein-Kantorovich metric

$$
d_{0}\left(f_{1}, f_{2}\right)=\sup _{\varphi \in \operatorname{Lip} 1,1}(\mathbb{R})=\int_{\mathbb{R}}\left(f_{1}(x)-f_{2}(x)\right) \varphi(x) \mathrm{d} x,
$$

where $\operatorname{Lip}_{1,1}(\mathbb{R})=\left\{\varphi \in C(\mathbb{R}):\|\varphi\|_{L^{\infty}} \leq 1,\|D \varphi\|_{L^{\infty}} \leq 1\right\}$ and $D$ is the weak derivative.

## Theorem

$\mu_{0} \in \mathscr{M}_{+}(\mathbb{R})$ and $u$ the weak solution of (FPE).
a ( $L^{1}$ case) Assume $\mu_{0} \in L^{1}(\mathbb{R})$ (resp. $\mu_{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ ), then we have

$$
\sup _{t \in[0, T]} d_{0}\left(\bar{U}_{h}(\cdot, t), u(\cdot, t)\right) \xrightarrow{h \rightarrow 0} 0
$$

Rubinstein-Kantorovich metric

$$
d_{0}\left(f_{1}, f_{2}\right)=\sup _{\varphi \in \operatorname{Lip} 1,1}(\mathbb{R})=\int_{\mathbb{R}}\left(f_{1}(x)-f_{2}(x)\right) \varphi(x) \mathrm{d} x,
$$

where $\operatorname{Lip}_{1,1}(\mathbb{R})=\left\{\varphi \in C(\mathbb{R}):\|\varphi\|_{L^{\infty}} \leq 1,\|D \varphi\|_{L^{\infty}} \leq 1\right\}$ and $D$ is the weak derivative.

## Theorem

$\mu_{0} \in \mathscr{M}_{+}(\mathbb{R})$ and $u$ the weak solution of (FPE).
a ( $L^{1}$ case) Assume $\mu_{0} \in L^{1}(\mathbb{R})$ (resp. $\mu_{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ ), then we have

$$
\sup _{t \in[0, T]} d_{0}\left(\bar{U}_{h}(\cdot, t), u(\cdot, t)\right) \xrightarrow{h \rightarrow 0} 0 .
$$

(b) (Fundamental solution) Assume $\mu_{0}=M \delta_{a}$ then we have

$$
\sup _{t \in\left[t_{0}, T\right]} d_{0}\left(\bar{U}_{h}(\cdot, t), u(\cdot, t)\right) \xrightarrow{h \rightarrow 0} 0
$$

Sketch of the proof:

- [Previous theorems] $\bar{V}(x, t) \rightarrow v(x, t)=\int_{-\infty}^{x} u(y, t) \mathrm{d} y$ locally uniformly.
- [Interpolation choice] $\bar{V}(x, t)=\int_{-\infty}^{x} \bar{U}(y, t) \mathrm{d} y$
- [Convergence I] For $\varphi \in \operatorname{Lip}_{1,1}$ and $\partial_{x} \varphi$ with compact support:

$$
\int \varphi(\bar{U}-u) \mathrm{d} x=\int \varphi_{x} \int_{-\infty}^{x}(\bar{U}-u) \mathrm{d} y \mathrm{~d} x=\int \varphi_{x}(\bar{V}-v) \mathrm{d} x \xrightarrow{h \rightarrow 0} 0 .
$$

- [Equi-Tightness]

$$
\int \bar{U}\left(1-\chi_{R}\right) \mathrm{d} x<\varepsilon, \quad \text { and } \quad \int \bar{u}\left(1-\chi_{R}\right) \mathrm{d} x<\varepsilon .
$$

- [Convergence II] For $\varphi \in \operatorname{Lip}_{1,1}$ :

$$
\int \varphi(\bar{U}-u) \mathrm{d} x=\int \varphi \chi_{R}(\bar{U}-u) \mathrm{d} x+\int \varphi\left(1-\chi_{R}\right)(\bar{U}-u) \mathrm{d} x \xrightarrow{h \rightarrow 0} 0 .
$$

## Final comments

- The numerical method works in this specific framework just because:
- $u \geq 0 \quad \Longrightarrow v$ nondecreasing.
- Explicit scheme so we can upwind properly.


## Final comments

- The numerical method works in this specific framework just because:
- $u \geq 0 \quad \Longrightarrow v$ nondecreasing.
- Explicit scheme so we can upwind properly.
- For initial data $\mu_{0} \in L^{1} \cap L^{\infty}$ the explicit scheme is stable and convergent under nice a CFL-type condition

$$
\tau \lesssim h^{\max \{1,2 s\}}
$$

## Final comments

- The numerical method works in this specific framework just because:
- $u \geq 0 \quad \Longrightarrow v$ nondecreasing.
- Explicit scheme so we can upwind properly.
- For initial data $\mu_{0} \in L^{1} \cap L^{\infty}$ the explicit scheme is stable and convergent under nice a CFL-type condition

$$
\tau \lesssim h^{\max \{1,2 s\}}
$$

- When $\mu_{0} \in L^{1}$, a very restrictive stability condition is needed

$$
\tau \lesssim h^{2 s+m-1}
$$

## Final comments

- The numerical method works in this specific framework just because:
- $u \geq 0 \quad \Longrightarrow v$ nondecreasing.
- Explicit scheme so we can upwind properly.
- For initial data $\mu_{0} \in L^{1} \cap L^{\infty}$ the explicit scheme is stable and convergent under nice a CFL-type condition

$$
\tau \lesssim h^{\max \{1,2 s\}}
$$

- When $\mu_{0} \in L^{1}$, a very restrictive stability condition is needed

$$
\tau \lesssim h^{2 s+m-1}
$$

- We can cover measure data $\mu_{0}$ (i.e. fundamental solution), since in the integrated variable it turns into a theory of discontinuous viscosity solutions.


## Final comments

- The numerical method works in this specific framework just because:
- $u \geq 0 \quad \Longrightarrow v$ nondecreasing.
- Explicit scheme so we can upwind properly.
- For initial data $\mu_{0} \in L^{1} \cap L^{\infty}$ the explicit scheme is stable and convergent under nice a CFL-type condition

$$
\tau \lesssim h^{\max \{1,2 s\}}
$$

- When $\mu_{0} \in L^{1}$, a very restrictive stability condition is needed

$$
\tau \lesssim h^{2 s+m-1}
$$

- We can cover measure data $\mu_{0}$ (i.e. fundamental solution), since in the integrated variable it turns into a theory of discontinuous viscosity solutions.
- Numerical methods in dimensions $d>1$ ?
- Numerical methods for sign-changing solutions?


## Thank you

Preprint: arXiv:2303.05168.




