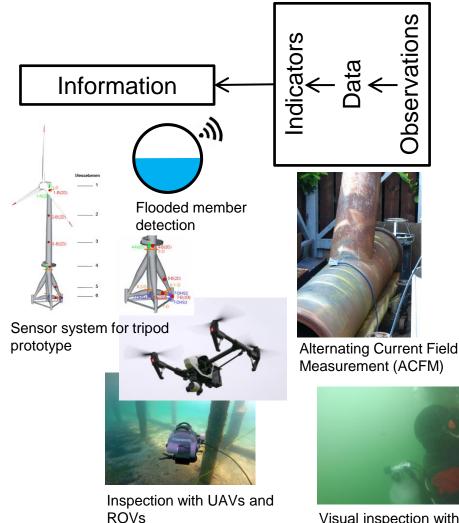


Joint Committee on Structural Safety Workshop on Assessment of Existing **Structures** 28th and 29th January 2021 What makes the value of information?

Sebastian Thöns, Lund University, Sweden

Models and existing structures


Based on TU1402 Factsheet on Framework and Categorization for Value of Information Analysis, 8th TU1402 Workshop, March 2017.

SS Workshop on Accosor

Sebastian Thöns

Storebælt Bridge

Structural health information (SHI)

Structural health information (SHI) is based on observations, data and indicators.

- Wide range of technologies and concepts
 - Monitoring, NDT, NDE, inspection, measurements
- Many monitoring systems is use

But how to use SHI from existing structures in engineering for value creation?

- Adaptation of system states of existing structures. Then SHI can potentially:
 - Reduce risks
 - Be optimised for value
 - Used for optimising action implementation and value

Visual inspection with a diver

Utilisation of information value and decision analyses

Information management		System state management		Utility
Choice	Chance	Choice	Chance	\rightarrow
	Q			\rightarrow
				\rightarrow
Information i_i	Outcomes $Z_{i,j}$	Actions a_k	System states X_l	Utility <i>u</i>

Prior DA

$$U_{Prior}\left(a_{k}\right) = \max_{a_{k}} E_{X_{l}}\left[u\left(a_{k}, X_{l}\right)\right]$$

Posterior DA $U_{Post}(Z, a_k) = \max_{a_k} E_{X_l|Z} \left[u(a_k, X_l) \right]$

Pre-posterior DA

$$U_{PrePost}\left(i_{i},a_{k}\right) = \max_{i_{i}} E_{Z_{i,j}}\left[\max_{a_{k}} E_{X_{l}|Z_{i,j}}\left[u\left(a_{k},X_{l}\right)\right]\right]$$

Thöns, S. (2019). Quantifying the Value of Structural Health Information for Decision Support: TU1402 Guide for Scientists, COST Action TU1402, www.cost-tu1402.eu/action/deliverables/guidelines.

Sebastian Thöns

JCSS Workshop on Assessment of Existing Structures 28th & 29th January 2021

Prior decision analysis for action optimisation

Utility action

$$U_{Prior}(a_k) = \max_{a_k} E_{X_l}\left[u(a_k, X_l)\right]$$
$$= \max_{a_k} \sum_{X_l} u(a_k, X_l) \cdot P(X_l) - c(a_k)$$

Engineering action

$$U_{Prior}\left(a_{k}\right) = \max_{a_{k}} \sum_{X_{l}} u\left(X_{l}\right) \cdot \underline{P\left(X_{l} \mid a_{k}\right)} - \underline{c\left(a_{k}\right)}$$

Action types

- Utility actions influence the system state utility
- Engineering actions influence the system state reliability

An action has a cost.

Posterior decision analysis for action optimisation

$$U_{Post}(Z, a_k) = \max_{a_k} \sum_{X_l} u(a_k, X_l) \cdot P(X_l | Z)$$
$$-c(Z)$$

$$U_{Post}(Z, a_k) = \max_{a_k} \sum_{X_l \mid Z, a_k} u(X_l) \cdot \underline{P(X_l \mid Z, a_k)}$$
$$-\underline{c(a_k)} - c(Z)$$

Posterior value of information Z in respect to prior DA Utility action

- Change of system state utility by different optimal action
- Change of system state reliability due to information

For an engineering action

- Change of system state reliability due to information
 - Often referred to risk reduction in conservative design situations
 - Solely in the model world: Potentially sustainable.

Pre-posterior decision analysis for information and action optimisation

$$U_{PrePost}\left(i_{i}, a_{k}\right) = \max_{i_{i}, a_{k}} \sum_{Z_{i,j}} \sum_{X_{i}} u\left(a_{k}, X_{i}\right) \cdot P\left(X_{i} \mid Z_{i,j}\right) \cdot P\left(Z_{i,j}\right)$$
$$-c\left(a_{k}\right) - c\left(i_{i}\right)$$

Predicted information value in respect to prior DA Utility action

 By change of system state utility due to indication dependent optimal actions (partly different from prior DA optimal action)

$$U_{PrePost}(i_{i}, a_{k}) = \max_{i_{i}, a_{k}} \sum_{Z_{i,j}} \sum_{X_{l}} u(X_{l}) \cdot \underline{P(X_{l} | Z_{i,j}, a_{k})} \cdot P(Z_{i,j}, a_{k})$$
Engineering action
$$???$$
$$-\underline{c(a_{k})} - c(i_{i})$$

Pre-posterior decision analysis for information and action optimisation

$$U_{PrePost}(i_{i}, a_{k}) = \max_{i_{i}, a_{k}} \sum_{Z_{i,j}} \sum_{X_{i}} u(X_{i}) \cdot P(X_{i} | Z_{i,j}, a_{k}) \cdot P(Z_{i,j}, a_{k})$$
$$-\underline{c(a_{k})} - c(i_{i})$$

Predicted information value in respect to prior DA Engineering action

... will lead to equivalency to a prior DA apart from cost of information...

Total probability theorem

$$\sum_{Z_{i,j}} P(Z_{i,j} | X_l) \cdot P(X_l) = P(X_l)$$

$$U_{PrePost}(i_i, a_k) = \max_{a_k, i_i} \sum_{X_i} u(X_i) \cdot P(X_i \mid a_k) - c(a_k) - c(i_i)$$
$$= U_{Prior}(a_k) - c(i_i)$$

Information value cannot be predicted with an engineering action without a utility implication.

More to come in ICOSSAR 1 P.C.

Sebastian Thöns

Conclusions

Posterior value of information

- Positive or negative
- Potentially valuable and sustainable for conservative engineered structures

Predicted value of information

Requires a utility change

Information – like scientific knowledge - need to be connected to utility for having a value.

Outreach

Europe has the knowledge of the SHI value prediction in engineering.

• The use of SHI is hardly codified preventing industrial utilisation and competition.

US tech giants: "Business model development with obtained data"

Prepare entry for urban development: Sidewalk Labs as the urban innovation entity of Alphabet Inc.

The European construction industry should be prepared and go ahead of competition.

• 18 million direct jobs in EU with 9% of the EU's GDP

Thank you for your attention.

sebastian.thons@kstr.lth.se

JCSS Workshop on Assessment of Existing Structures 28th & 29th January 2021

Joint Committee on Structural Safety WWW.jcss-lc.org

29/01/2021

JCSS Workshop on Assessment of Existing Structures 28th & 29th January 2021