

Joint Committee on Structural Safety

Workshop on Assessment of Existing Structures 28th and 29th January 2021

Novel Techniques Regarding the Assessment and Monitoring of Structures Alfred Strauss University of Natural Resources and Life Sciences, Vienna

CONTENT

fib MC2020 - AG9 "SHM and ndt" General Aspects

SHM for integral bridges

COST TU1406 - SHM vs. Performance indicators – Lifetime Assessment

Lifetime Assessment – Durability Monitoring

CONTENT

fib MC2020 - AG9 "SHM and ndt" General Aspects

SHM for integral bridges

COST TU1406 - SHM vs. Performance indicators – Lifetime Assessment

Lifetime Assessment – Durability Monitoring

I. INTRODUCTION

Objectives of study

Monitoring system of bridge – general definition

Generally monitoring system can be defined as **arrangement of all activities that are performed with the goal to collect data for bridge condition assessment** as a background for competent management.

II. CONCRETE BRIDGE DEFECTS

- **Bridge defect** can be defined as a phenomenon diminishing bridge technical and/or functional condition as a result of a degradation process.
- Term **bridge technical condition** is used as a general measure of differences between current and designed values of bridge technical parameters, e.g. geometry, material characteristics, etc.
- Bridge **functional condition** can be defined as a measure of conformity between actual operational conditions and conditions required by users, e.g. load capacity, clearance, maximum speed, etc.
- Effective monitoring of structure condition requires **consistent taxonomy of** possible **structural defects**.
- **Classification of concrete bridge defects** is based on a three-level hierarchical system:
 - level 1: basic classes of defects;
 - level 2: types of defects defined for each basic class;
 - level 3: categories of defects proposed for each type of defects.

J. Bien fib AG9 "SHM and ndt"

Deformation	Incorrect geometry of constructed element	Incorrect shape of concrete	
		Invalid arrangement of reinforcement	
		Invalid arrangement of prestressing tendons	
	Channel of the secondary of element onio	Excessive elastic deformation	
	change of the geometry of element axis	Permanent deformation	
	Change of the geometry along the element length	Excessive elastic deformation	
	enange of the Section y along the element length	Permanent deformation	
Destruction of material	Change of the chemical characteristics	Change of concrete characteristics	
		Change of reinforcing steel characteristics	
		Change of prestressing steel characteristics	
		Change of protective layer characteristics	
	Change of the physical characteristics	Change of concrete characteristics	
		Change of reinforcing steel characteristics	
		Change of prestressing steel characteristics	
		Change of protective layer characteristics	
Loss of material	Loss of structural material	Loss of concrete	
		Loss of reinforcing steel	
		Loss of prestressing steel	
	Loss of material of protective layer	Loss of material of concrete protection	
		Loss of protection of reinforcing steel	
		Loss of protection of prestressing steel	
	Crack	Crack of concrete	
		Crack of reinforcing steel	
		Crack of prestressing steel	
Discontinuity		Crack of protective layer	
	Fracture	Fracture of roinforcing steel	
		Fracture of prestressing steel	
		Fracture of protective laver	
Contamination	Inorganic	Aggressive	
		Neutral	
	Organic	Aggressive	
		Neutral	
Displacement	Incorrect linear displacement	Excessive movement	
		Restricted movement	
	Incorrect rotation	Excessive movement	
		Restricted movement	

III. DEGRADATION MECHANISM

- Concrete bridge structures are influenced by various degradation mechanisms causing defects, failures and even collapses.
- Final degradation processes of bridge structures or their elements consist usually of two or more mechanisms acting simultaneously.
- Degradation mechanisms can be generally divided into three groups:
 - chemical mechanisms causing structure deterioration as a result of chemical processes: carbonation, corrosion, reactions between aggressive material components, etc.,
 - **physical mechanisms** when deterioration is a consequence of physical phenomena: erosion, overloading, fatigue, crystallization, extreme temperatures, freeze-throw action, rheological effects, etc.,
 - **biological mechanisms** in the case of deterioration aroused by biological organisms: microbes, plants, animals, etc.

Degradation mechanisms		Class of defects						
		deformation	destruction	loss of material	discontinuity	contamination	displacement	
	Accumulation of inorganic dirtiness					•	•	
	Cyclic freeze-throw action		-	-				
	Erosion							
	Crystallization							
a	Extreme temperatures							
ysic	Creep							
Han and the second s	Relaxation							
	Shrinkage							
	Overloading	-		-	-			
	Fatigue		•					
	Geotechnical condition changes	•			-		•	
	Carbonation		•					
=	Corrosion		-	-				
mica	Aggressive compounds action		-					
Cher	Chemical dissolving/leaching					-		
Ŭ	Reactions between material components		-	-				
	Accumulation of organic dirtiness					•		
	Activity of microbes					-		
Bio	Activity of plants					-		
	Activity of animals							
Lenned - her	le de sus de trans de sub sub sus en seda	والم المعالم				-		

Legend: **–** basic degradation mechanism, **–** additional degradation mechanism

IV. MONITORING STRATEGIES

Categories of monitoring policies

- Load-independent monitoring comprises regular as well as irregular (special) inspections based on visual examination and results of the non-destructive testing (NDT) and/or semi-destructive testing (SDT).
- Load-dependent (technical) monitoring includes observing of bridge structure response to loads by means of installed technical measuring equipment. A technical monitoring system is a data acquisition and processing unit which provides continuously and autonomously real-time information about a structure or structural component.

Technical monitoring is based on:

- > application of transducers for sensing physical or chemical quantities,
- > programmable electronic equipment for acquiring, processing and communicating data,
- utilization of algorithms that define how data acquisition, processing and communication is performed.
 J. Bien fib AG9 "SHM and ndt"

Assessment goals

Assessment of the magnitude as well as the spatial and temporal distribution of specific forces acting on a structure or a structural component, including traffic loads and environmental impacts.

Assessment of the state of displacement, stress/strain level and distribution in a structure as well as vibration parameters caused by traffic loads and other influences.

Assessment of whether a structure or a structural component meets the performance requirements under specific or any actions, defined by the performance indicators.

Type of technical monitoring

Action monitoring

Reaction monitoring

Performance monitoring

The real-time assessment and prediction of the health condition of a structure or a structural component by means of their safety and serviceability indicators.

Health monitoring

SHM for Integral Bridges in Austria with Flexible Abutments

Alfred Strauss; Roman Geier; Thomas Mack

Problem Areas

Subsequent Damage

Subsequent Damage

3 Statements

- Monitoring may not replace conventional inspection. It should be used as a powerful supplement:
 - Objective assessment based on measured data
 - Immediate action for improved knowledge about structural condition
- To observe known problems or damages and their changes over time (development of structural condition):
 - Focus on specific problem
 - Tailor-made monitoring system for the given task (costs!)
 - Surveillance until rehabilitation or replacement
- Verification of static calculation or input parameter for further investigations:
 - Comparison of design assumptions with real structure
 - Calibration of finite element models to real structural behavior
 - Documentation of construction period or specific loading conditions

Monitoring – Guideline RVS 13.03.01

- Monitoring of bridges and other civil engineering structures
- Measurement based investigations
- Different parameters which are under investigation:
 - Static: Deformation, Inclination, Strain, etc.
 - Dynamic: Acceleration (Vibration measurements)
- Global vs. local testing methods:
 - Global: a few measurement locations are sufficient to describe structural behavior or condition
 - Local: targeted investigation of a limited structural area or element
- Permanent or event driven measurements
- Comparative calculation with FE-simulation

Seitenhafenbridge

Realized Structure

Characteristics Seitenhafenbridge

- Semi-integrale structure with length of 130 m
- Structure: reinforced concrete slab resp. T-beam on steel columns and nodes
- Structure is post tensioned for all spans
- Concept of flexible abutment (first in Austria and currently the longest one in Europe)
- Pile foundation with flexible casing

Measurement Task

- Structural temperature
- Investigation of earth pressure (flexible abutment)
- Alternation of length
- Vertical deflection of selected locations
- Observation of changes in inclination of selected locations
- Data storage & transmission
- Regular reporting with regard to design assumptions

Tender Process

- Monitoring system was included in the tender for the bridge
- Tender design was prepared including specifications of sensors
- Detail design was already considering monitoring equipment

JCSS Workshop on Assessment of Existing

Structures 28th & 29th January 2021

Measurement Task

Central Unit & System Architecture

Earth Pressure Sensors

Laser Sensors

Passiv Reflecting Units

Deformation Measurement

Hydraulic Levelling System

Temperature Measurements

Alternation of Length

Earth Pressure

Vertical Deformation

Structures 28th & 29th January 2021

Finite Element Analyses

Winter

Inclination

Measurement Results

Measurement Parameter	Calculation		Measu	Condition		
	Max.	Min.	Max.	Min.		
Temperatur	+39°C	-18°C	+34°C	-11°C		
Alternation of Length	+50mm	-50mm	+28,5mm	-18,5mm		
Earth Pressure at Abutment	50 kN/m ²		1,0 k			
Vertical Deformation	63	mm	57 mm			
Inclination Steel Columns and Abutment	+0,3	-0,3	+0,3°	-0,3°		

JCSS Workshop on Assessment of Existing

Structures 28th & 29th January 2021

Summary

• Seitenhafenbridge:

- Monitoring system is working since start for operation in 2011
- Reporting and maintenance is awarded in regular intervals by client
- System has shown that the structure behaves as assumed
- Monitoring improves understanding and may influence future design

COST TU1406 Quality specifications for roadway bridges, standardization at a European level

Performance indicators, lifetime assessment – ?Monitoring?

Alfred Strauss, Jose Matos, Joan Casas, Rade Hajdin

Key Performance Indicators, KPI's

KPIs relate to a whole bridge and are as follows:

- Reliability is the probability of structural failure (safety), operational failure (serviceability) or any other failure mode occurring during the service life of the bridge.
- **Availability** is the proportion of time a bridge is open for service. It does not include failure-related service outages but the ones due to planned maintenance interventions. Alternatively, the Availability can be measured as additional travel time due to an imposed traffic regime on bridge.
- **Safety** is the situation of life and limb being protected from harm during the service life of a bridge. Loss of life and limb due to structural failure is not included by this definition (since it would overlap with the Reliability).
- **Economy** is related to minimizing the long-term cost of maintenance activities over the service life of a bridge.
- **Environment** is related to minimizing the harm to environment during the service life of a bridge.

Performance (Detection) to Key Performance (Life Cycle Cost & LCA): Strategic KPI's-based Decision-making Processes

Performance (Detection) to Key Performance (Life Cycle Cost & LCA):

R. Hadin COST TU 1406

Quality Control Plan based on Key Performance Indicators for a Sustainable Asset Management

Asset Management

Maintenance Scenarios (Sustainability based)

Δ

Deterioration Processes – Prediction Methods – Digital Twin Approaches

Lifetime Assessment – Durability Monitoring Curing Issues

Alfred Strauss, BOKU Martin Peyerl, SMART Minerals

Post-treatment of concrete

GAS PERMEABILITY

- Höchste GP bei 1d NB-Dauer, für alle NB-Arten → Einfluss der Trocknung
- Höhere GP der Oberseite im Vergleich zur Schalseite
- **NB1** oder **NB2** im Alter von 7d \rightarrow (sehr) guter Oberflächenzustand
- NB3 im Alter von 7d → mittelmäßiger Oberflächenzustand

Understanding sustainable material performance (from the cradle to the bare) \rightarrow Curing, Aging and Degradation Project "Optimized material post-treatment for an improved structural performance (OptiNB)"

Porositatsanaivse

· Schadens- und Versagensanalyse (z.B. bei Oberflächenzugfestigkeitsprüfung von Beton)

COMPUTER TOMOGRAPHY

- Analyse von Rissen in Korn, Zement bzw.
- Grenzflächen
- Analyse Risswachstum
- Untersuchung der Kornverteilung

GAS PERMEABILITY CLASSIFICATION

CONCRETE B5 C30/37 CEM II/A-M (S-L) 42,5N; 12,5 % AHWZ W/B-Wert = 0.48L10 = 2,8-2,9 %

- **CONCRETE B3** C25/30 CEM II/A-M (S-L) 42,5N; 13,8 % AHWZ W/B-Wert = 0.53L10 = 2,5-3,6 %
- **CONCRETE BS1C** C25/30CEM I 42,5N SR0 WT27 C3A-frei 40 % AHWZ, XF4, W/B-Wert = 0.48L10 = 5,8-7,3 %

Alternative sensor-based assessment options Hyperspectral analysis

10 12 14 16 18 20 22 24 26 28

PROBENALTER [d]

HYPERSPECTRAL SIGNATURE CLASSIFICATION

0% 2 4 6

- Stärkster Reflexionsanstieg bei NB2 bis Tag 11 bzw. 15
- Geringste Veränderungen bei NB3, Verlauf relativ konstant
- Deutlichste Änderungen bis Tag 7 bei allen NB

It is imperative

to have a sustainable management of our infrastructure by means of homogenized, *innovative, transdisciplinary*, robust performance

- detection and monitoring methods
- assessment & evaluation techniques
- analyses & prediction techniques

Thank you very much

Alfred Strauss