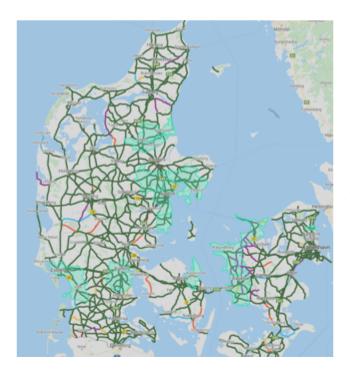
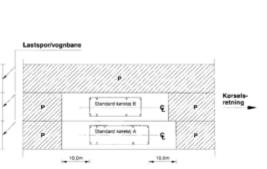


Joint Committee on Structural Safety Workshop on Assessment of Existing Structures 28th and 29th January 2021

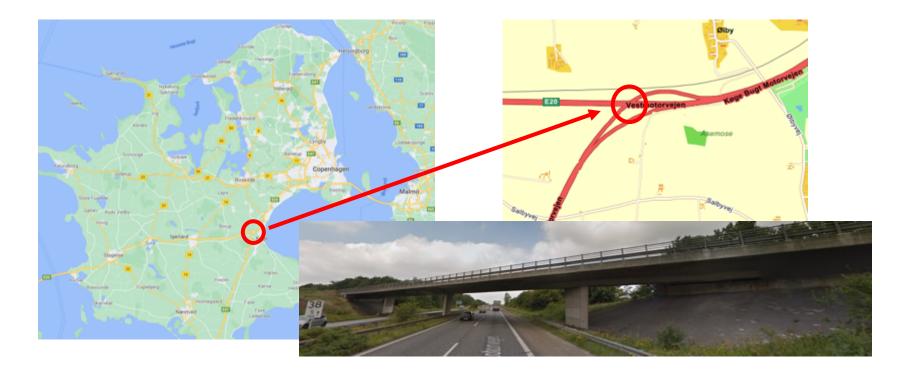
Capacity Upgrade of Existing Bridges by Probabilistic Methods Joan Hee Roldsgaard


EXAMPLES

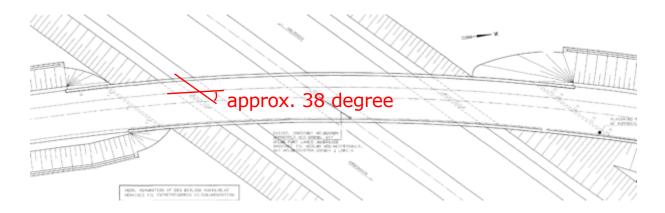


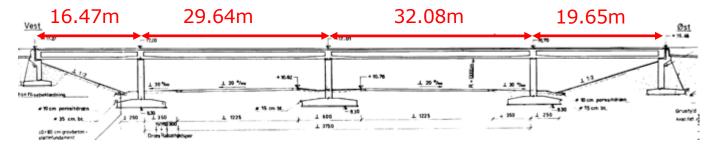
11/02/2021

DANISH CLASSIFICATION

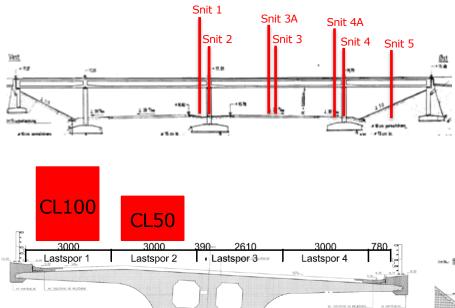


Klasse	Akselkonfiguration Akseltyk i tons og akselafstande i m	Sporvidde m
10		2.6
20	20 50 68 68 ↓ 22 ↓ 32 ↓ 44	2,6
30	50 8.0 9.5 9.5 1 32 1 33 1 4	2,6
40	6.6 6.0 6.0 4.2 10.8 10.8 <u>6.0</u> (14) 05 (14) (14)	2,6
50	65 55 65 10311,810.9 2 22 1.4 44 1.4 1.4	2,6
60	65 70 70 80 100115 80 [32 [42] 10 [44 [44] 44]	2,6
70	6.5 20 20 11,011,012,011,0 2.0 1.4 0.0 1.4 1.4 1.4	2,6
ao	80 80 80 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	2,6
90	70 70 95 95 95 110110142142110 [14] 22 [14] 22 [14]24[14]14]	2.6
100	Za Za iba iba iba iba iba iba iba iba iba ib	2,6
125	70 70 85 85 6*164 [44] 88 [44] 80 [44](4](4](4]	2.8
150	70 70 88 88 74 74 758 [14] 88 [14] 88 [14] 14 [14] 14 [14]	2,8
175	70 70 85 85 71 14 14 14 14 14 14	2,0
200	രം സംഭംബം പ്രിയിച്ച പിച്ചിച്ചിച്ചിച്ച	2.8

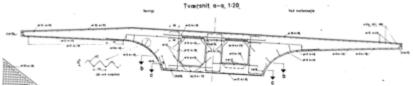

HIGHWAY BRIDGE


11/02/2021

GEOMETRI

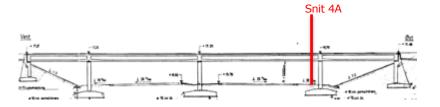


- < Class 100 after reisolation
- Skew supports
- Prestressed bridge



RAMBOLL

DETERMINISTIC



- Moment capacity ok
- Shear reduction due to the inclination of the prestressing cables
- Shear in the middle web
- Torsion in the horizontal flanges critical

RAMBOLL

DETERMINISTIC

Class 100

	Vertical wall		Horizontal wall			
	cot(θ)	µ _{reinforcement}	μ _{concrete}	cot(θ)	µ _{reinforcement}	μ _{concrete}
3 m	4	0.98	0.90	1.65	1.31	1.32
4 m	4	0.94	0.86	1.65	1.25	1.26
5 m	3.9	0.91	0.79	1.65	1.18	1.18

$V_{reinforcement} = V_{concrete}$ $f_{y} \cdot \cot \theta \cdot z \cdot A_{sw_{-}V} = \frac{t_{ef} \cdot z \cdot v_{t} \cdot f_{c}}{\left(\cot \theta + \frac{1}{\cot \theta}\right)}$ $\cot \theta = \sqrt{\left(\frac{t_{ef} \cdot v_{t} \cdot f_{c}}{f_{y} \cdot A_{sw_{-}V}}\right) - 1}$

Critical limit state becomes:

$$\frac{\sqrt{\left(V_{reinforcement}\right)^{2} + \left(V_{concrete}\right)^{2}}}{\sqrt{2}} \geq V_{Ed_{_}T}$$

Class 70

	Vertical wall		Horizontal wall			
	cot(θ)	µ _{reinforcement}	μ _{concrete}	cot(θ)	µ _{reinforcement}	$\mu_{concrete}$
3 m	4	0.81	0.68	1.65	0.99	0.99
4 m	4	0.78	0.65	1.7	0.92	0.97
5 m	4	0.74	0.62	1.8	0.83	0.95

11/02/2021

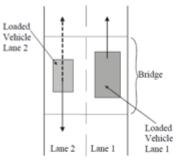
TARGET SAFETY LEVEL

 $K_{FI} \times (1.00 \times Permanent load + 1.25 \times \varphi \times Vehicle A + 1.05 \times \varphi \times Vehicle B + 0.56 \times UDL)$ Φ the dynamic factor decreases from 1,25 to 1,13.

100	7.0 7.0 9.5 9.5 11.5 11.5 11.5 15.1 15.1 11.5 1.4 3.2 1.4 6.0 1.4 1.4 1.4 1.4 1.4
50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Failure		Failure with warn- ing but without ca-		
type	capacity reserve	pacity reserve	warning	
ß	4.26	4.75	5.20	
$\frac{P_t}{P}$	10-5	10-6	10-7	
f	10	10	10	

Table 3.1: Required safety index for ultimate limit states.

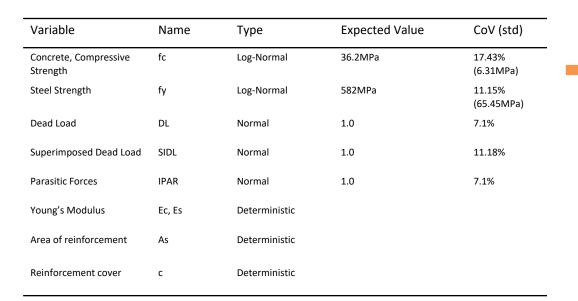

RAMBOLL

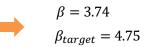
11/02/2021

RAMBOLL

STOCHASTIC TRAFFIC LOAD

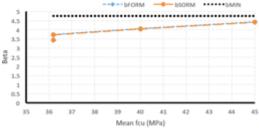
Variable	Name	Туре	Expected Value	CoV (std)
Vehicle weight Class 100	μ_1, σ_1	Parameters in Normal distribution	1071kN	4.58% (49.1kN)
Vehicle weight Class 50	μ_2, σ_2	Parameters in Normal distribution	521kN	9.42% (49.1kN)
Vehicle length	L_1	Deterministic	19.0m	
Vehicle length	L_2	Deterministic	11.9m	
Influence length	Il_1, Il_2	Deterministic	32.1m	
Dynamic increment	ε	Normal	0.0	100%
Model Uncertainty	I_{m1}, I_{m2}	Normal (independent)	1.0	10%
Relative importance	ρ_1, ρ_2	Deterministic	0.90/0.10	
Annual truck frequency	N_{1}, N_{2}	Deterministic		
Speed	V_{1}, V_{2}	Deterministic		
% Trucks in flow	Load ₁ , Load	Deterministic	100%/100%	




The total extreme load effect:

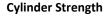
 $F_{max}(q) = \exp\left(-(\nu_1 - \nu_{12})T(1 - F_1(q))\right)$ $\cdot \exp\left(-(\nu_2 - \nu_{12})T(1 - F_2(q))\right)$ $\cdot \exp\left(-\nu_{12}T(1 - F_{12}(q))\right)$

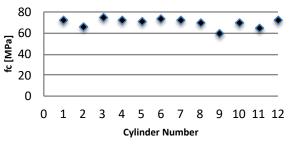
11/02/2021


STOCHASTIC VARIABLES

Variation in Beta as a Function of Concrete Strength

RAMBOLL



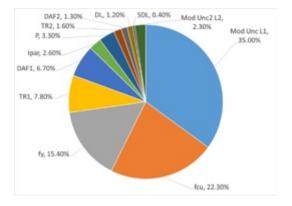


UPDATED CONCRETE STRENGTH

Variable	Name	Туре	Expected Value	CoV (std)
Concrete, Compressive Strength	fc	Log-Normal	58.7MPa	15.87% (9.32MPa)
Steel Strength	fy	Log-Normal	582MPa	11.15% (65.45MPa)
Dead Load	DL	Normal	1.0	7.1%
Superimposed Dead Load	SIDL	Normal	1.0	11.18%
Parasitic Forces	IPAR	Normal	1.0	7.1%
Young's Modulus	Ec, Es	Deterministic		
Area of reinforcement	As	Deterministic		
Reinforcement cover	С	Deterministic		

Results of Cylinder Tests on the Structure, $f_{ck} = 61.5$ MPa. Based upon Eurocode assume $f_{ck} = 50$ MPa.

f _{ck} [MPa]	$E[f_c][MPa]$	V_{f_i}
5	6.76	0.22
10	12.8	0.18
15	18.9	0.17
20	24.8	0.16
25	30.6	0.15
30	36.2	0.14
35	41.7	0.13
40	47.0	0.12
45	52.8	0.12
50	58.7	0.12


11/02/2021

RESULTS

	Deterministic	$m{eta}=5.33$ with Class 100	$oldsymbol{eta}=4.82$ with Class 115
Class 115 vehicle	1.25	-	1.19
Class 100 vehicle	1.25	1.31	-
Class 50 vehicle	1.05	1.08	1.08
Dynamic Amplification $\phi_{Class115}$	1.13	1.16	1.14
Dynamic Amplification $\phi_{{\it Class50}}$	1.13	1.14	1.14
Υ _c	1.45	1.30	1.38
γs	1.20	1.12	1.1
K _{FI}	1.1	1.0	1.0

Table 1: Old and new partial safety factors - Vestmotorvejen

CONCLUSIONS

- Capacity upgrade from Class 70 to Class 115
- Avoidance of unnecessary repair
- Cost savings
- CO2 savings

Joint Committee on Structural Safety

www.jcss-lc.org

JCSS Workshop on Assessment of Existing Structures 28th & 29th January 2021

11/02/2021