

Joint Committee on Structural Safety

Workshop on Assessment of Existing Structures 28th and 29th January 2021

fib TG 3.1 Developments Concerning Semi-Probabilistic Format

M. Sykora and D. Diamantidis

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG **1. INFORMATION ON TG3.1**

Full-probabilistic and semi-probabilistic methods for existing structures

Chairs and technical secretary: Miroslav Sykora, Raphaël Steenbergen (TNO Delft), Wouter Botte (Ghent University), 22 active out of 31 members

- **Reliability** and (risk) **assessment** of existing structures
- *Target levels* for assessment and retrofitting
- Fully probabilistic reliability analysis
- Semi-probabilistic assessment of existing structures

but also revision of *basis for design* in Model Code **MC 2020**, including **partial factors**

JCSS Workshop on Assessment of Existing Structures 28th & 29th January 2021

Partial factor methods for existing concrete structures

> Recommendation Task Group 3.1

> > December 2016

2. VERIFICATION FORMATS/ METHODS

- Partial factor method
- Reliability based method
- Risk informed method

hierarchy compatible to prEN1990 (version 22-09-2020, Annex C)

C.3.1 Overview of reliability verification approaches

Method: the greek word **methodos** means 'pursuit of knowledge', from meta- (expressing development) + odos (way)

3. TARGET RELIABILITY IN MC2020

<i>Table 5.2-2:</i>	Annual target β -values for Ultimate Limit States based
	on economic optimisation (examples), adopted from
	(JCSS, 2001) and ISO 2394

Relative cost of	Consequence Class			
safety measure	CC1	CC2	CC3	
Large (A)	3.1	3.3	<u>3.7</u>	assessment
Normal (B)	3.7	4.2	<mark>4.4</mark>	design
Small (C)	4.2	4.4	4.7	C

Table 5.2-3:Informative target reliability indices β for structures to
be designed, related to a 50-year reference period

REASONS FOR INTRODUCING ANNUAL TARGET LEVELS

- Complies with concept of *systematic repairs*.
- Changing reference period from 50 years to 1 y. *decreases scatter of β-levels* for different load ratios and fixed α-factors.

Meinen & Steenbergen - Reliability levels obtained by Eurocode partial factor design..., Heron

- Target levels need not be recalculated for existing structures with *different* service lives.
- More consistent with regulations/ acceptance criteria related to life safety
 - no need for averaging of human risks over longer periods
- More suitable for *rapid degradation* (fatigue) no averaging over 50 years when failure is likely in last few years

Steenbergen, Rozsas, Vrouwenvelder - Target reliability of new and existing structures..., Heron

• **Updating** considering new information (proof loading, tests, measurements, satisfactory past performance) is more illustrative.

4. PARTIAL FACTOR FORMAT Inequality for verification with assessment values:

Assessment value of action effects is determined in the same way as design value, but substituting values of all design parameters by corresponding values for assessment.

Partial factors can be set **fixed** or can be **adjusted**

 $E_a \leq R_a$

a) Fixed partial factors

cluster of cases: e.g. consequence classes

b) Adjusted (flexible) partial factors individual case

27/01/2021

JCSS Workshop on Assessment of Existing Structures 28th & 29th January 2021

Partial factors γ depend on:

- > Target reliability index β_t : reduced values
- > Sensitivity factor α : rule for the values (s. EN 1990-1 C.4.4.2)
- Distribution type and parameters (updated)

The updating methods can be applied in accordance with the principles given in JCSS Probabilistic Assessment of Existing Structures and fib Bul. 80.

Snow height on ground 40 years

MC2020, 6.4.3 Partial factor format

• Change $\beta_{50} \rightarrow \beta_1$ should be accompanied by *changes of sensitivity factors*!

Parameter type	Influence	Coefficient		
Resistance	Leading	0.8		
	Accompanying	$0.4 \cdot 0.8 = 0.2$		
Load effect	Leading	-0.7		
	Accompanying	-0.4 · 0.7 = -0.28		
Parameter type				
	Influence	Coefficient		
Resistance	Influence Leading	Coefficient 0.7		
Resistance	Influence Leading Accompanying	Coefficient 0.7 0.4 · 0.7 = 0.28		
Resistance Load effect	Influence Leading Accompanying Leading	Coefficient 0.7 0.4 ⋅ 0.7 = 0.28 -0.8		

MC2020, 6.4.3 Partial factor format

Table 6.4.3-y2: Recommended values of the partial factors γ_M formaterials (design)

ccAlways *update* for existing structures!

Table 6.4.3-5:Recommended values of the partial factors γ_M for
materials for assessment to verify the need of safety

measure(s)

CC 2M

	2C		<u>Xs</u>	
$V_{fc,is} =$	0.08	0.15	finished str.	normal unc. in geo.
CC1	1.10	1.10	0.975	1.075
CC2	1.125	1.15	1.0	1.075
CC3	1.15	1.20	1.0	1.1

JCSS Workshop on Assessment of Existing

Structures 28th & 29th January 2021

5. DISCUSSION

 Probabilistic modulation 	del of l	Time-variant com	ponents			
$E_Q \approx \text{model unc. x t}$		Variable load, load parameter	Ref. period	Probab. Pok [-]	CoV (V _Q) [-]	Bias (<u>µo</u> / <u>Q</u> k) [-]
shape, gus		Imposed	5 years	0.995	1.1	0.20
Time-invariant coefficien		(<u>Q</u> imp)	50 years	0.95	0.37	0.59
		Basic wind speed	1 year	0.98	0.15	0.72
Variable load	Proba	(Yb)	5 years	0.904	0.13	0.86
	(\mathbf{P}_{α})	-	50 years	0.364	0.10	1.05
		Basic wind pressure $(W = v_b^2)$	1 year	0.960	0.32	0.60
Imposed (C_{0Qimp}) Gun	hbel		5 years	0.817	0.23	0.85
Wind (Cow)	0.95	Road traffic (<i>T</i>)	50 years	0.132	0.16	1.19
	0.75		1 year	0.999	0.075	0.73
Road traffic (C_{0T})	-		5 years	0.995	0.069	0.80
Snow (C)	0.0	Ground snow load	50 years	0.95	0.061	0.90
	0.9		1 year	0.98	0.65	0.37
27/01/2021		(S)	5 years	0.904	0.36	0.68
			50 years	0.364	0.22	1.11

Why does $\gamma_{S,design}$ = 1,15 reduce to $\gamma_{S,assess}$ = 1,0?

• ,Global' partial factor:

 $\gamma_{\mathsf{M}} \approx [\exp(-1.645V_{\mathsf{f}})] / [\mu_{\theta \mathsf{R}} \, \mu_{\mathsf{a}} \exp(-\alpha_{\mathsf{R}} \, \beta \, \sqrt{(V_{\theta \mathsf{R}}^2 + V_{\mathsf{a}}^2 + V_{\mathsf{f}}^2))}]$

- MC design $\gamma_{S,design}$ = 1,15:
 - V_f = 0,045; $\mu_{\theta R}$ = 1,09 and $V_{\theta R}$ = 0,045
 - normal uncertainty in geometry: $\mu_a = 0.95$ and $V_a = 0.05$

• for
$$t_{ref} = 50 \text{ y.: } \alpha_R = 0.8 \text{ and } \beta = 3.8$$

- Changing $t_{ref} = 1 \text{ y.: } \alpha_R = 0,7 \text{ and } \beta = 3,3 \text{ gives } \gamma_{S,assess} = 1,08$
- Assuming further effective depth is based on measurements on existing structure, $\mu_a = 1$ and $V_a = 0.01$ apply, yielding $\gamma_{S,assess} = 0.99$

Comparison of resistances (CC2, imposed load)

6. CONCLUSIONS

- Fixed partial factors recommended for conventional cases MC assessment (β_t = 3.3)
- Adjusted partial factors for individual cases where:
 - overcoming degree of approximation with fixed values
 - for key members, improved production or execution quality etc.
- Ongoing numerical checks
- Further development of reliability-based and risk-informed assessment (beyond the scope of MC 2020)

Joint Committee on Structural Safety

WWW.jCSS-lC.Org Thank you for your attention!

Miroslav Sykora, Dimitris Diamantidis *fib* TG 3.1 Developments Concerning Semi-Probabilistic Format