JCSS

Joint Committee on Structural Safety Workshop on Assessment of Existing Structures 28th and 29th January 2021

Some Experiences with proof loading of bridges Svend Engelund COWI

Proof loading of bridges

Participants

- The Danish Road Directorate
- The Technical University in Denmark
- COWI

25/01/2021

Proof loading of bridges

- Cradles
- Frames
- Beams
- Dead load
- Jacks

Proof loading

1/25/2021

Monitoring

- Surveyer measures the deflection
- Measurements of the deflection by laser
- Fotos of the bridges are analyses using ARAMIS
- Deflections are measured by sensors
- The load is measured using the jacks

25/01/2021

Results

6

Challenges

- The actual structural behavior of bridges is different from the one predicted using our computational models
- It is difficult to formulate a limit state function defining a failure criterium
- Reliability updating using Bayesian statistics is in general not possible
- The response of the bridge may be difficult to determine with sufficient accuracy
- There may be a risk of brittle failure

Recommendations

- Use a load configuration that represents the actual loads acting on the bridge
- Determine the target load such that the probability that the load is exceeded within a given period of time corresponds to the acceptance criteria (no information regarding the structure is taken into account). This is a conservative approach overestimating the target load.
- Identify stop criteria that are measurable (crack width and deflection)
- Use Monitoring methods with a high level of accuracy (compared to the stop criteria)
- Avoid brittle failure

25/01/2021

Planning proof loading

- What is the relevant failure mechanism(s)?
- Is brittle failure a concern?
- Where should the load be placed?
- How large a load should be applied?
- When do we stop the test?
- How do we measure the relevant parameters?
- How do we interpret the test results?

Probabilistic model

The probabilistic model most reflect

- The legislation
- The administration
- The degree of control

50		2,6
60	6.5 7.0 7.0 9.3 12.5 11.5 9.3 3.2 1.4 6.0 1.4 1.4 1.4	2,6
70	6,6 9,0 9,0 11,013,013,011,6 3,2 1,4 8,0 11,4 1,4 1,4	2,6
80	8.0 9.0 8.0 9.0 9.0 14.0 14.0 16.5 3.2 14.4 6.0 14.4 14.4 14.4 14.4	2,6
90	7.0 7.0 95 9.5 11.011.014.714.711.0 1.4 0.2 1.4 0.0 1.4 1.4 1.4 1.4	2,6

Probabilistic model

Parameters

- The weight of vehicles
- The axle loads and the correlation between individual axle loads
- The geometry of vehicles
- Traffic intensity
- Dynamic amplification factor
- Model uncertainty

How large a load should be applied?

Determine the target load such that the probability that the load is exceeded within a given period of time corresponds to the acceptance criteria (no information regarding the structure is taken into account)

$$g = \eta \, S_d - \left((1 - \alpha) G + \alpha Q \right)$$

- *G* permanent load
- *Q* maximum annual variable load
- α models the ratio between variable and permanent loads

Future work?

- Develop a probabilistic model
- Determine the relevant model parameters
- Develop a guideline for proof loading

Joint Committee on Structural Safety

www.jcss-lc.org