

Joint Committee on Structural Safety Workshop on Assessment of Existing Structures 28th and 29th January 2021

Monitoring Bridges Using Bridge Weigh-in-Motion Technology

Aleš Žnidarič

Content

- 1. Traffic Load Monitoring and Bridge-WIM
- 2. Modelling traffic load effects on bridges
- 3. Monitoring bridge performance indicators with B-WIM
- 4. Way forward

Traffic loading

SLOVENIA NATIONAL BUILDING AND CIVIL ENGINEERING INSTITUTE

Measurements of traffic loading

- traffic counters no information about axle loads
- weighing devices

Weigh-in-motion systems

Bridge WIM system...

... or **B-WIM** is a measuring device that uses an existing instrumented structure – a bridge or a culvert – to 'weigh' road vehicles or trains in motion, at normal operating speed.

Bridge WIM system

- since 1979
- research in Europe from 1993 to 1999
- SiWIM[®] system since 2000
- over 5000 installations around the globe.
- strain measurements
- developments and applications in Europe, USA, Japan, Korea...
- main benefits:
 - portable, does not disturb traffic
 - measure bridge performance under traffic

Žnidarič, Kalin, Kreslin. Improved accuracy and robustness of bridge weigh-in-motion systems, Structure and Infrastructure Engineering, Volume 14, 2018 - Issue 4

Typical bridges

Viaduc de Millau – France

Neiporet railway truss bridge – Poland

Traffic loads on bridges

- Change over time
- Important considerations:
 - What are the actual traffic loads?
 - How traffic loads are transformed into load effects / stresses / strains?
 - How traffic loads are distributed across the structure?
 - What is the dynamic amplification?

REALISTIC LOADS +
MODEL UPDATING

Modelling traffic load effects on bridges

12

JCSS Workshop on Assessment of Existing

Bridge performance under traffic

Numerical models

Load tests:

- with pre-weighed vehicles
- with B-WIM system:
 - Influence lines
 - LF/GDF
 - DAF

On bridges with IL < 40 m

DD ZA SLOVENIAN DBENIŠTVO NATIONAL BUILDIN /ENIJE AND CIVIL ENGINE INSTITUTE

Measurement of bridge KPIs – Influence line

- IL measured from each loading event
- mean IL (+STD)
 used to calibrate
 structural model

Žnidarič, Kalin. Using bridge weigh-in-motion systems to monitor single-span bridge influence lines. *Journal of Civil Structural Health Monitoring* (2020) 10:743–756

JCSS Workshop on Assessment of Existing

27-m long New Jersey underpass

NATIONAL BUILDING AND CIVIL ENGINEERING

Measurement of bridge KPIs – Influence line

Žnidarič, Kalin. Using bridge weigh-in-motion systems to monitor single-span bridge influence lines. *Journal of Civil Structural Health Monitoring* (2020) 10:743–756

JCSS Workshop on Assessment of Existing

Measurement of bridge KPI – GDF

- measured & statist. evaluated (mean & STD) of:
 - Girder Factors GDF
 - Lane Factors LF
- substantial differences btw. bridges

Žnidarič, Kalin. Using bridge weigh-in-motion systems to monitor single-span bridge influence lines. *Journal of Civil Structural Health Monitoring* (2020) 10:743–756

JCSS Workshop on Assessment of Existing

Dynamic response of a bridge

• 10 000s bridge responses

GRADBENIŠTVO

Kalin, Anžlin, Kreslin, Žnidarič. *Measurements of Bridge Dynamic Amplification Factor Using Bridge Weigh-in-Motion Data*, accpt. for publ. in Structure & Infrastructure Engineering

 $DAF = \frac{S_{total}}{S_{static}}$

• 10 000s bridge responses

34-m bridge – 5004 measured DAF values

JCSS Workshop on Assessment of Existing

- 10000s bridge responses
- analysis of 5 US and 12 SI bridges

17 datasets, 202 to 747 000 DAF values

JCSS Workshop on Assessment of Existing

- 10 000s bridge responses
- analysis of 5 US and 12 SI bridges
- in line with theory, how to implement it in codes?

Kalin, Anžlin, Kreslin, Žnidarič. *Measurements of Bridge Dynamic Amplification Factor Using Bridge Weigh-in-Motion Data*, acc. for publ. in Structure & Infrastructure Engineering

Optimised safety assessment of bridges

More reliable information, less uncertainties

JCSS Workshop on Assessment of Existing Structures 28th & 29th January 2021

ZAVOD ZA

SLOVENLIE

GRADBENIŠTVO

ZAG

SLOVENIA

NATIONAL BUILDING

AND CIVIL ENGINEERING

Way forward...

- all questionable bridges cannot be replaced, rehabilitations should be as optimal as possible
- quality data crucial:
 - (almost) any measured data is better than no data
 - B-WIM data reduces uncertainties, substantial savings in BM
 - a lot of data already available, need for more
- should be included in assessment guidelines and codes, in particular for site-specific optimisations

Thank you for listening!

ales.znidaric@zag.si

Slovenian National Building & Civil Engineering Institute, Dimičeva 12, Ljubljana, Slovenia

Joint Committee on Structural Safety

www.jcss-lc.org

