Joint Committee
on Structural Safety
Workshop on Assessment of Existing

Structures

$28^{\text {th }}$ and $29^{\text {th }}$ January 2021
Monitoring Bridges Using Bridge Weigh-in-Motion Technology

Aleš Žnidarič

Content

1. Traffic Load Monitoring and Bridge-WIM
2. Modelling traffic load effects on bridges
3. Monitoring bridge performance indicators with B-WIM
4. Way forward

Traffic loading

Z^G
noin and
Nan

Measurements of traffic loading

- traffic counters - no information about axle loads
- weighing devices

Static
scales
Weigh-in-motion (WIM) systems
On-board weighing

Weigh-in-motion systems

Bridge WIM system...

... or B-WIM is a measuring device that uses an existing instrumented structure - a bridge or a culvert - to 'weigh' road vehicles or trains in motion, at normal operating speed.

Bridge WIM system

- since 1979
- research in Europe from 1993 to 1999
- SiWIM ${ }^{\oplus}$ system since 2000
- oympinf installations around the globe
- stmaneasicerits
- develormeBs2rs applications in Europe, JSA, Japan, Korea...
- main benefits:
- portable, does not disturb traffic
- measure bridge performance under traffic

BRIDGEMON
 AND CIVL ENGINEERING
iNSTIUTE

Typical bridges

Viaduc de Millau - France

Neiporet railway truss bridge - Poland

Traffic loads on bridges

- Change over time
- Important considerations:
- What are the actual traffic loads?

REALISTIC LOADS
 $+$
 MODEL UPDATING

- How traffic loads are transformed into load effects / stresses / strains?
- How traffic loads are distributed across the structure?
- What is the dynamic amplification?

Modelling traffic load effects on bridges

Long-term simulations

Bridge performance under traffic

Numerical models

Load tests:

- with pre-weighed vehicles
- with B-WIM system:
- Influence lines
- LF/GDF
- DAF

On bridges with IL < 40 m

Measurement of bridge KPIs - Influence line

- IL measured from each loading event
- mean IL (+STD) used to calibrate structural model

$\nabla_{1} \square_{2} \square_{3} \square_{4}$

Žnidarič, Kalin. Using bridge weigh-in-motion systems to monitor single-span bridge influence lines. Journal of Civil Structural Health Monitoring (2020) 10:743-756 AND CIVL ENGINEERING
iNSTIUTE

JCSS Workshop on Assessment of Existing
Structures 28th \& 29th January 2021

27-m long New Jersey underpass

Measurement of bridge KPIs - Influence line

- IL measured from each loading event
- mean IL (+STD)

Žnidarič, Kalin. Using bridge weigh-in-motion systems to monitor single-span bridge influence lines. Journal of Civil Structural Health Monitoring (2020) 10:743-756

Measurement of bridge KPI - GDF

- measured \& statist. evaluated (mean \& STD) of:
- Girder Factors - GDF
- Lane Factors - LF
- substantial differences btw. bridges

Žnidarič, Kalin. Using bridge weigh-in-motion systems to monitor single-span bridge influence lines. Journal of Civil Structural Health Monitoring (2020) 10:743-756

Dynamic response of a bridge

Dynamic amplification

$$
D A F=\frac{S_{\text {total }}}{S_{\text {static }}}
$$

- 10000s bridge responses

Kalin, Anžlin, Kreslin, Žnidarič. Measurements of Bridge Dynamic Amplification Factor Using Bridge Weigh-in-Motion Data, accpt. for publ. in Structure \& Infrastructure Engineering

Dynamic amplification

$$
D A F=\frac{S_{\text {total }}}{S_{\text {static }}}
$$

- 10000 s bridge responses

34-m bridge - 5004 measured DAF values

Dynamic amplification

$$
D A F=\frac{S_{\text {total }}}{S_{\text {static }}}
$$

- 10000s bridge responses
- analysis of 5 US and 12 SI bridges

17 datasets, 202 to 747000 DAF values

JCSS Workshop on Assessment of Existing
Structures 28th \& 29th January 2021

Dynamic amplification

$$
D A F=\frac{S_{\text {total }}}{S_{\text {static }}}
$$

- 10000 s bridge responses
- analysis of 5 US and 12 SI bridges
- in line with theory, how to implement it in codes?

Kalin, Anžlin, Kreslin, Žnidarič. Measurements of Bridge Dynamic Amplification Factor Using Bridge Weigh-in-Motion Data, acc. for publ. in Structure \& Infrastructure Engineering

Optimised safety assessment of bridges

Z

Traffic Loading

Shear forces
site-specific time-dependant

More reliable information, less uncertainties

[^0] Structures 28th \& 29th January 2021

Way forward...

- all questionable bridges cannot be replaced, rehabilitations should be as optimal as possible
- quality data crucial:
- (almost) any measured data is better than no data
- B-WIM data reduces uncertainties, substantial savings in BM
- a lot of data already available, need for more
- should be included in assessment guidelines and codes, in particular for site-specific optimisations

Thank you for listening!

ales.znidaric@zag.si
Slovenian National Building \& Civil Engineering Institute, Dimičeva 12, Ljubljana, Slovenia

Joint Committee on Structural Safety

www.jcss-lc.org

[^0]: JCSS Workshop on Assessment of Existing

