

Target reliability in (building) codes of practice Ton Vrouwenvelder (TNO, the Netherlands)

Workshop on Risk Acceptance Criteria in Civil Engineering Decision Making Session 3: Regulatory Context 19-20 June 2023, Trondheim, Norway

Time line

< 1970

no formal targets in codes

1970-1985

- Scientific research
 - 1971: Ligtenberg (JCSS/TNO)
 - 1976: CEB 117
 - 1978: NKB
 - 1981: DIN

> 1985

• in codes of practice

Fig. 4. De bepaling van de meest economische waarden voor P_{F} .

(Ligtenberg, 1971)

Target reliabilities ULS (one year)

Loss of human lives	Eco	onor	nic (consec	ju e	ences					
	Mir	Minor Moderate Large									
Small	β=3	8.1	β=	3.7	f	β =4,2					
Normal	β=3	8.7	<mark>β=</mark>	4.2	β =4.7						
Large	β=4	.2	β=	4.4	β =5.2						
conseque	nces	Failure type									
) ,							
		Ductile no ext			a	Brittle					
				capacit	t y						
Less seri	β=3	.1	β =3,7		β =4,2						
seriou	serious			β =4.2		β =4.7					
Very seri	β =4	.2	β =4.7	β =5.2							

costs	consequences								
	Minor	Large							
Large	β =3.1	β=3.3	β =3.7						
Normal	β =3.7	β =4.2	β =4.4						
Small	β =4.2	β=4.4	β =4.7						

jcss model code / ISO 2394

NKB-Report 36 (1978) CEB127 (1980)

Published values around 1985

Country	Study	Ref	β _t	β _t
		[year]	1 yr	50 yr
USA	Galambos	1982		3,0
Germany	DIN	1981	4,7	
Germany	Koenig/Hosser	1981	4,7	3,8
Scandinavia	NKB	1978	4,2	
Belgium	SECO	1984		3,3
Netherlands	NEN	1987		3,6 ^d
UK	CIRIA	1977	>4	
International	CEB-112	1976		
International	CEB-116	1976		4,3
International	CEB-124/125	1978		4,3
International	CEB-127/128	1980	?	
Euro Com	Eurocode 1	1984		
International	ISO	1998		3,1 ^f

Background of codified target reliabilities

Economy

Human safety (number of persons killed)

Human safety (individual risk)

Environment

Calibration to previous codes

Central value **Calibration to previous codes**

CC	Reliability index β					
	β_{a} for	$\beta_{\rm d}$ for				
	$T_a=1 \text{ yr}$	$T_{\rm d}=50~{\rm yr}$				
CC3	5,2	4,3				
CC2	4,7	3,8				
CC1	4,2	3,3				

Eurocode

EN 1990

(2000)

Consequences	Description	Examples of buildings and civil
Class		engineering works
CC3	High consequence for loss of human	Grandstands, public buildings where
	life, or economic, social or	consequences of failure are high (e.g. a
	environmental consequences very great	concert hall)
CC2	Medium consequence for loss of human	Residential and office buildings, public
	life, economic, social or environmental	buildings where consequences of failure
	consequences considerable	are medium (e.g. an office building)
CC1	Low consequence for loss of human life,	Agricultural buildings where people do
	and economic, social or environmental	not normally enter (e.g. storage
	consequences small or negligible	buildings), greenhouses

Codified target reliabilities β for one year (including safety differentiation)

	3.1			3.5				4.0				4.5					5.0					
Artentina	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Canada	X	X	X	X	X	X	X	X	X	X	X	X	X	X	•				•			
China	X	Χ	Χ	Χ	X	X	X	Χ	Χ	Χ	Χ											
Denmark							X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	X					
Estonia												Χ										
Germany												Χ										
Holland						Χ	X	Χ	Χ	Χ	Χ											
SouthAfrica				Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	X	X	Χ	Χ	Χ	Χ			
Spain												X										
Sweden							Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ				
UK																			X			
USA										Χ												

For discussion:

- annual vs life time
- mean vs minimum
- explicit cost of safety measures
- degree of warning (e.g. brittle versus ductile failure)
- anticipated design working life
- Normal vs accidental actions
- environmental issues
- use of recourses in view of sustainability targets
- total number of human lives vs individual risk.
- taking account of deterioration
- inspection and maintenance
- relation with QA and robustness
- member vs system level

Economy: simplified analysis

$$C = C_0 + C_1 X + n C_f P_{fa}$$

X = design parameter

$$P_{fa} = \exp(-X/a)$$

$$dC/dX = 0 \qquad \longrightarrow \qquad P_{fa} = a C_1 / n C_f$$

Parameters a, C1, Cf and n have similar influence Human life loss may be included in Cf (LQI...) Degree of warning is part of human loss

Individual risk criteria

 $P_d = P_f P(d|f) < factor x 10^{-5} [1/yr]$

- 1. Assessment of P(d|f) is difficult
- 2. Factor depends on:

costs of safety measures, degree of voluntariness ... (ALARP)

3. Factor inspired by (accepted) risks related in other activities

4. Injuries not included

Fatal Accident Rates (FAR)

Cause of Death	During activity [/10 ⁸ hrs]	Annual probability [1/year]
Rock climbing	4000	1 / 500
Travel by air	15	1 / 70000
Travel by car	15	1 / 13000
High rise building industry	70	1 / 700
Offshore oil and gas-rigs	20	1 / 2500
Construction industry	5	1 / 10000
30-40 age group	8	1 / 1200
Chemical industry	1	1 / 50000
Accidents in the home	1.5	1 / 9000
California earthquake	0.2	1 / 50000

Systems

Two approaches:

□ Targets on system level

Targets on member level, system effects included in member failure consequences

degradation

Fatigue steel structures

Chloride/carbonation of concrete

$C_t = C_b + E (C_f + C_{in} + C_{ma} + C_{un}..)$ $P_{fi} = P(R_i - S_i < 0 \cap ..)$

In codes two requirements:

(1) Standard requirement for the undamaged structure
(2) P (damage < some limit) < target

For discussion:

- annual vs life time
- mean vs minimum
- explicit cost of safety measures
- degree of warning (e.g. brittle versus ductile failure)
- anticipated design working life
- Normal vs accidental actions
- environmental issues
- use of recourses in view of sustainability targets
- total number of human lives vs individual risk.
- taking account of deterioration
- inspection and maintenance
- relation with QA and robustness
- member vs system level