Risk acceptance criteria for bridges

...and other large infrastructure objects

Albrecht Lentz

Types of criteria

Three main types

- Motivated by prevention of casualties
- Motivated by prevention of socioeconomic consequences (loss of functionality, loss of asset itself)
- Combination of the above

Casualty criterion

Soc.-ec. criterion

Combined criterion

Types of criteria

Road/rail user safety

Tunnel user safety

Casualty criterion

Soc.-ec. criterion

AASHTO (bridges)

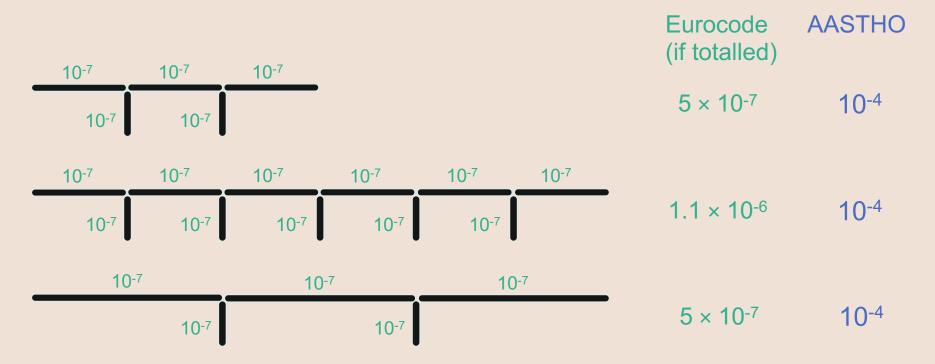
Ship impact → 10⁻⁴ / year for for entire bridge

Fire

(critical bridges)

 Analyses based on travel delay costs

Combined criterion


Most design codes

 Eurocode (any type of structural failure)

~10⁻⁷ / year <u>per</u> component in CC3

Also for accidental loads (= high-energy events)

Ship impact Eurocode vs. AASHTO

Danish bridges owned by Road Directorate & Banedanmark (rail)

New bridges (NA to EN 1991-1-7)

- Method I: 10⁻⁷ / year for structural failure due to accidental load
- Method II:
 - Road: 10⁻⁵ / year for events with large risk of loss of life + ALARP*)
 - Rail: 10⁻⁶ / year for events with large risk of loss of life + ALARP
 - Allowed to take measures reducing exposure of persons into account

Existing <u>road</u> bridges

- Method I: 10⁻⁶ / year for structural failure due to accidental load
- Method II:
 - 10⁻⁴ / year for structural failure + ALARP
 - 10⁻³ / year for structural failure if failure normally will not entail loss of life + ALARP
 - *) As low as reasonably practicable, based on cost-benefit analysis using willingness to pay to avert a fatality ("statistical value of life")

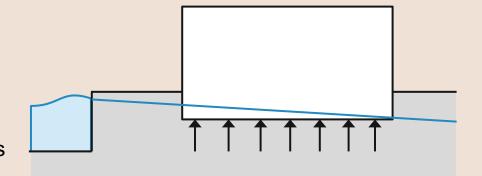
Norway

Accidental loads

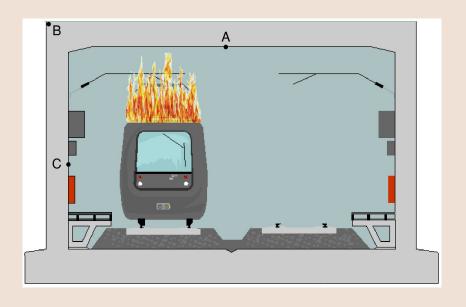
- NA to EN 1991-1-7 (all structures)
- Handbook for bridge design N400
- Loads occurring less often than 10⁻⁴ / year can be ignored

Great Belt Fixed Link

- Socio-economic criterion
 - 2 × 10⁻⁴ for disruption of entire link
 - 10⁻³ for disruption of road link
 - 10⁻³ for disruption of rail link
 - Approved by the transportation board of the Danish parliament
- Disruption risk is governed by high-energy events such as ship impact (bridges) and fire/storm surge (tunnel)

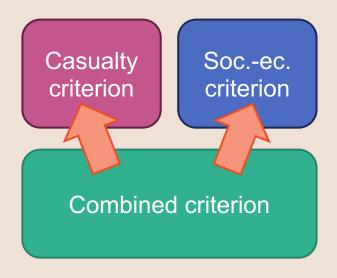

- Casualty criterion
 - Risk per passenger/vehicle-km as on average Danish road/rail section
- Casualty risk is governed by conventional traffic accidents
- High-energy events have been "disarmed" with respect to casualty risk

Other structures (Danish context)


Elderly, listed public building exposed to ground water pressure due to storm surge

- Risk: Failure of bottom slab, damage to facilities in the basement
- Water will not come suddenly
- → Loss of life is not the issue
- → Focus on socio-economic consequences instead of applying 10⁻⁶ / year blindly (Danish NA for buildings in CC3). What risk can the owner accept?

Other structures (Danish context)


Rail tunnel designed for passenger trains, will now soon be exposed to freight trains

- Placed at bottleneck in the European train network
- Fire risk, cut-and-cover slab with buildings on top
- Loss of life can occur in the early phase (<30 minutes)
- Disruption of the tunnel (collapse) can occur in the late phase (>60 minutes)
- → Risk acceptance criteria and risk-reducing strategy were handled separately

Conclusion

- 10⁻⁷ / year is a very harsh criterion when large infrastructure (high cost) is facing accidental loads (high energy)
- 10⁻⁷ / year does not differentiate in terms of the actual consequences
 - ALARP
 - Focus on actual consequences
 - If possible, define separate criteria for casualty risk and socio-economic risk

