TFY4305 Nonlinear Dynamics, Final Exam December 8, 2006 Solution Set

Problem 1

a) $\dot{x}=0 \Rightarrow y=0$ and $\dot{y}=0 \Rightarrow x=0 . \lambda=\left(\mu \pm \sqrt{\mu^{2}-4}\right) / 2$. Real part $\mu / 2$ vanishes as $\mu \rightarrow 0$.
b) Complex eigenvalues \Rightarrow ocillatory solutions.
c) $\dot{r}=h_{1}(r, \theta)=r(\mu-r) \sin ^{2} \theta, \dot{\theta}=h_{2}(r, \theta)=-1+(\mu-r) \cos \theta \sin \theta$.
d) $\mu \ll 1$ and $r \ll 1 \Rightarrow \dot{\theta}=-1 \Rightarrow \theta(t)=-t+\theta_{0}$.
e) As $\theta(t)=-t+\theta_{0},\left\langle\sin ^{2} \theta\right\rangle=1 / 2$ (see Strogatz, p. 224). This leads to $\dot{r}=h(r)=r(\mu-r) / 2$. $\dot{r}=0 \Rightarrow r^{*}=0$ or $r^{*}=\mu$.
f) $h^{\prime}(r)=\mu / 2-r \Rightarrow h^{\prime}\left(r^{*}=0\right)=\mu / 2$ and $h^{\prime}\left(r^{*}=\mu\right)=-\mu / 2$.
g) $r^{*}=0$ is stable for $\mu<0$ and unstable for $\mu>0 . r^{*}=\mu$ is unstable for $\mu<0$ and stable for $\mu>0$.
h) The bifurcation is not a generic Hopf bifurcation as the radius of the limit cycle grows as μ and not as $\sqrt{\mu}$, see Strogatz, p. 251.

Problem 2

a) $f_{r}\left(x_{n}^{*}\right)=x_{n}^{*} \Rightarrow x_{n}^{*}=0, x_{n}^{*}=+\sqrt{1-r}$ and $x_{n}^{*}=-\sqrt{1-r}$.
b) $f_{r}^{\prime}\left(x_{n}\right)=r+3 x_{n}^{2} \cdot f_{r}^{\prime}\left(x_{n}^{*}=0\right)=r \Rightarrow x_{n}^{*}=0$ is stable in the interval $[-1,1]$, so that $r_{-}=-1$ and $r_{+}=+1$.
c) $f_{r}^{\prime}\left(x_{n}^{*}= \pm \sqrt{1-r}\right)=3-2 r$. Fixed points $x_{n}^{*}= \pm \sqrt{1-r}$ are always unstable (when $r \leq 1$ where they exist).
d) At $r=r_{+}=1$ there is a pitchfork bifurcation where an unstable fixed point bifurcates into two unstable fixed points and becomes stable itself.
e) At $r=r_{-}=-1$, a period doubling takes place for $x_{n}^{*}=0$ (eigenvalue $=-1$).
f) $f_{r}^{2}\left(x^{c}\right) \approx(1+2 \epsilon) x^{c}-(2+4 \epsilon)\left(x^{c}\right)^{3}=x^{c}$. It is a second order equation with solution $x^{c} \approx \pm \sqrt{\epsilon}$.

