FY3452 - Solutions Exercise set 8 spring 2016

Jens O. Andersen

April 17, 2016

Problem 15.10

The metric is

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{r^{2}}{R^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{R^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega^{2} \tag{1}
\end{equation*}
$$

We would like to introduce a new time coordinate \tilde{t} such that the metric will be of the form

$$
\begin{equation*}
d s^{2}=-(1-f) d \tilde{t}^{2}+(1+f) d r^{2}-2 f d r d \tilde{t}+r^{2} d \Omega^{2} \tag{2}
\end{equation*}
$$

where $f=r^{2} / R^{2}$. The idea to this ansatz did not arise by divine inspiration but from a textbook on general relativity. You can also solve the problem using the same steps as in the case of the Schwarzschild metric. The transformation is written as

$$
\begin{equation*}
t=\tilde{t}+g(r), \tag{3}
\end{equation*}
$$

where $g(r)$ is an unknown function. Inserting $d t=\tilde{d t}+g^{\prime}(r) d r$ into the line element (1), we find

$$
\begin{equation*}
d s^{2}=-(1-f) d \tilde{t}^{2}-2 g^{\prime}(r)(1-f) d \tilde{t} d r-\left[g^{\prime}(r)\right]^{2}(1-f) d r^{2}+\frac{d r^{2}}{1-f}+r^{2} d \Omega^{2} \tag{4}
\end{equation*}
$$

Comparing this equation with the ansatz, we find

$$
\begin{equation*}
g^{\prime}(r)=\frac{f}{1-f} \tag{5}
\end{equation*}
$$

We do not need the explicit form of $g(r)$. The radial null lines satisfy

$$
\begin{equation*}
-(1-f) d \tilde{t}^{2}-2 f d r d \tilde{t}+(1+f) d r^{2}=0 \tag{6}
\end{equation*}
$$

One possilibility is $d r=d \tilde{t}$ or

$$
\begin{equation*}
\tilde{t}=r+\text { constant } \tag{7}
\end{equation*}
$$

This corresponds to outgoing light rays in a (r, \tilde{t}) diagram.
The other light rays are found as follows. Dividing by $d r^{2}$ and rearranging terms, we obtain

$$
\begin{equation*}
(1-f)\left(\frac{d \tilde{t}}{d r}-\frac{f}{1-f}\right)^{2}=\frac{1}{1-f} . \tag{8}
\end{equation*}
$$

Rearranging and taking the square root, we find

$$
\begin{align*}
\frac{d \tilde{t}}{d r} & = \pm \frac{1+f}{1-f} \\
& = \pm \frac{1+r^{2} / R^{2}}{1-r^{2} / R^{2}} \tag{9}
\end{align*}
$$

For $r>R$, the solution is

$$
\begin{equation*}
\tilde{t}= \pm\left[-r+2 R \operatorname{arctanh}\left(\frac{R}{r}\right)\right] . \tag{10}
\end{equation*}
$$

For $r<R$, the solution is

$$
\begin{equation*}
\tilde{t}= \pm\left[-r+2 R \operatorname{arctanh}\left(\frac{r}{R}\right)\right] \tag{11}
\end{equation*}
$$

These solutions diverge as $r \rightarrow R^{ \pm}$and do not cross $r=R$. Once $r>R$, we cannot enter the region $r<R$ since the only light ray crossing $r=R$ is outgoing.

Comment: The metric (1) is that of the socalled de Sitter space, which has a cosmological constant.

Problem 15.14

The four-velocity of an observer rotating with angular velocity Ω is

$$
\mathbf{u}_{\mathrm{obs}}=u_{\mathrm{obs}}^{t}(1,0,0, \Omega)
$$

We next use the normalization of the four-velocity. This yields

$$
\begin{equation*}
\mathbf{u}_{\mathrm{obs}} \cdot \mathbf{u}_{\mathrm{obs}}=\left(u_{\mathrm{obs}}^{t}\right)^{2}\left[g_{t t}+2 \Omega g_{t \phi}+\Omega^{2} g_{\phi \phi}\right]=-1 \tag{12}
\end{equation*}
$$

The quantity inside the brackets of (12) must be negative. The range of the angular velocity Ω is then given by the zeros of $g_{t t}+2 \Omega g_{t \phi}+\Omega^{2} g_{\phi \phi}$. These are denoted by $\Omega_{ \pm}$and given by

$$
\begin{equation*}
\Omega_{ \pm}=-\frac{g_{t \phi}}{g_{\phi \phi}} \pm \sqrt{\left(\frac{g_{t \phi}}{g_{\phi \phi}}\right)^{2}-\left(\frac{g_{t t}}{g_{\phi \phi}}\right)} . \tag{13}
\end{equation*}
$$

Thus the allowed angular velocities satisfy

$$
\begin{equation*}
\underline{\underline{\Omega_{-} \leq \Omega \leq \Omega_{+}}} \tag{14}
\end{equation*}
$$

As $r \rightarrow r_{+}$, we find

$$
\begin{equation*}
g_{t t} \rightarrow \frac{a^{2} \sin ^{2} \theta}{\rho_{+}^{2}}, \quad g_{\phi \phi} \rightarrow \frac{\left(2 M r_{+}\right)^{2}}{\rho_{+}^{2}} \sin ^{2} \theta \tag{15}
\end{equation*}
$$

where $\rho_{+}=r_{+}^{2}+a^{2} \sin ^{2} \theta$. Thus the two solutions coincide and the only allowed angular velocity is

$$
\begin{align*}
\Omega_{H} & =-\left(\frac{g_{t \phi}}{g_{\phi \phi}}\right)_{r=r_{+}} \\
& =\underline{\underline{2 M r_{+}}} \tag{16}
\end{align*}
$$

