Norges teknisk–naturvitenskapelige universitet **NTNU**

Institutt for fysikk Fakultet for naturvitenskap og teknologi

Eksamen i TFY4305 IKKELINEÆR DYNAMIKK

Fredag, 8. desember, 2006 09:00-13:00

Tillatte hjelpemidler: Alternativ B Godkjent lommekalkulator.

> K. Rottman: Matematisk formelsamling (alle sprogutgaver). O.H. Jahren og K.J. Knudsen: Formelsamling i matematikk.

Dette oppgavesettet er på 2 sider.

Oppgave 1

Consider the differential equations

$$\dot{x} = y \,, \tag{1}$$

$$\dot{x} = y,$$
 (1)
 $\dot{y} = -\left(\sqrt{x^2 + y^2} - \mu\right) y - x.$ (2)

- a) Show that (x,y)=(0,0) is a fixed point of Equations (1) and (2) for all values of μ . Find the eigenvalues of this trivial fixed point and show that the real parts vanish when $\mu = 0$.
- b) What is the character of the solutions that are expected to bifurcate at $\mu = 0$ (i.e., what kind of solutions)?
- c) Change to polar coordinates (r, θ) . Construct the resulting dynamical system $\dot{r} =$ $h_1(r,\theta), \dot{\theta} = h_2(r,\theta).$
- d) Show that in the case $\mu \ll 1$ and $r \ll 1$, the equation for $\dot{\theta}$ can be integrated to $\theta(t) = -t + \theta_0$ (plus terms of order μ and of order r).
- e) Apply averaging theory to derive an effective equation $\dot{r} = h(r)$. Use this equation to find the fixed points r^* of r.
- f) Investigate the stability of the trivial fixed point $r^* = 0$ as well as the nontrivial fixed point in a neighbourhood of $\mu = 0$.
- g) Plot the bifurcation diagram, i.e., (μ, r^*) .
- h) Is the bifurcation around $\mu \approx 0$ a generic Hopf bifurcation?

Oppgave 2

Consider the disrete mapping

$$x_{n+1} = f_r(x_n) = rx_n + x_n^3. (3)$$

- a) Determine the fixed points x_n^* of Equation (3).
- b) Show that $x_n^* = 0$ is a stable fixed point in an interval $[r_-, r_+]$ of the parameter.
- c) Draw the bifurcation diagram (r, x_n^*) using a full line for stable fixed points and dotted line for unstable fixed points.
- d) What kind of bifurcation takes place for $x_n^* = 0$ around $r \approx r_+$?
- e) What kind of bifurcation takes place for $x_n^* = 0$ around $r \approx r_-$?
- f) Show that a two-cycle with elements x_{\pm}^c exists for $r = r_- \epsilon$ where ϵ is a small parameter. Express x_{\pm}^c to lowest order in ϵ . (Hint: Start with the equation for the two-cycle elements, $x^c = f_r^2(x^c)$, and keep terms up to order ϵ and to order $(x^c)^3$.)