ntnu NTNU
Faculty of Science and Technology
Department of Physics

Exam TFY4305 Nonlinear dynamics Fall 2013

Lecturer: Professor Jens O. Andersen
Department of physics, NTNU
Phone: 73593131

Saturday December 212013
09.00h-13.00h

You may bring:
Approved calculator
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett \& Cronin: Mathematical Formulae
The problem set is three pages. Read carefully. Ask if in doubt. Viel Glück!

Problem 1

Consider the mechanical system shown in Fig. 1. It consists of two masses m that can slide on a horizontal rod. Two massless ropes are connecting the mass M to the masses m. The distance between the masses m and the z-axis is R and the system rotates around the z-axis with angular frequency ω. In a) and b), the masses m slide frictionlessly on the rod. Conservation of angular momentum of the system can be written as a second-order equation for R,

$$
\begin{equation*}
\ddot{R}+\alpha g-\frac{\beta}{R^{3}}=0 \tag{1}
\end{equation*}
$$

Figure 1: Set up in problem 1.
a) Show that Eq. (1) can be written as the system of two first-order equations given below:

$$
\begin{align*}
\dot{R} & =u \tag{2}\\
\dot{u} & =-\alpha g+\frac{\beta}{R^{3}} . \tag{3}
\end{align*}
$$

b) Find the fixed point $\left(R^{*}, u^{*}\right)$ for this system. Linearize the system and classify the fixed point. Explain why linearization can be applied in this case.
c) In the remainder, there is friction between the masses m and the rod. Newton's second law of motion can then be written as

$$
\begin{equation*}
\ddot{R}+\gamma \dot{R}+\alpha g-\frac{\beta}{R^{3}}=0, \tag{4}
\end{equation*}
$$

where $\gamma>0$ is a parameter. Rewrite Eq. (4) as a system of first-order equations and find the fixed point. Classify the fixed point as a function of the parameter γ. Explain the trajectories in phase space close to the fixed point and give a physical interpretation.

Problem 2

Consider the set of equations

$$
\begin{align*}
\dot{x} & =a-x+x^{2} y \tag{5}\\
\dot{y} & =b-x^{2} y \tag{6}
\end{align*}
$$

where $a>0$ and $b>0$ are parameters. We restrict ourselves to the region $x \geq 0$ og $y \geq 0$.
a) Find the fixed point for the system (5)-(6).
b) Find the equation for the curve that divides the $a-b$ plane into a region where the fixed point is stable and another region where it is unstable. Sketch this curve in the $a-b$ plane and indicate the two regions.
c) What type of bifurcation does the system go through as we cross the line you found in b)?

Problem 3

Consider the following model for the interaction between predators and prey:

$$
\begin{align*}
\dot{x} & =x[x(1-x)-y], \tag{7}\\
\dot{y} & =y(x-a), \tag{8}
\end{align*}
$$

where $x(t)$ is the number of prey (sheep) and $y(t)$ is the number of predators (wolves), and $a \geq 0$ is a constant. Obviously, we must have $x(t) \geq 0$ and $y(t) \geq 0$.
a) Sketch the nullclines in the first quadrant. Use $a>1$ in your sketch. Indicate the signs of \dot{x} and \dot{y} in the different regions.
b) Find the fixed points for the equations (7)-(8) and classify them.
c) Show that the wolves go extinct if $a>1$. Hint: use the result in a).
d) A Hopf bifurcation occurs for a critical value a_{c} of a. Find a_{c} and find the frequency of the limit cycle for $a \sim a_{c}$.

Problem 4

Consider the map

$$
\begin{equation*}
x_{n+1}=2 x_{n}(\bmod 1) . \tag{9}
\end{equation*}
$$

a) Find the fixed points for the map (9).
b) Find the unique period-2 cycle. Is the cycle stable?
c) Find the points $x_{0} \in[0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=0 \tag{10}
\end{equation*}
$$

