Fakultet for Naturvitskap og Teknologi
Institutt for Fysikk

Exam TFY4305 Nonlinear dynamics Fall 2012

Lecturer: Professor Jens O. Andersen
Department of physics, NTNU
Phone: 73593131

Friday desember 72012
09.00h-13.00h

You may bring:
Approved calkulator
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett \& Cronin: Mathematical Formulae
The problem set is three pages. Read carefully. Ask if in doubt. Viel Glück!

Problem 1

The equation for an anharmonic oscillator with damping can be written as

$$
\begin{equation*}
\ddot{x}+b \dot{x}-k x+x^{3}=0 \tag{1}
\end{equation*}
$$

where b and k are real parameters.
a) What is the interpretation of the sign of b og k ? For which values of b og k is the system conservative?
b) Show that equation (1) can be written as

$$
\begin{align*}
\dot{x} & =y \tag{2}\\
\dot{y} & =-b y+k x-x^{3} \tag{3}
\end{align*}
$$

c) Find the fix point and the associated Jacobian matrix for equations (2)-(3).
d) Find the eigenvalues of the various fixed points that you found in c).
e) Let $b \neq 0$ and $k \neq 0$. Classify the various fixed points as functions of b and k.
f) Consider the special case $b=0$. Classify the fixed points as functions of k.
g) Consider the special case $k=0$. Classify the fixed points as functions of b. Find the critical value b_{c} for b at which the system undergoes a bifurcation. What type of bifurcation is this? Hint: Do not linearize, use physical intuition.

Problem 2

Given the set of equations

$$
\begin{align*}
\dot{x} & =x-y-x^{3} \tag{4}\\
\dot{y} & =x+y-y^{3} \tag{5}
\end{align*}
$$

a) Find the fixed points of the equations given above. Hint: The polynomial $x^{8}-3 x^{6}+3 x^{4}-2 x^{2}+2$ does not have zeros on the real axis.
b) Show that the system has at least one periodic solution Hint: The PoincareBendixon theorem and $\frac{1}{2} \leq \cos ^{4} x+\sin ^{4} x \leq 1$.

Problem 3

Consider the tent map which is defined by

$$
t(x)= \begin{cases}r x, & 0 \leq x \leq \frac{1}{2} \tag{6}\\ r(1-x), & \frac{1}{2} \leq x \leq 1\end{cases}
$$

where $0 \leq r \leq 2$ is a real parameter and $x \in[0,1]$.
a) For which values of r is the fixed point $x=0$ stable? For which values of r is $x=0$ globally stable? Hint: Use a cobweb.
b) Show that the points $(p, q)=\left(\frac{r}{1+r^{2}}, \frac{r^{2}}{1+r^{2}}\right)$ form a period-2 cycle and find the values of r for which they exist.
c) Is the periode- 2 cycle in b) stable? For which values of r does the tent map exhibit chaos?

