
TFY4305 solutions exercise set 8 2014

Problem 6.3.9

The dynamics is governed by the set of equations

ẋ = y3 − 4x , (1)

ẏ = y3 − y − 3x . (2)

a) Taking the difference between ẋ = 0 and ẏ = 0, we find y = x. Inserted in either equation,
we find y3 − 4y = 0 and so y = 0 or y = ±2. The fixed points are therefore (0, 0), (−2,−2),

and (2, 2). The Jacobian matrix is

A(x, y) =

(
−4 3y2

−3 3y2 − 1

)
. (3)

Evaluated at the origin, we find

A(0, 0) =

(
−4 0
−3 −1

)
, (4)

and so λ1 = −4 and λ2 = −1. The origin is therefore a stable node. The corresponding
eigenvectors are (1, 1) and (0,1).

Evaluated at ±(2, 2), we find

A (±(2, 2)) =

(
−4 12
−3 11

)
, (5)

and so λ1 = 8 and λ2 = −1. Hence ±(2, 2) are saddle points. The eigenvectors are (1, 1)

and (4, 1).

b) From Eqs. (1) and (2), we obtain

dy

dx
=

y3 − y − 3x

y3 − 4x
. (6)
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For a point on the axis y = x, this yields

dy

dx
= 1 . (7)

Hence, the tangent to the trajectory y(x) is along the line y = x and so we will stay on the
line.

c) Eqs. (1) and (2) give

d(x− y)

dt
= −(x− y) . (8)

Integration of this equation yields

x(t)− y(t) = (x0 − y0)e−(t−t0) , (9)

where x0 = x(t0) and y0 = y(t0). This shows that

lim
t→∞
|x(t)− y(t)| = 0 . (10)

d) The phase portrait is shown in Fig. 1. close to the origin we clearly see the stable
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Figure 1: Phase portrait of problem 6.3.9.

eigendirection given by the line x = 0, which is the corresponding eigendirection for the
eigenvector of A(0, 0). Likewise, the unstable direction close the points (±(2, 2) is given by
the line y = x.
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Problem 6.3.10

The dynamics is governed by the set of equations

ẋ = xy , (11)

ẏ = x2 − y . (12)

a) The Jacobian matrix is

A(x, y) =

(
y x
2x −1

)
. (13)

Evaluated at the origin, we find

A(0, 0) =

(
0 0
0 −1

)
, (14)

and so λ1,2 = −1, 0. Hence ∆ = 0 and linearization predicts that the origin is a nonisolated
fixed point.

b) ẋ = 0 gives either x = 0 or y = 0. Inserting this into ẏ = 0 then implies y = 0 or
x = 0. Hence the origin is an isolated fixed point.

c) We note that ẋ = 0 and ẏ = −y along the y-axis. This implies that one flows to-
wards the origin along the y-axis exponentially fast. Assume that you start in the positive
quadrant, (x0, y0). Can you ever cross one of the axes? You cannot cross the y-axis since
the flow here is vertical (recall uniqueness!). Similarly you cannot cross the x-axis since
ẏ = x2 > 0 here. This implies that ẋ > 0 for all t and you will flow away from the fixed
point. If you start in the 4th quadrant, ẋ is negative and ẏ is positive. Eventually you will
cross the x-axis and from there you will flow away from x = 0. Since the equations are
symmetric under t → −t and x → −x, the same arguments are valid, except arrows must
be reversed. Hence if we start in the 2nd or 3rd quardrant, we eventually have ẋ < 0 and
we move away x = 0. The phase portrait is shown in Fig. 2.
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Figure 2: Phase portrait of problem 6.3.10.


