TFY4305 solutions exercise set 82014

Problem 6.3.9

The dynamics is governed by the set of equations

$$
\begin{align*}
\dot{x} & =y^{3}-4 x, \tag{1}\\
\dot{y} & =y^{3}-y-3 x . \tag{2}
\end{align*}
$$

a) Taking the difference between $\dot{x}=0$ and $\dot{y}=0$, we find $y=x$. Inserted in either equation, we find $y^{3}-4 y=0$ and so $y=0$ or $y= \pm 2$. The fixed points are therefore $\underline{\underline{(0,0)}}, \underline{\underline{(-2,-2)}}$, and $(2,2)$. The Jacobian matrix is

$$
A(x, y)=\left(\begin{array}{cc}
-4 & 3 y^{2} \tag{3}\\
-3 & 3 y^{2}-1
\end{array}\right)
$$

Evaluated at the origin, we find

$$
A(0,0)=\left(\begin{array}{cc}
-4 & 0 \tag{4}\\
-3 & -1
\end{array}\right)
$$

and so $\lambda_{1}=-4$ and $\lambda_{2}=-1$. The origin is therefore a stable node. The corresponding eigenvectors are $(1,1)$ and $(0,1)$.

Evaluated at $\pm(2,2)$, we find

$$
A(\pm(2,2))=\left(\begin{array}{ll}
-4 & 12 \tag{5}\\
-3 & 11
\end{array}\right)
$$

and so $\lambda_{1}=8$ and $\lambda_{2}=-1$. Hence $\pm(2,2)$ are saddle points. The eigenvectors are $(1,1)$ and $(4,1)$.
b) From Eqs. (1) and (2), we obtain

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y^{3}-y-3 x}{y^{3}-4 x} \tag{6}
\end{equation*}
$$

For a point on the axis $y=x$, this yields

$$
\begin{equation*}
\frac{d y}{d x}=1 \tag{7}
\end{equation*}
$$

Hence, the tangent to the trajectory $y(x)$ is along the line $y=x$ and so we will stay on the line.
c) Eqs. (1) and (2) give

$$
\begin{equation*}
\frac{d(x-y)}{d t}=-(x-y) \tag{8}
\end{equation*}
$$

Integration of this equation yields

$$
\begin{equation*}
x(t)-y(t)=\left(x_{0}-y_{0}\right) e^{-\left(t-t_{0}\right)} \tag{9}
\end{equation*}
$$

where $x_{0}=x\left(t_{0}\right)$ and $y_{0}=y\left(t_{0}\right)$. This shows that

$$
\begin{equation*}
\xlongequal{\lim _{t \rightarrow \infty}|x(t)-y(t)|=0 .} \tag{10}
\end{equation*}
$$

d) The phase portrait is shown in Fig. 1. close to the origin we clearly see the stable

Figure 1: Phase portrait of problem 6.3.9.
eigendirection given by the line $x=0$, which is the corresponding eigendirection for the eigenvector of $A(0,0)$. Likewise, the unstable direction close the points $(\pm(2,2)$ is given by the line $y=x$.

Problem 6.3.10

The dynamics is governed by the set of equations

$$
\begin{align*}
\dot{x} & =x y, \tag{11}\\
\dot{y} & =x^{2}-y . \tag{12}
\end{align*}
$$

a) The Jacobian matrix is

$$
A(x, y)=\left(\begin{array}{cc}
y & x \tag{13}\\
2 x & -1
\end{array}\right) .
$$

Evaluated at the origin, we find

$$
A(0,0)=\left(\begin{array}{cc}
0 & 0 \tag{14}\\
0 & -1
\end{array}\right)
$$

and so $\lambda_{1,2}=-1,0$. Hence $\Delta=0$ and linearization predicts that the origin is a nonisolated fixed point.
b) $\dot{x}=0$ gives either $x=0$ or $y=0$. Inserting this into $\dot{y}=0$ then implies $y=0$ or $x=0$. Hence the origin is an isolated fixed point.
c) We note that $\dot{x}=0$ and $\dot{y}=-y$ along the y-axis. This implies that one flows towards the origin along the y-axis exponentially fast. Assume that you start in the positive quadrant, $\left(x_{0}, y_{0}\right)$. Can you ever cross one of the axes? You cannot cross the y-axis since the flow here is vertical (recall uniqueness!). Similarly you cannot cross the x-axis since $\dot{y}=x^{2}>0$ here. This implies that $\dot{x}>0$ for all t and you will flow away from the fixed point. If you start in the 4 th quadrant, \dot{x} is negative and \dot{y} is positive. Eventually you will cross the x-axis and from there you will flow away from $x=0$. Since the equations are symmetric under $t \rightarrow-t$ and $x \rightarrow-x$, the same arguments are valid, except arrows must be reversed. Hence if we start in the 2nd or 3rd quardrant, we eventually have $\dot{x}<0$ and we move away $x=0$. The phase portrait is shown in Fig. 2.

Figure 2: Phase portrait of problem 6.3.10.

