TFY4305 solutions exercise set 62014

Problem 5.1.9

a) The dynamics of the system is governed by the equations

$$
\begin{align*}
\dot{x} & =-y, \tag{1}\\
\dot{y} & =-x . \tag{2}
\end{align*}
$$

The velocity field $v=(-y,-x)$ is shown in Fig. 1.

Figure 1: Velocity field for problem 5.1.9.
b) We have

$$
\begin{equation*}
x \dot{x}-y \dot{y}=-x y+x y=0 . \tag{3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\frac{d}{d t}\left(x^{2}-y^{2}\right)=0 \tag{4}
\end{equation*}
$$

or after integration $x^{2}-y^{2}=C$.
c) The matrix is

$$
A=\left(\begin{array}{cc}
0 & -1 \tag{5}\\
-1 & 0
\end{array}\right)
$$

we have to find the eigenvalues and eigendirections of A.
The eigenvalues satisfy $\lambda^{2}-1=0$, i. e. $\lambda= \pm 1$. For $\lambda=1$, the eigenvector is $(1,-1)$ and For $\lambda=-1$, the eigenvector is $(1,1)$. Since $\Delta=-1$, the origin is a saddle point. The solutions are

$$
\begin{align*}
& \binom{x(t)}{y(t)}=\underline{\underline{\binom{1}{-1} e^{t}}} \tag{6}\\
& \binom{x(t)}{y(t)}=\underline{\underline{\binom{1}{1} e^{-t}}} \tag{7}
\end{align*}
$$

Thus the line $x=y$ is stable manifold and the line $x=-y$ is the unstable manifold.
d) We define $u=x+y$ and $v=x-y$. Note that up to a scaling of two, this is a rotation by a rotation matrix with angle $\theta=\frac{1}{2} \pi$. Taking the derivative of these equations and using the expressions for \dot{x} and \dot{y}, we find

$$
\begin{align*}
\dot{u} & =-u \tag{8}\\
\dot{v} & =v \tag{9}
\end{align*}
$$

The solutions are $\underline{\underline{u=u_{0} e^{-t}}}$ and $\underline{\underline{v=v_{0} e^{t}}}$, where u_{0} and v_{0} are initial conditions.
e) The equation for the stable manifold is seen to be $v=0$, i.e. $x=y$. Similarly, the equation for the unstable manifold is seen to be $u=0$, i.e. $x=-y$. This is in agreement with c).
f) Inverting the relations between the old and new coordinates, we obtain $x=\frac{1}{2}(u+v)$ and $y=\frac{1}{2}(u-v)$. This yields

$$
\begin{align*}
x(t) & =\frac{1}{2}\left(u_{0} e^{-t}+v_{0} e^{t}\right) \tag{10}\\
y(t) & =\frac{1}{2}\left(u_{0} e^{-t}-v_{0} e^{t}\right) \tag{11}
\end{align*}
$$

Using $u_{0}=x_{0}+y_{0}$ and $v_{0}=x_{0}-y_{0}$, we can write

$$
\begin{align*}
x(t) & =x_{0} \cosh t-y_{0} \sinh t \tag{12}\\
y(t) & =\underline{\underline{y_{0} \cosh t-x_{0} \sinh t}} \tag{13}
\end{align*}
$$

Problem 5.1.10

b) The equations are

$$
\begin{align*}
\dot{x} & =2 y, \tag{14}\\
\dot{y} & =x . \tag{15}
\end{align*}
$$

If we start at $t=0$ somewhere in the first quadrant, we have $x_{0}>0$ and $y_{0}>0$. In the first quadrant $\dot{x}>0$ and $\dot{y}>0$, which means that a tracjectory moves up and to the right forever, no matter how close $\left(x_{0}, y_{0}\right)$ is to the origin. It therefore cannot be (Liapunov)stable or attracting.
c) The equations are

$$
\begin{align*}
\dot{x} & =0, \tag{16}\\
\dot{y} & =x . \tag{17}
\end{align*}
$$

Integration of the first equation gives $x=C_{1}$ and so $\dot{y}=C_{1}$. Integration gives $y=C_{1} t+C_{2}$ and the initial point is $\left(x_{0}, y_{0}\right)=\left(C_{1}, C_{2}\right)$. If $C_{1} \neq 0$, we see the solution wanders off to infinity. So if you start off the x-axis and arbitrarily close to the origin, the solution wanders off to infinity and so the system cannot be stable nor attracting.
d) The equations are

$$
\begin{align*}
\dot{x} & =0, \tag{18}\\
\dot{y} & =-y . \tag{19}
\end{align*}
$$

The solution is $x=C_{1}$ and $y=y_{0} e^{-t}$. As $t \rightarrow \infty$, we end up at $\left(C_{1}, 0\right)$. The origin is therefore not attracting ($x_{0}=C_{1}$ can be arbitrarily close to $x=0$ and we will still not end up at $(0,0)$). However, the origin is Liapunov stable since $x^{2}+y^{2} \leq x_{0}^{2}+y_{0}^{2}$ and we can choose $\delta=\epsilon$.

