TFY4305 solutions exercise set 52014

Problem 3.5.4

a) Looking at Fig. 1 in the textbook, we see that the restoring force is given

$$
\begin{equation*}
F=\left(\sqrt{h^{2}+x^{2}}-L_{0}\right) k . \tag{1}
\end{equation*}
$$

The force is in the direction of the spring. We need the component of the force along the wire, which is given by

$$
\begin{align*}
F_{\text {wire }} & =F \sin \theta \\
& =F \frac{x}{\sqrt{h^{2}+x^{2}}}, \tag{2}
\end{align*}
$$

Newton's second law of motion then becomes

$$
\begin{equation*}
m \ddot{x}+b \dot{x}+k x\left(1-\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}\right)=0 . \tag{3}
\end{equation*}
$$

b) Equilibrium solutions are given by $\ddot{x}=\dot{x}=0$. This yields

$$
\begin{equation*}
k x\left(1-\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}\right)=0 \tag{4}
\end{equation*}
$$

Thus $x=0$ and $1-\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}=0$. This gives $\underline{\underline{x=0}}$ and $x= \pm \sqrt{L_{0}^{2}-h^{2}}$. The nonzero solutions exist only if $L_{0} \geq h$.
c) If $m=0$, the equation of motion reads

$$
\begin{equation*}
\dot{x}=\frac{k x}{b}\left(\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}-1\right) . \tag{5}
\end{equation*}
$$

The function that determines the stability of the fixed points is

$$
\begin{equation*}
f(x)=\frac{k x}{b}\left(\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}-1\right) . \tag{6}
\end{equation*}
$$

The derivative is given by

$$
\begin{equation*}
f^{\prime}(x)=\frac{k}{b}\left(\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}-1-\frac{L_{0} x^{2}}{\left(k^{2}+x^{2}\right)^{\frac{3}{2}}}\right) . \tag{7}
\end{equation*}
$$

This yields

$$
\begin{equation*}
f^{\prime}(0)=\frac{k}{b}\left(\frac{L_{0}}{h}-1\right) \tag{8}
\end{equation*}
$$

The origin is stable for $L_{0}<h$ and unstable for $L_{0}>h$. Moreover

$$
\begin{equation*}
f^{\prime}\left(\pm \sqrt{L_{0}^{2}-h^{2}}\right)=\frac{k}{b}\left(1-\frac{L_{0}^{2}}{h^{2}}\right) . \tag{9}
\end{equation*}
$$

Thus the fixed points $x= \pm \sqrt{L_{0}^{2}-h^{2}}$ are stable since $L_{0} \geq h$. The stability of the fixed points depends on the ratio $y \equiv L_{0} / h$. We therefore plot the bifurcation diagram as a function of this dimensionles variable.

Figure 1: Bifurcation diagram for the bead on a wire. The origin changes stability in $x=0$.
d) We can rewrite the equation of motion as

$$
\begin{equation*}
\frac{m}{k} \frac{d^{2} x}{d t^{2}}+\frac{b}{k} \frac{d x}{d t}+x\left(1-\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}\right)=0 . \tag{10}
\end{equation*}
$$

Defining a new dimensionless time variable τ via

$$
\begin{equation*}
t=\frac{b}{k} \tau . \tag{11}
\end{equation*}
$$

In terms of the new time variable, Newton's equation reads

$$
\begin{equation*}
\frac{m}{k} \frac{k^{2}}{b^{2}} \frac{d^{2} x}{d \tau^{2}}+\frac{d x}{d \tau}+x\left(1-\frac{L_{0}}{\sqrt{h^{2}+x^{2}}}\right)=0 . \tag{12}
\end{equation*}
$$

One can therefore ignore the second-order term if

$$
\begin{equation*}
\underline{\underline{\frac{m k}{b^{2}}} \ll 1} \tag{13}
\end{equation*}
$$

Problem 3.6.5

The forces acting on the bead are gravity and the force from the spring (see Fig. 3.6.7). The component of gravity along the wire is $F=m g \sin \theta$. The force from the spring is

$$
\begin{equation*}
F_{\text {spring }}=k\left(\sqrt{x^{2}+a^{2}}-L_{0}\right) \tag{14}
\end{equation*}
$$

The component of this force along the wire is

$$
\begin{equation*}
F_{\text {wire }}=-\frac{x}{\sqrt{x^{2}+a^{2}}} F_{\text {spring }} \tag{15}
\end{equation*}
$$

The sum of F and $F_{\text {wire }}$ is zero when the system is in equilibrium. This yields

$$
\begin{equation*}
m g \sin \theta-k x\left(1-\frac{L_{0}}{\sqrt{x^{2}+a^{2}}}\right)=0 \tag{16}
\end{equation*}
$$

b) Dividing Eq. (16) by $k x$, we can write

$$
\begin{equation*}
\frac{m g}{k x} \sin \theta=\left(1-\frac{L_{0}}{a} \frac{1}{\sqrt{1+\left(\frac{x}{a}\right)^{2}}}\right) \tag{17}
\end{equation*}
$$

Rearranging terms, we find

$$
\begin{equation*}
1-\frac{m g}{k a} \frac{a}{x} \sin \theta=\frac{L_{0}}{a} \frac{1}{\sqrt{1+\left(\frac{x}{a}\right)^{2}}} \tag{18}
\end{equation*}
$$

This is on the form

$$
\begin{equation*}
1-\frac{h}{u}=\frac{R}{\sqrt{1+u^{2}}} \tag{19}
\end{equation*}
$$

if we identify $\underline{\underline{u=x / a}}, \underline{\underline{R=L_{0} / a}}$, and $\underline{\underline{h=\frac{m g}{k a} \sin \theta}}$.
c) Note that the variable u can be positive and negative. Without loss of generality we can restrict h to positive values (negative values correspond to tilting the wire the other way) The function $g(u)=1-h / u$ approaches zero as $u \rightarrow \pm \infty$. The maximum of the function $h(u)=R / \sqrt{1+u^{2}}$ is R. For $R<1$, it is then clear that the functions intersect at a single point and hence there is one fixed point. This is shown in Fig. 2

For $R>1$, the function $g(u)$ still intersects the function $h(u)$ for positive values of u. However, there may be one or two intersections for negative values of u depending on h. In fact, as Figs. 3 and 4 suggest, a saddle-node bifurcation is taking place at a critical value of h. Since the derivatives of the functions $g(u)$ and $h(u)$ are equal at the bifurcation, h and u satisfy the two equations

$$
\begin{align*}
1-\frac{h}{u} & =\frac{R}{\sqrt{1+u^{2}}} \tag{20}\\
\frac{h}{u^{2}} & =-\frac{R u}{\left(1+u^{2}\right)^{\frac{3}{2}}} . \tag{21}
\end{align*}
$$

Figure 2: Graphical analysis. $R=\frac{1}{2}$ and $h=\frac{1}{2}$.

Figure 3: Graphical analysis. $R=2$ and $h=0.44$.
d) The right-hand-side of Eq. (19) can be expanded in powers of u. This yields

$$
\begin{equation*}
1-\frac{h}{u} \approx(r+1)\left(1-\frac{1}{2} u^{2}\right) \tag{22}
\end{equation*}
$$

where $r=R-1$. Ignoring the term $\sim r u^{2}$ which is much smaller than the term $\sim u^{2}$, we obtain

$$
\begin{equation*}
-\frac{h}{u} \approx r-\frac{1}{2} u^{2} \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{\underline{\frac{1}{2}} u^{3}-r u-h=0 .} \tag{24}
\end{equation*}
$$

e) We first define the functions $f(u)=\frac{1}{2} u^{3}-r u$ and $g(u)=h(u)$. The bifurcation takes place when $f(u)=g(u)$ and $f^{\prime}(u)=g^{\prime}(u)$. The latter equation gives

$$
\begin{equation*}
\frac{3}{2} u^{2}-r=0 \tag{25}
\end{equation*}
$$

Figure 4: Graphical analysis. $R=2$ and $h=0.4$.
f) The exact equations for the bifurcation are given by Eqs. (20) and (21). Solving the latter with respect to $\frac{h}{u}$ and inserting it into the former, one finds

$$
\begin{equation*}
1+\frac{R u^{2}}{\left(1+u^{2}\right)^{\frac{3}{2}}}=\frac{R}{\sqrt{1+u^{2}}} \tag{26}
\end{equation*}
$$

Solving this equation with respect to R gives

$$
\begin{equation*}
\underline{\underline{R(u)=\left(1+u^{2}\right)^{\frac{3}{2}}}} \tag{27}
\end{equation*}
$$

Using Eq. (20), we find

$$
\begin{align*}
& h(u)=-\frac{R u^{3}}{\left(1+u^{2}\right)^{\frac{3}{2}}}=-u^{3} \tag{28}
\end{align*}
$$

Note that the exact Eqs. (27) and (28) reduce to the approximate solutions upon expanding $R(u)$ to first nontrivial order in u for small u.
g) and h) were not a part of the exercise.

