
TFY4305 solutions exercise set 5 2014

Problem 3.5.4

a) Looking at Fig. 1 in the textbook, we see that the restoring force is given

F = (
√
h2 + x2 − L0)k . (1)

The force is in the direction of the spring. We need the component of the force along the
wire, which is given by

Fwire = F sin θ

= F
x√

h2 + x2
, (2)

Newton’s second law of motion then becomes

mẍ+ bẋ+ kx

(
1− L0√

h2 + x2

)
= 0 . (3)

b) Equilibrium solutions are given by ẍ = ẋ = 0. This yields

kx

(
1− L0√

h2 + x2

)
= 0 . (4)

Thus x = 0 and 1− L0√
h2+x2 = 0. This gives x = 0 and x = ±

√
L2
0 − h2. The nonzero solutions

exist only if L0 ≥ h.

c) If m = 0, the equation of motion reads

ẋ =
kx

b

(
L0√
h2 + x2

− 1

)
. (5)

The function that determines the stability of the fixed points is

f(x) =
kx

b

(
L0√
h2 + x2

− 1

)
. (6)
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The derivative is given by

f ′(x) =
k

b

(
L0√
h2 + x2

− 1− L0x
2

(k2 + x2)
3
2

)
. (7)

This yields

f ′(0) =
k

b

(
L0

h
− 1

)
(8)

The origin is stable for L0 < h and unstable for L0 > h. Moreover

f ′(±
√
L2
0 − h2) =

k

b

(
1− L2

0

h2

)
. (9)

Thus the fixed points x = ±
√
L2
0 − h2 are stable since L0 ≥ h. The stability of the fixed

points depends on the ratio y ≡ L0/h. We therefore plot the bifurcation diagram as a func-
tion of this dimensionles variable.
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Figure 1: Bifurcation diagram for the bead on a wire. The origin changes stability in x = 0.

d) We can rewrite the equation of motion as

m

k

d2x

dt2
+
b

k

dx

dt
+ x

(
1− L0√

h2 + x2

)
= 0 . (10)

Defining a new dimensionless time variable τ via

t =
b

k
τ . (11)

In terms of the new time variable, Newton’s equation reads

m

k

k2

b2
d2x

dτ 2
+
dx

dτ
+ x

(
1− L0√

h2 + x2

)
= 0 . (12)

One can therefore ignore the second-order term if

mk

b2
� 1 . (13)
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Problem 3.6.5

The forces acting on the bead are gravity and the force from the spring (see Fig. 3.6.7). The
component of gravity along the wire is F = mg sin θ. The force from the spring is

Fspring = k
(√

x2 + a2 − L0

)
. (14)

The component of this force along the wire is

Fwire = − x√
x2 + a2

Fspring . (15)

The sum of F and Fwire is zero when the system is in equilibrium. This yields

mg sin θ − kx
(

1− L0√
x2 + a2

)
= 0 . (16)

b) Dividing Eq. (16) by kx, we can write

mg

kx
sin θ =

1− L0

a

1√
1 + (x

a
)2

 . (17)

Rearranging terms, we find

1− mg

ka

a

x
sin θ =

L0

a

1√
1 + (x

a
)2
. (18)

This is on the form

1− h

u
=

R√
1 + u2

, (19)

if we identify u = x/a, R = L0/a, and h = mg
ka

sin θ.

c) Note that the variable u can be positive and negative. Without loss of generality we
can restrict h to positive values (negative values correspond to tilting the wire the other
way) The function g(u) = 1 − h/u approaches zero as u → ±∞. The maximum of the
function h(u) = R/

√
1 + u2 is R. For R < 1, it is then clear that the functions intersect at

a single point and hence there is one fixed point. This is shown in Fig. 2

For R > 1, the function g(u) still intersects the function h(u) for positive values of u.
However, there may be one or two intersections for negative values of u depending on h. In
fact, as Figs. 3 and 4 suggest, a saddle-node bifurcation is taking place at a critical value of
h. Since the derivatives of the functions g(u) and h(u) are equal at the bifurcation, h and u
satisfy the two equations

1− h

u
=

R√
1 + u2

, (20)

h

u2
= − Ru

(1 + u2)
3
2

. (21)
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Figure 2: Graphical analysis. R = 1
2

and h = 1
2
.
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Figure 3: Graphical analysis. R = 2 and h = 0.44.

d) The right-hand-side of Eq. (19) can be expanded in powers of u. This yields

1− h

u
≈ (r + 1)(1− 1

2
u2) , (22)

where r = R − 1. Ignoring the term ∼ ru2 which is much smaller than the term ∼ u2, we
obtain

−h
u
≈ r − 1

2
u2 , (23)

or

1

2
u3 − ru− h = 0 . (24)

e) We first define the functions f(u) = 1
2
u3 − ru and g(u) = h(u). The bifurcation takes

place when f(u) = g(u) and f ′(u) = g′(u). The latter equation gives

3

2
u2 − r = 0 . (25)

This yields R(u) = 1 + 3
2
u2. The equation g(u) = h(u) gives h(u) = 1

2
u3 − ru = −u3
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Figure 4: Graphical analysis. R = 2 andh = 0.4.

f) The exact equations for the bifurcation are given by Eqs. (20) and (21). Solving the
latter with respect to h

u
and inserting it into the former, one finds

1 +
Ru2

(1 + u2)
3
2

=
R√

1 + u2
. (26)

Solving this equation with respect to R gives

R(u) = (1 + u2)
3
2 . (27)

Using Eq. (20), we find

h(u) = − Ru3

(1 + u2)
3
2

= −u3 (28)

Note that the exact Eqs. (27) and (28) reduce to the approximate solutions upon expanding
R(u) to first nontrivial order in u for small u.

g) and h) were not a part of the exercise.


