TFY4305 solutions exercise set 42014

Problem 3.4.5

The dynamics is governed by the equation

$$
\begin{equation*}
\dot{x}=r-3 x^{2}, \tag{1}
\end{equation*}
$$

where r is a parameter. The fixed points are $x^{*}= \pm \sqrt{\frac{r}{3}}$, and exist only for $r \geq 0$. Moreover $f^{\prime}(x)=-6 x$ and $f^{\prime}\left(x^{*}\right)=\mp 6 \sqrt{\frac{r}{3}}$. The positive fixed point is therefore always stable and the negative is always unstable. When they coalesce, i.e. when $r=0$, it is half-stable. The bifurcation at $r=0$ is a saddle-node bifurcation.

Problem 3.4.6

The dynamics is governed by the equation

$$
\begin{equation*}
\dot{x}=r x-\frac{x}{1+x}, \tag{2}
\end{equation*}
$$

where r is a parameter. The fixed points are found by solving $r x=x /(1+x)$, which gives $\underline{\underline{x^{*}=0}}$ and $x^{*}=\frac{1}{r}-1$. Moreover,

$$
\begin{equation*}
f^{\prime}(x)=r-\frac{1}{(1+x)^{2}}, \tag{3}
\end{equation*}
$$

and therefore $f^{\prime}(x=0)=r-1 . \quad x=0$ is thus unstable for $r>1$ and stable for $r<1$. Furthermore $f^{\prime}\left(x=\frac{1}{r}-1\right)=r(1-r)$. Thus the fixed point $x^{*}=\frac{1}{r}-1$ is unstable for $0<r<1$ and stable for $r<0$ and $r>1$. This implies that the system undergoes a transcritical bifurcation at $r=1$, where the origin changes stability. The bifurcation diagram is shown in Fig. 1. Note: The fixed point $x=\frac{1}{r}-1$ exists for $r<0$ as well but it does not undergo any bifurcation.

Figure 1: Bifurcation diagram of problem 3.4.6.

Problem 4.3.8

The dynamics is governed by

$$
\begin{equation*}
f(\theta)=\frac{\sin 2 \theta}{1+\mu \sin \theta} \tag{4}
\end{equation*}
$$

The fixed points are given by the zeros of the function $f(\theta)$ and the solutions are $\theta=0$, $\theta=\frac{1}{2} \pi, \theta=\pi$ and $\theta=\frac{3}{2} \pi$. We must be a little careful, however, when the denominator vanishes at the fixed points. This can take place only for $\mu= \pm 1$. For example, for $\mu=1$, one can show by L'Hopital's rule that

$$
\begin{equation*}
\lim _{\theta \rightarrow \frac{3}{2} \pi^{ \pm}} f(\theta)= \pm \infty \tag{5}
\end{equation*}
$$

i. e. it is no longer a fixed point.

In Fig. 2, we show the function $f(\theta)$ for $\mu=0.95, \mu=1.0$, and $\mu=1.15$. Clearly the fixed point $\theta=\frac{3}{2} \pi$ exists for all values of μ except $\mu= \pm 1$, but it changes stability from stable to unstable. Hence this is a transcritical bifurcation. The other fixed points $\theta=0, \frac{1}{2} \pi$, and π remain unstable, stable, and unstable, respectively. Note that this seems to contradict the rule that fixed points are stable and unstable in an alternating manner. However, this requires a continuous function and $f(\theta)$ is not continuous for at $\theta=\frac{3}{2} \pi$ for $\mu=1$.

The situation is analogous for $\mu=-1$, where the fixed point $\theta=\pi / 2$ change stability.

Figure 2: The function $f(\theta)$ for $\mu=0.95, \mu=1.0$, and $\mu=1.15$.

