TFY4305 solutions exercise set 21 2014

Problem 11.3.7

a) and b) See Fig. 1.

Figure 1: The von Koch snowflake at various stages.
c) At each stage, the length is increased by $\frac{4}{3}$, i. e. $L_{n}=\frac{4}{3} L_{n-1}$ and therefore $L_{n}=\left(\frac{4}{3}\right)^{n} L$, where L is the original length of the line. Hence

$$
\begin{equation*}
L\left(S_{\infty}\right)=\lim _{n \rightarrow \infty} L_{n}=\underline{\underline{\infty}} \tag{1}
\end{equation*}
$$

d) Let A_{0} be the area of the triangle. In the first step, one adds three triangles with total area $3 \frac{1}{9} A_{0}=\frac{1}{3} A_{0}$, in the second step one adds 12 triangles with total area $12 \frac{1}{9^{2}} A_{0}=\frac{1}{3} \frac{4}{9} A_{0}$. At the nth step, one adds 34^{n} triangles of total area $34^{n-1} \frac{1}{9^{n}} A_{0}=\frac{1}{3}\left(\frac{4}{9}\right)^{n-1} A_{0}$. The total area added then becomes

$$
\Delta A=\frac{1}{3} A_{0} \sum_{n=1}^{\infty}\left(\frac{4}{9}\right)^{n-1}
$$

$$
\begin{align*}
& =\frac{1}{3} \frac{1}{1-\frac{4}{9}} A_{0} \\
& =\frac{3}{5} A_{0} \tag{2}
\end{align*}
$$

The total area is then $A=A_{0}+\frac{3}{5} A_{0}=\frac{8}{5} A_{0}$.
e) If we scale the length by a factor 3, we need 4 times as many sticks to cover the next figure in the sequence. Hence

$$
\begin{equation*}
d=\underline{\underline{\ln 4}} . \tag{3}
\end{equation*}
$$

Now you can imagine that the dimension of the coastline of Norway is larger than one. In fact it is measured to be 1.55 .

Problem 11.4.2

We need 8 squares of side $\frac{1}{4}$ to cover S_{1} (see textbook). We need 8^{n} small squares with sides $\epsilon=\left(\frac{1}{3}\right)^{n}$ to cover S_{n}. We then have $N(\epsilon)=8^{n}$ for $\epsilon=\left(\frac{1}{3}\right)^{n}$ and thus

$$
\begin{align*}
d & =\lim _{\epsilon \rightarrow 0} \frac{\log N(\epsilon)}{\log (1 / \epsilon)} \\
& =\lim _{n \rightarrow \infty} \frac{\log 8^{n}}{\log 3^{n}} \\
& =\underline{\underline{\ln 8}} . \tag{4}
\end{align*}
$$

