TFY4305 solutions exercise set 22014

Problem 2.4.8

Gompertz' equation for tumor growth reads

$$
\begin{equation*}
\dot{N}=-a N \ln (b N), \tag{1}
\end{equation*}
$$

where $a, b>$ are parameters. The fixed points N^{*} are given by

$$
\begin{align*}
f(N) & =-a N \ln (b N) \\
& =0 . \tag{2}
\end{align*}
$$

This yields $N^{*}=0$ and $N^{*}=1 / b$. The stability of the fixed point is given by the sign of $f^{\prime}(N)=-a \ln (b N)-a$. This yields

$$
\begin{align*}
f^{\prime}(0) & =\infty \tag{3}\\
f^{\prime}(1 / b) & =-a \tag{4}
\end{align*}
$$

Thus the origin is unstable and $N^{*}=1 / b$ is stable.
Comments: The exact solution is

$$
\begin{equation*}
N(t)=\underline{\underline{\frac{1}{b} e^{\ln \left(N_{0} b\right) e^{-a t}}} .} \tag{5}
\end{equation*}
$$

The solution satisfies $N(0)=N_{0}$ and

$$
\begin{equation*}
\lim _{t \rightarrow \infty}=\frac{1}{b} \tag{6}
\end{equation*}
$$

Fig. 1 shows the data points for tumor growth in a laboratory experiment at NTNU. The parameters a and b have been fitted to the data points. The agreement is very good.

Figure 1: Tumor growth.

Problem 2.5.1

a) The dynamics is governed by

$$
\begin{equation*}
\dot{x}=-x^{c} . \tag{7}
\end{equation*}
$$

The origin is a fixed point only for $c>0$. The stability is given by

$$
\begin{equation*}
f^{\prime}(x)=-c x^{c-1} \tag{8}
\end{equation*}
$$

This implies that $f^{\prime}(0)=-\infty$ for $0<c<1$. The flow is always towards the origin since $f^{\prime}(x)<0$ for $x>0$ and so $x=0$ is stable. For $c=1, f^{\prime}(0)=-1$ and for $c>1, f^{\prime}(0)=0$. In the latter case $f^{\prime}(x)<0$ for $x>0$ and the flow is towards the origin. Thus the origin is stable for all $c>0$.
b) We can solve the differential equation exactly by separatation of variables. This yields

$$
\begin{equation*}
\int \frac{d x}{x^{c}}=-\int d t \tag{9}
\end{equation*}
$$

Integration yields

$$
\begin{equation*}
\frac{x^{1-c}}{1-c}=-t+K, \quad c \neq 1 \tag{10}
\end{equation*}
$$

where K is an integration constant. Using the initial condition $x(0)=x_{0}$, we can determine K and find

$$
\begin{equation*}
x(t)=\underline{\underline{\left[(c-1) t+x_{0}^{1-c}\right]^{\frac{1}{1-c}}}} . \tag{11}
\end{equation*}
$$

We must distinguish between two cases:
i) $c>1$:

In this case the exponent $1 /(1-c)<0$ and this tells us that it takes infinitely long to reach the origin.
ii) $0<c<1$:

In this case the exponent $1 /(1-c)>0$ and this tells us that it takes us a finite amount of time t^{*} to reach the origin. The equation for t^{*} is $x\left(t^{*}\right)=0$ or

$$
\begin{equation*}
(1-c) t^{*}=x_{0}^{1-c} \tag{12}
\end{equation*}
$$

This yields

$$
\begin{equation*}
t^{*}=\frac{x_{0}^{1-c}}{\underline{\underline{1-c}}} \tag{13}
\end{equation*}
$$

For $x_{0}=1$, we find

$$
\begin{equation*}
t^{*}=\frac{1}{\underline{\underline{1-c}}} \tag{14}
\end{equation*}
$$

Finally, for $c=1$, the solution is

$$
\begin{equation*}
x(t)=x_{0} e^{-t} \tag{15}
\end{equation*}
$$

and so it takes infinitely long time to reach the origin.

Figure 2: The function $g(x)$ for $r=1 / 4, r=0$, and $r=-1 / 4$. The number of fixed points depends on the parameter $r . r_{c}=0$ is a bifurcation point.

Problem 3.1.3

The equation is

$$
\begin{equation*}
\dot{x}=r+x-\ln (1+x) . \tag{16}
\end{equation*}
$$

In Fig. 2, we have plotted the function $g(x)=r+x$ for three different values of r as well as the function $h(x)=\ln (1+x)$.

We note that $g(x)$ crosses the y-axis at r and so there is one fix point for $r=0$. For $r>0$, there are no fixed points and for $r<0$ there are two fixed points. Hence $r=0$ is a bifurcation point. One of the fixed points x_{1}^{*} lies in the interval $(-1,0]$ and the other x_{2}^{*} in the interval $[0, \infty]$. Since $g(x)>h(x)$ for $x<x_{1}^{*}$ and $g(x)<h(x)$ for $x<x_{1}^{*}$ and $x_{1}^{*}<x<x_{2}^{*}, x_{1}^{*}$ is a stable fixed point. Since $g(x)<h(x)$ for $x_{1}^{*}<x<x_{2}^{*}$ and $g(x)>h(x)$ for $x>x_{2}^{*}, x_{2}^{*}$ is an unstable fixed point.

Finally, expanding the function around $x=0$, we obtain

$$
\begin{align*}
\dot{x} & \approx r+x-\left(x-\frac{1}{2} x^{2}\right) \\
& =r+\frac{1}{2} x^{2} . \tag{17}
\end{align*}
$$

After rescaling of x, this is the same function as in Example 3.1 in the textbook. Thus a saddle-point bifurcation takes place at $r=0$.

The bifurcation diagram is shown in Fig. 3.

Figure 3: Bifurcation diagram.

Problem 3.2.2

In Fig. 4, we plot the function $g(x)=r x$ for three different values of r as well as the function $h(x)=\ln (1+x)$.

It is clear that $x=0$ is a fixed point for all values of r. For $r<1$ there is a second fixed point $x_{2}^{*}>0$ and for $r>1$ there is a second fixed point $x_{1}^{*}<0$. Since $f^{\prime}(x)=r-1$, it follows that the origin is stable for $r<1$ and unstable for $r>1$. For $r=1, g(x)>h(x)$ for all nonzero x and so $x=0$ is half stable. Moreover, for $r<1$, the fixed point x_{2}^{*} is unstable since $g(x)>h(x)$ for $x>x_{2}^{*}$ and $g(x)<h(x)$ for $0<x<x_{2}^{*}$. Similar arguments show that x_{1}^{*} is a stable fixed point for $r>1$. Finally, expanding the function $f(x)$ around the origin yields

$$
\begin{align*}
f(x) & \approx r x-\left(x-\frac{1}{2} x^{2}\right) \\
& =(r-1) x+\frac{1}{2} x^{2} \tag{18}
\end{align*}
$$

After rescaling this is of the same form as Eq. (1) in Sec. 3.2 in the textbook and shows that $r=1$ is a transcritical bifurcation. The bifurcation diagram is shown in Fig. 5.

Figure 4: The function $g(x)$ for $r=0.7, r=1$, and $r=1.3$. Transcritical bifurcation for $r_{c}=1$.

Figure 5: Bifurcation diagram.

