
TFY4305 solutions exercise set 2 2014

Problem 2.4.8

Gompertz’ equation for tumor growth reads

Ṅ = −aN ln(bN) , (1)

where a, b > are parameters. The fixed points N∗ are given by

f(N) = −aN ln(bN)

= 0 . (2)

This yields N∗ = 0 and N∗ = 1/b. The stability of the fixed point is given by the sign of
f ′(N) = −a ln(bN)− a. This yields

f ′(0) = ∞ , (3)

f ′(1/b) = −a . (4)

Thus the origin is unstable and N∗ = 1/b is stable.

Comments: The exact solution is

N(t) =
1

b
eln(N0b)e−at

. (5)

The solution satisfies N(0) = N0 and

lim
t→∞

=
1

b
. (6)

Fig. 1 shows the data points for tumor growth in a laboratory experiment at NTNU. The
parameters a and b have been fitted to the data points. The agreement is very good.
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Figure 1: Tumor growth.

Problem 2.5.1

a) The dynamics is governed by

ẋ = −xc . (7)

The origin is a fixed point only for c > 0. The stability is given by

f ′(x) = −cxc−1 . (8)

This implies that f ′(0) = −∞ for 0 < c < 1. The flow is always towards the origin since
f ′(x) < 0 for x > 0 and so x = 0 is stable. For c = 1, f ′(0) = −1 and for c > 1, f ′(0) = 0.
In the latter case f ′(x) < 0 for x > 0 and the flow is towards the origin. Thus the origin is
stable for all c > 0.
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b) We can solve the differential equation exactly by separatation of variables. This yields∫ dx

xc
= −

∫
dt . (9)

Integration yields

x1−c

1− c
= −t + K , c 6= 1 , (10)

where K is an integration constant. Using the initial condition x(0) = x0, we can determine
K and find

x(t) =
[
(c− 1)t + x1−c

0

] 1
1−c . (11)

We must distinguish between two cases:

i) c > 1:
In this case the exponent 1/(1− c) < 0 and this tells us that it takes infinitely long to reach
the origin.

ii) 0 < c < 1:
In this case the exponent 1/(1− c) > 0 and this tells us that it takes us a finite amount of
time t∗ to reach the origin. The equation for t∗ is x(t∗) = 0 or

(1− c)t∗ = x1−c
0 . (12)

This yields

t∗ =
x1−c
0

1− c
. (13)

For x0 = 1, we find

t∗ =
1

1− c
. (14)

Finally, for c = 1, the solution is

x(t) = x0e
−t , (15)

and so it takes infinitely long time to reach the origin.
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Figure 2: The function g(x) for r = 1/4, r = 0, and r = −1/4. The number of fixed points
depends on the parameter r. rc = 0 is a bifurcation point.

Problem 3.1.3

The equation is

ẋ = r + x− ln(1 + x) . (16)

In Fig. 2, we have plotted the function g(x) = r + x for three different values of r as well as
the function h(x) = ln(1 + x).

We note that g(x) crosses the y-axis at r and so there is one fix point for r = 0. For
r > 0, there are no fixed points and for r < 0 there are two fixed points. Hence r = 0
is a bifurcation point. One of the fixed points x∗1 lies in the interval (−1, 0] and the other
x∗2 in the interval [0,∞]. Since g(x) > h(x) for x < x∗1 and g(x) < h(x) for x < x∗1 and
x∗1 < x < x∗2, x

∗
1 is a stable fixed point. Since g(x) < h(x) for x∗1 < x < x∗2 and g(x) > h(x)

for x > x∗2, x
∗
2 is an unstable fixed point.

Finally, expanding the function around x = 0, we obtain

ẋ ≈ r + x−
(
x− 1

2
x2
)

= r +
1

2
x2 . (17)

After rescaling of x, this is the same function as in Example 3.1 in the textbook. Thus a
saddle-point bifurcation takes place at r = 0.
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The bifurcation diagram is shown in Fig. 3.
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Figure 3: Bifurcation diagram.

Problem 3.2.2

In Fig. 4, we plot the function g(x) = rx for three different values of r as well as the function
h(x) = ln(1 + x) .

It is clear that x = 0 is a fixed point for all values of r. For r < 1 there is a second fixed
point x∗2 > 0 and for r > 1 there is a second fixed point x∗1 < 0. Since f ′(x) = r − 1, it
follows that the origin is stable for r < 1 and unstable for r > 1. For r = 1, g(x) > h(x) for
all nonzero x and so x = 0 is half stable. Moreover, for r < 1, the fixed point x∗2 is unstable
since g(x) > h(x) for x > x∗2 and g(x) < h(x) for 0 < x < x∗2. Similar arguments show that
x∗1 is a stable fixed point for r > 1. Finally, expanding the function f(x) around the origin
yields

f(x) ≈ rx−
(
x− 1

2
x2
)

= (r − 1)x +
1

2
x2 . (18)

After rescaling this is of the same form as Eq. (1) in Sec. 3.2 in the textbook and shows that
r = 1 is a transcritical bifurcation. The bifurcation diagram is shown in Fig. 5.
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Figure 4: The function g(x) for r = 0.7, r = 1, and r = 1.3. Transcritical bifurcation for
rc = 1.
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Figure 5: Bifurcation diagram.


