TFY4305 solutions exercise set 19 2014

Problem 10.7.1

a) We make the ansatz

$$
\begin{equation*}
g(x) \approx 1+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Inserting this into the equation $g(x)=\alpha g(g(x / \alpha))$ yields

$$
\begin{align*}
1+c_{2} x^{2} & =\alpha\left[1+c_{2}\left(1+c_{2} \frac{x^{2}}{\alpha^{2}}\right)^{2}\right] \\
& =\alpha\left[1+c_{2}\left(1+c_{2} \frac{x^{2}}{\alpha^{2}}+c_{2}^{2} \frac{x^{4}}{\alpha^{4}}\right)\right] \tag{2}
\end{align*}
$$

Multiplying out the right-hand-side, matching powers of x and omitting the x^{4}-terms, we find

$$
\begin{align*}
1 & =\alpha\left(1+c_{2}\right), \tag{3}\\
c_{2} & =\frac{2 c_{2}^{2}}{\alpha} \tag{4}
\end{align*}
$$

Insering the second into the first, we obtain a quadratic equation for α

$$
\begin{equation*}
\frac{1}{2} \alpha^{2}+\alpha-1=0 . \tag{5}
\end{equation*}
$$

The solutions are

$$
\begin{equation*}
\alpha=-1 \pm \sqrt{3}: \tag{6}
\end{equation*}
$$

 for $g(x)$ to have maximum.
b) The ansatz for $g(x)$ is now

$$
\begin{equation*}
g(x) \approx 1+c_{2} x^{2}+c_{4} x^{4} \tag{7}
\end{equation*}
$$

This yields

$$
\begin{equation*}
g(x) \approx 1+c_{2} x^{2}+c_{4} x^{4} .= \tag{8}
\end{equation*}
$$

Inserting this into the equation $g(x)=\alpha g(g(x / \alpha))$, we obtain

$$
\begin{equation*}
1+c_{2} x^{2}+c_{4} x^{4}=\alpha\left[1+c_{2}\left(1+c_{2} \frac{x^{2}}{\alpha^{2}}+c_{4} \frac{x^{4}}{\alpha^{4}}\right)^{2}+c_{4}\left(1+c_{2} \frac{x^{2}}{\alpha^{2}}+c_{4} \frac{x^{4}}{\alpha^{4}}\right)^{4}\right] . \tag{9}
\end{equation*}
$$

Multiplying out the right-hand-side, matching powers of x thorugh order x^{4}, we find

$$
\begin{align*}
1 & =\alpha\left(1+c_{2}+c_{4}\right) \tag{10}\\
1 & =\frac{1}{\alpha}\left[2 c_{2}+4 c_{4}\right] \tag{11}\\
c_{4} & =\frac{1}{\alpha^{3}}\left[c_{2}^{3}+2 c_{2} c_{4}+4 c_{4}^{2}+6 c_{2}^{2} c_{4}\right] . \tag{12}
\end{align*}
$$

This yields

$$
\begin{align*}
\alpha & =\frac{1}{1+c_{2}+c_{4}} \tag{13}\\
c_{2} & =-2-\frac{1}{2} \alpha+\frac{2}{\alpha} \tag{14}\\
c_{4} & =1+\frac{1}{2} \alpha-\frac{1}{\alpha} \tag{15}
\end{align*}
$$

Numerical solution of the coupled equations gives

$$
\begin{align*}
\alpha & =\underline{\underline{-2.53403}}, \tag{17}\\
c_{2} & =\underline{\underline{-1.52224}}, \tag{18}\\
c_{4} & =\underline{\underline{0.12761} .} \tag{19}
\end{align*}
$$

Problem 10.7.5

 This yields $f(f(x))=1-\left(1-x^{2}\right)^{2}$ and therefore

$$
\begin{align*}
\alpha f\left(f\left(x / \alpha, R_{1}\right)\right) & =\alpha\left[1-\left(1-x^{2} / \alpha^{2}\right)^{2}\right] \\
& =\underline{\underline{\frac{2}{\alpha} x^{2}-\frac{1}{\alpha^{3}} x^{4}}} . \tag{20}
\end{align*}
$$

b) Equating $f\left(x, R_{0}\right)$ and Eq. (20), neglecting terms of order x^{4}, yields

$$
\begin{equation*}
-1=\frac{2}{\alpha} \tag{21}
\end{equation*}
$$

or $\underline{\underline{\alpha=-2}}$.

