TFY4305 solutions exercise set 18 2014

Exam 2012 problem 3

a) Clearly $x=0$ is a fixed point of the tent map $t(x)$. The stability is given by $\left|t^{\prime}(0)\right|$. Since $t^{\prime}(0)=r$, we find that $x=0$ is stable for $r<1$. For $r=1, x=0$ is marginally stable. Moreover, all points $x \leq \frac{1}{2}$ are fixed points and $x=0$ is thereforeLiapunov stable. Using a cobweb, one can show that $x_{n} \rightarrow 0$ for all $x \in[0,1]$ when $r<1$. Thus $x=0$ is globally stable for $\underline{\underline{r<1}}$.
b) Using the definition of the tent map, one finds $q=t(p) p=t(q)$ if $0 \leq p \leq \frac{1}{2}$ and $\frac{1}{2} \leq q \leq 1$. The inequality $q \geq \frac{1}{2}$ yields $r^{2} \geq 1$, i.e. $r \geq 1$. For $r=1$, we have $p=q$ such that the period -2 cycle is born at $r=1$ (when the fixed point becomes marginally stable). The values for which it exists is therefore $r \underline{\underline{~}}$.
c) The stability of the period- 2 cycle is given by $\left|\frac{d}{d x} t(t(x))\right|_{x=p}\left|=\left|t^{\prime}(p) t^{\prime}(q)\right|\right.$. Since $t^{\prime}(x)=r$ for all values of x, we $\left|t^{\prime}(p) t^{\prime}(q)\right|=r^{2}>1$ and the 2-cycle is is always unstable The Liapunov exponent is easy to calculate

$$
\begin{align*}
\lambda & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln \left|f^{\prime}\left(x_{i}\right)\right| \\
& =\ln r \tag{1}
\end{align*}
$$

The tent map exhibits chaos if $\lambda>0$, i.e. for $\underline{\underline{r>1}}$.

Problem 10.3.6

The map is given by

$$
\begin{equation*}
x_{n+1}=r x_{n}-x_{n}^{3} \tag{2}
\end{equation*}
$$

a) The fixed points are given by $x=r x-x^{3}$ and we notice that the origin is always a fixed point. The other possible fixed points satisfy

$$
\begin{equation*}
x^{2}-(r-1)=0 \tag{3}
\end{equation*}
$$

or $\underline{\underline{x= \pm \sqrt{r-1}}}$. These fixed point exist for $r \geq 1$. The stability is given by

$$
\begin{equation*}
f^{\prime}(x)=r-3 x^{2} \tag{4}
\end{equation*}
$$

$f^{\prime}(0)=r$ and so the origin is stable for $|r|<1$. Similarly $f^{\prime}(\pm \sqrt{r-1})=3-2 r$. These fixed points are stable for $\underline{\underline{1<r<2}}$.
b) The points x of two-cycles are roots of the polynomial

$$
\begin{equation*}
f[f(x)]=x \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
r\left(r x-x^{3}\right)-\left(r x-x^{3}\right)^{3}=x \tag{6}
\end{equation*}
$$

Since $f(x)-x$ is a factor in this polynomial, we can rewrite Eq. (6) by long division. This yields

$$
\begin{equation*}
x\left(x^{2}-r+1\right)\left(x^{2}-r-1\right)\left(x^{4}-r x^{2}+1\right)=0 \tag{7}
\end{equation*}
$$

The first two factors give the fixed points of $f(x)$ and so the 2 -cycles are found by the zeros of the third and fourth term. The third term yields

$$
\begin{equation*}
x_{ \pm}=\underline{\underline{ \pm \sqrt{r+1}}} \tag{8}
\end{equation*}
$$

and these exist for $r \geq-1$. The fourth term yields $\bar{x}^{2}=\frac{r \pm \sqrt{r^{2}-4}}{2}$ or

$$
\begin{equation*}
\bar{x}_{ \pm}=\underline{\underline{ \pm\left[\frac{r \pm \sqrt{r^{2}-4}}{2}\right]^{\frac{1}{2}}}} \tag{9}
\end{equation*}
$$

These solutions exist for $r \geq 2$.
c) The derivative of $f[f(x)]$ evaluated at the fixed points $x_{ \pm}$reduces to

$$
\begin{align*}
f^{\prime}\left(f^{\prime}\left(x_{ \pm}\right)\right) & =f^{\prime}\left(x_{-}\right) f^{\prime}\left(x_{+}\right) \\
& =(3+2 r)^{2} \tag{10}
\end{align*}
$$

In the region $r \geq-1$, this is always larger than unity. Hence the 2-cycle is always unstable. The derivative of $f[f(x)]$ evaluated at the fixed points $\bar{x}_{ \pm}$reduces to

$$
\begin{align*}
f^{\prime}\left(f^{\prime}\left(x_{ \pm}\right)\right) & =f^{\prime}\left(\bar{x}_{-}\right) f^{\prime}\left(\bar{x}_{+}\right) \\
& =9-2 r^{2} \tag{11}
\end{align*}
$$

Hence the 2-cycle is stable for $2<r<\sqrt{5}$. In particular it is superstable for $r=3 / \sqrt{2}$.
d) The bifurcation diagram is shown in Fig. 1.

Figure 1: Partial bifurcation diagram.

