TFY4305 solutions exercise set 17 2014

Problem 10.3.2

The logistic map is given by

$$
\begin{equation*}
x_{n+1}=r x_{n}\left(1-x_{n}\right) . \tag{1}
\end{equation*}
$$

a) The superstability is given by

$$
\begin{align*}
f[f(x)]^{\prime} & =f^{\prime}(p) f^{\prime}(q) \\
& =r(1-2 p) r(1-2 q) \tag{2}\\
& \stackrel{!}{=} 0 .
\end{align*}
$$

Thus either $p=\frac{1}{2}$ or $q=\frac{1}{2}$.
b) The points are given by (see textbook p359)

$$
\begin{equation*}
p, q=\frac{r+1 \pm \sqrt{(r-3)(r+1)}}{2 r} \tag{3}
\end{equation*}
$$

Inserting $p=\frac{1}{2}$ on the left-hand-side, yields

$$
\begin{equation*}
r=r+1 \pm \sqrt{(r-3)(r+1)} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
r^{2}-2 r-4=0 \tag{5}
\end{equation*}
$$

The solutions are $r=1 \pm \sqrt{5}$ and we must choose the positive solution. This yields $r=$ $\underline{\underline{1+\sqrt{5}}}$.

Problem 10.3.7

a) The decimal shift map is given by

$$
\begin{equation*}
x_{n+1}=10 x_{n}(\bmod 1) . \tag{6}
\end{equation*}
$$

Figure 1: Decimal shift map.

The map is shown is Fig. 1.
b) We can find the fixed points graphically by drawing the line $y=x$ and see where it intersects the map shown in Fig. 1. Alternatively, we can write a point $x \in \mathbb{R}$ as in decimal form

$$
\begin{equation*}
x=a_{0} \cdot a_{1} a_{2} \ldots, \tag{7}
\end{equation*}
$$

where $a_{0}, a_{1}, a_{2} \ldots$ are integers. The map is now $f(x)=0 . a_{2} \ldots$ and so x is a fixed point if

$$
\begin{equation*}
a_{0} \cdot a_{1} a_{2} \ldots=0 . a_{2} a_{3} \ldots \tag{8}
\end{equation*}
$$

This equation gives $a_{0}=0, a_{1}=a_{2}, a_{2}=a_{3}$ etc. The only numbers satisfying this are on the form $x^{*}=0, x^{*}=0.11111 \ldots=\frac{1}{9}, x^{*}=0.2222 \ldots=\frac{2}{9}, \ldots$, and $x^{*}=0.99999 \ldots=1$. Thus we have ten fixed points.
c) Let x_{p} be a rational number consisting of zeros except it contains a one on the first position after the period, on the $(p+1)$ th position after the period, the $(2 p+1)$ position after the period and so forth:

$$
\begin{equation*}
x_{p}=0.100 \ldots 100 \ldots 100 \ldots \tag{9}
\end{equation*}
$$

where the ellipsis indicate the remaining $p-3$ zeros. It is clear that x_{p} is mapped onto x_{p} after exactly p iterations of the map. Hence x_{p} provides us with a period- p cycle. Since $f^{\prime}(x)=10$ for the decimal shift map, the orbits are unstable.
d) Since irrational numbers $\mathbb{R} \backslash \mathbb{Q}$ are aperiodic, they provide us with aperiodic orbits. Since there are infinitely many irrational numbers, we have infinitely many aperiodic orbits.

Problem 10.4.3

The map is given by

$$
\begin{equation*}
x_{n+1}=1-r x_{n}^{2} . \tag{10}
\end{equation*}
$$

A superstable 3-cycle (p, q, s) has by definition $\frac{d}{d x} f[f[f(x)]]=0$. Using the chain rule, this is equivalent to $f^{\prime}(x)=0$, where $x=p, q$, or s. In the present case, we have $f(x)=1-r x^{2}$ and so $f^{\prime}(x)=0$ yields $-2 r x=0$, i.e. $x=0$. Moreover

$$
\begin{equation*}
f[f[f(x)]]=1-r\left[1-r\left(1-r x^{2}\right)^{2}\right]^{2} . \tag{11}
\end{equation*}
$$

The 3 -cycle satisfies $f[f[f(x)]]=x$, where $x=0$ is in the cycle. Inserting $x=0$ into $f^{3}(x)=x$ gives

$$
\begin{equation*}
1-(1-r)^{2} r=0 \tag{12}
\end{equation*}
$$

which is the sought polynomial.

