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2014

Problem 8.2.11

a) The damped Duffing equation reads

ẍ+ µẋ+ x− x3 = 0 . (1)

This can be written as

ẋ = y , (2)

ẏ = −µy − x+ x3 . (3)

The fixed points are given by (0, 0) and (±1, 0). The Jacobian matrix reads

A(x, y) =

(
0 1

−1 + 3x2 −µ

)
. (4)

This yields

A(0, 0) =

(
0 1
−1 −µ

)
, (5)

and the eigenvalues are

λ =
−µ±

√
µ2 − 4

2
. (6)

This shows that the real part goes through a zero as µ goes through zero. The imaginary
part is nonzero. Thus the origin goes from a stable spiral to an unstable spiral as µ decreases
through zero.

b) The phase portraits for µ = 1, µ = 0, and µ = −1 are shown in Fig. 1. The other
fixed points (±1, 0) are clearly visible. These are saddles.

The fixed point loses its stability for µ = 0, but there are no limit cycles before or after
the bifurcation. We notice that there is a band of closed curves for µ = 0. Thus there is no
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Figure 1: Phase portrait for µ = 1, µ = 0, and µ = −1 for problem 8.2.11.

limit cycle since the periodic solutions are not isolated. Since µ corresponds to a conservative
system (no damping) the Hopf bifurcation is of degenerate type. The conserved quantity for
µ = 0, is easily found from Eq. (1) by multiplying with ẋ:

ẋ(ẍ+ x− x3) = 0 . (7)

Upon integration, this yields

1

2
(ẋ2 +

1

2
x2 − 1

4
x4) = c , (8)

where c is an integration constant.

Problem 8.4.2

The equations that govern the dynamics are

ṙ = r(µ− sin r) , (9)

θ̇ = 1 , (10)

where µ is a parameter. Note that the problem is one-dimensional since the equations for
θ̇ and ṙ are decoupled. The derivative of function f(r) = r(µ − sin r) then determines the
fixed points of f(r) = 0, which corresponds to circles. This yields

f ′(r) = µ− sin r − r cos r. (11)

r = 0 is a solution to f(r) = 0 and f ′(0) = µ and so the sign of µ determines the stability
of the origin. We see that for µ > 1, ṙ = 0 has no other solutions. This is shown in Fig. 2
(upper left). For µ = 1, a half-stable limit cycle is born. This has radius r = 1

2
π, 5

2
π etc.

This is shown in Fig. 2 (upper right). For µ < 1, this splits into a stable and an unstable
limit cycle (lower left). The stable limit cycles moves towards the origin as µ decreases and
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Figure 2: Phase portrait for µ = 2, µ = 1, µ = 1
2
, µ = 0, and µ = −1 in problem 8.4.2.

coalesce with r = 0 for µ = 0 (lower right). A similar pattern is found for negative µ. Using
µ− sin r∗ = 0, the stability is determined by f ′(r∗) = −r∗ cos r∗.

In Fig. 3, we show the intersection of g(x) = sinx and h(x) = µ for µ = 1, µ = 1
2
, and

µ = −1 giving the radii of the closed orbits.
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Figure 3: Intersection of g(x) = sin x and h(x) = µ for µ = 1, µ = 1
2
, and µ = −1.


