TFY4305 solutions exercise set 16 2014

Problem 8.2.11

a) The damped Duffing equation reads

$$
\begin{equation*}
\ddot{x}+\mu \dot{x}+x-x^{3}=0 . \tag{1}
\end{equation*}
$$

This can be written as

$$
\begin{align*}
\dot{x} & =y \tag{2}\\
\dot{y} & =-\mu y-x+x^{3} . \tag{3}
\end{align*}
$$

The fixed points are given by $(0,0)$ and $(\pm 1,0)$. The Jacobian matrix reads

$$
A(x, y)=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
-1+3 x^{2} & -\mu
\end{array}\right)
$$

This yields

$$
A(0,0)=\left(\begin{array}{cc}
0 & 1 \tag{5}\\
-1 & -\mu
\end{array}\right)
$$

and the eigenvalues are

$$
\begin{equation*}
\lambda=\frac{-\mu \pm \sqrt{\mu^{2}-4}}{2} . \tag{6}
\end{equation*}
$$

This shows that the real part goes through a zero as μ goes through zero. The imaginary part is nonzero. Thus the origin goes from a stable spiral to an unstable spiral as μ decreases through zero.
b) The phase portraits for $\mu=1, \mu=0$, and $\mu=-1$ are shown in Fig. 1. The other fixed points $(\pm 1,0)$ are clearly visible. These are saddles.

The fixed point loses its stability for $\mu=0$, but there are no limit cycles before or after the bifurcation. We notice that there is a band of closed curves for $\mu=0$. Thus there is no

Figure 1: Phase portrait for $\mu=1, \mu=0$, and $\mu=-1$ for problem 8.2.11.
limit cycle since the periodic solutions are not isolated. Since μ corresponds to a conservative system (no damping) the Hopf bifurcation is of degenerate type. The conserved quantity for $\mu=0$, is easily found from Eq. (1) by multiplying with \dot{x} :

$$
\begin{equation*}
\dot{x}\left(\ddot{x}+x-x^{3}\right)=0 \tag{7}
\end{equation*}
$$

Upon integration, this yields

$$
\begin{equation*}
\frac{1}{2}\left(\dot{x}^{2}+\frac{1}{2} x^{2}-\frac{1}{4} x^{4}\right)=c \tag{8}
\end{equation*}
$$

where c is an integration constant.

Problem 8.4.2

The equations that govern the dynamics are

$$
\begin{align*}
\dot{r} & =r(\mu-\sin r), \tag{9}\\
\dot{\theta} & =1 \tag{10}
\end{align*}
$$

where μ is a parameter. Note that the problem is one-dimensional since the equations for $\dot{\theta}$ and \dot{r} are decoupled. The derivative of function $f(r)=r(\mu-\sin r)$ then determines the fixed points of $f(r)=0$, which corresponds to circles. This yields

$$
\begin{equation*}
f^{\prime}(r)=\mu-\sin r-r \cos r \tag{11}
\end{equation*}
$$

$r=0$ is a solution to $f(r)=0$ and $f^{\prime}(0)=\mu$ and so the sign of μ determines the stability of the origin. We see that for $\mu>1, \dot{r}=0$ has no other solutions. This is shown in Fig. 2 (upper left). For $\mu=1$, a half-stable limit cycle is born. This has radius $r=\frac{1}{2} \pi, \frac{5}{2} \pi$ etc. This is shown in Fig. 2 (upper right). For $\mu<1$, this splits into a stable and an unstable limit cycle (lower left). The stable limit cycles moves towards the origin as μ decreases and

Figure 2: Phase portrait for $\mu=2, \mu=1, \mu=\frac{1}{2}, \mu=0$, and $\mu=-1$ in problem 8.4.2.
coalesce with $r=0$ for $\mu=0$ (lower right). A similar pattern is found for negative μ. Using $\mu-\sin r^{*}=0$, the stability is determined by $f^{\prime}\left(r^{*}\right)=-r^{*} \cos r^{*}$.

In Fig. 3, we show the intersection of $g(x)=\sin x$ and $h(x)=\mu$ for $\mu=1, \mu=\frac{1}{2}$, and $\mu=-1$ giving the radii of the closed orbits.

Figure 3: Intersection of $g(x)=\sin x$ and $h(x)=\mu$ for $\mu=1, \mu=\frac{1}{2}$, and $\mu=-1$.

