TEFY4305 solutions exercise set 16
2014

Problem 8.2.11

a) The damped Duffing equation reads

i+pit+z—a2°=0. (1)

This can be written as
i o=y, (2)
) = —py—x+a’ (3)

The fixed points are given by (0,0) and (£1,0). The Jacobian matrix reads

aen = (4l ) ()

This yields

and the eigenvalues are

PP oy |
N = _HEVHE . (6)
2
This shows that the real part goes through a zero as p goes through zero. The imaginary
part is nonzero. Thus the origin goes from a stable spiral to an unstable spiral as 1 decreases

through zero.

b) The phase portraits for ¢ = 1, p = 0, and p = —1 are shown in Fig. 1. The other
fixed points (£1,0) are clearly visible. These are saddles.

The fixed point loses its stability for u = 0, but there are no limit cycles before or after
the bifurcation. We notice that there is a band of closed curves for ;1 = 0. Thus there is no
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Figure 1: Phase portrait for p =1, 4 =0, and g = —1 for problem 8.2.11.

limit cycle since the periodic solutions are not isolated. Since p corresponds to a conservative
system (no damping) the Hopf bifurcation is of degenerate type. The conserved quantity for
p =0, is easily found from Eq. (1) by multiplying with i:

i(i+z—1%)=0. (7)
Upon integration, this yields
1 1 1
g+ — ) = e (8)

where ¢ is an integration constant.

Problem 8.4.2

The equations that govern the dynamics are

7 = r(p—sinr), 9)
0 = 1, (10)

where 1 is a parameter. Note that the problem is one-dimensional since the equations for
0 and 7 are decoupled. The derivative of function f(r) = r(u — sinr) then determines the
fixed points of f(r) = 0, which corresponds to circles. This yields

f'(r) = p—sinr—rcosr. (11)

r = 0 is a solution to f(r) = 0 and f’(0) = p and so the sign of p determines the stability

of the origin. We see that for p > 1, » = 0 has no other solutions. This is shown in Fig. 2
(upper left). For p = 1, a half-stable limit cycle is born. This has radius r = %W, gﬂ etc.

This is shown in Fig. 2 (upper right). For p < 1, this splits into a stable and an unstable
limit cycle (lower left). The stable limit cycles moves towards the origin as p decreases and



0, and p = —1 in problem 8.4.2.

ILL:

1
27

Figure 2: Phase portrait for p =2, p=1,

—r*cosr*.

lower right). A similar pattern is found for negative p. Using

(

p —sinr* = 0, the stability is determined by f'(r*)

coalesce with » =0 for =0

1
9 and

pfor p =1, p=

sinz and h(x)

In Fig. 3, we show the intersection of g(x)
1 = —1 giving the radii of the closed orbits.
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Figure 3: Intersection of g(z) = sinx and h(z) =



