TFY4305 solutions exercise set 15 2014

Problem 8.2.1

The biased van der Pol oscillator reads

$$
\begin{equation*}
\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=a . \tag{1}
\end{equation*}
$$

This equation can be rewritten as

$$
\begin{align*}
\dot{x} & =y \tag{2}\\
\dot{y} & =-\mu\left(x^{2}-1\right) y-x+a . \tag{3}
\end{align*}
$$

The fixed point is $(a, 0)$ and the Jacobian matrix is

$$
A(x, y)=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
-1-2 \mu x y & -\mu\left(x^{2}-1\right)
\end{array}\right) .
$$

This yields

$$
A(a, 0)=\left(\begin{array}{cc}
0 & 1 \tag{5}\\
-1 & -\mu\left(a^{2}-1\right)
\end{array}\right)
$$

and so the eigenvalues are

$$
\begin{equation*}
\lambda=\frac{-\mu\left(a^{2}-1\right) \pm \sqrt{\mu^{2}\left(a^{2}-1\right)^{2}-4}}{2} \tag{6}
\end{equation*}
$$

The real part of the eigenvalue changes sign when $\mu\left(a^{2}-1\right)=0$, i. e. for $a= \pm 1$ or $\mu=0$ For parameter values close to these values, the imaginary part of the eigenvalue is nonzero. Hence the Hopf bifurcations occur for the lines $\mu=0$ and $a= \pm 1$ in the (μ, a) plane. Note that the system becomes conservative for $\mu=0^{1}$. Thus the bifurcation taking place $\mu=0$ is the degenerate type: The fixed point $(a, 0)$ changes from a stable to an unstable spiral. but there are no closed curves on either side of $\mu=0$. The conserved quantity for $\mu=0$ is

Figure 1: Phase portrait for $a=1.2$ and $\mu=-1,0$ and +1 .
$\frac{1}{2} \dot{x}^{2}+\frac{1}{2} x^{2}-a x$. Only for $\mu=0$ is there a continuum of circular trajectories ${ }^{2}$. This is shown in Fig. 1 for $a=1.2$ and $\mu=1,0$, and -1 .

In Fig. 2, we plot the phase portrait for $\mu=1$ and $a=0.8,1$ and 1.2 . For $a=0.8$, we have an unstable spiral which disappears as a goes through 1 and becomes a a stable spiral for $a>1$. At the same time there is a closed orbit for $a \leq 1$ and so we have a supercritical Hopf bifurcation at $a=1$.

Figure 2: Phase portrait for $\mu=1$ and $a=0.8,1$ and 1.2.

[^0]
[^0]: ${ }^{1}$ It is also reversible for $\mu=0$.
 ${ }^{2}$ Note that $a= \pm 1$ are special points. In this case the eigenvalues are purely imaginary independent of μ. We then have closed curves for all values of μ.

