TFY4305 solutions exercise set 14 2014

Problem 7.2.16

We can use the counterexample

$$\dot{r} = \frac{1}{2} r \log r , \qquad (1)$$

$$\dot{\theta} = 1. \tag{2}$$

Choosing g = 1 in Dulac's theorem, we obtain

$$\nabla \cdot \dot{\mathbf{x}} = \frac{1}{2r} \frac{\partial}{\partial r} r^2 \log r + \frac{1}{r} \frac{\partial}{\partial \theta} \mathbf{1}$$

= $(\log r + 1)$. (3)

This expression is positive in the region given by $\log r + 1 > 0$, i. e. for $r > e^{-1/2} \approx 0.606531$. The region $r \ge e^{-1/2}$, $\theta \in (0, 2\pi)$ is not simply connected and so the curve $r^2 = 1/e$ is drawn as a dashed circle. The requirements of the theorem are not satisfied. The phase portrait is shown in Fig. 1. The closed unstable circle r = 1 is drawn as a solid circle.

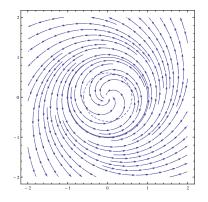


Figure 1: Phase portrait of problem 7.2.16.

Problem 7.3.6

$$\ddot{x} + F(x, \dot{x})\dot{x} + x = 0.$$
(4)

a) We have ordinary damping if the distance to the origin in phase space r is larger than b. We have negative damping (energy pumped into the system) if the distance r from the origin in phase is smaller than a.

b) The equation is rewritten as

$$\dot{x} = y , \qquad (5)$$

$$\dot{y} = -F(x,y)y - x$$
. (6)

This yields

$$r\dot{r} = x\dot{x} + y\dot{y}$$

= $-F(x,y)y^2$, (7)

which shows that $\dot{r} > 0$ for $r \leq a$ and $\dot{r} < 0$ for $r \geq b$. Hence the annulus between the circles with radii a and b is a trapping region. There are no fixed points inside the annulus and so the Poincare-Bendixon theorem applies.

Problem 7.3.10

The equations can be written as

$$\dot{x} = ax + by - r^2 x , \qquad (8)$$

$$\dot{y} = cx + dy - r^2 y , \qquad (9)$$

where the matrix A is

$$A(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$
(10)

The origin is a fixed point and the Jacobian matrix evaluated at the origin is the matrix A since the higher-order terms in Eqs. (8) and (9) vanish after linearization. The matrix A is real and has two complex eigenvalues $\alpha \pm i\omega$. If $\alpha > 0$, then we know that the origin is an unstable spiral. We can then find a small neighborhood such that the vector field is pointing away from the origin. If we chose a circle with sufficiently large radius R, the velocity field will be dominated by the terms $-r^2x$ and $-r^2y$. On such a circle the flow will be be inwards. By excluding the small neighborhood around the origin from the region inside the circle with radius R, we can apply the Poincare-Bendixon theorem and conclude there exists at least one limit cycle.

On the other hand, if $\alpha < 0$, the origin is a stable spiral. We can apply Dulac's criterion by calculating the divergence of $\nabla \cdot (g(x, y)\boldsymbol{x}(x, y))$, where g(x, y) = 1:

$$\nabla \cdot \boldsymbol{x}(x,y) = a - 3x^2 - y^2 + b - x^2 - 3y^2$$

= $\tau - 4r^2$. (11)

Since $\alpha = \frac{1}{2}\tau < 0$, we see that $\nabla \cdot (g(x, y)\boldsymbol{x}(x, y)) < 0$ throughout the plane. Dulac's theorem then guarantees there are no closed orbits.