TFY4305 solutions exercise set 13 2014

Problem 7.3.1

The dynamics is given by the equations

$$
\begin{align*}
\dot{x} & =x-y-x\left(x^{2}+5 y^{2}\right), \tag{1}\\
\dot{y} & =x+y-y\left(x^{2}+y^{2}\right) . \tag{2}
\end{align*}
$$

a) The Jacobian matrix is given by

$$
A(x, y)=\left(\begin{array}{cc}
1-3 x^{2}-5 y^{2} & -1-10 x y \tag{3}\\
1-2 x y & 1-x^{2}-3 y^{2}
\end{array}\right)
$$

Evaluated at the origin, we find

$$
A(0,0)=\left(\begin{array}{cc}
1 & -1 \tag{4}\\
1 & 1
\end{array}\right)
$$

The eigenvalues are given by the equation $(\lambda-1)^{2}+1=0$, i.e.

$$
\begin{equation*}
\lambda=1 \pm i . \tag{5}
\end{equation*}
$$

Hence the origin is an unstable spiral.
b) We have

$$
\begin{align*}
r \dot{r} & =x \dot{x}+y \dot{y} \\
& =x^{2}+y^{2}-x^{2}\left(x^{2}+5 y^{2}\right)-y^{2}\left(x^{2}+y^{2}\right) \\
& =r^{2}-r^{4}\left(1+4 \cos ^{2} \theta \sin ^{2} \theta\right) \tag{6}
\end{align*}
$$

and so

$$
\begin{equation*}
\dot{r}=\underline{\underline{r\left(1-r^{2}\left(1+4 \cos ^{2} \theta \sin ^{2} \theta\right)\right)}} . \tag{7}
\end{equation*}
$$

Similarly:

$$
\begin{align*}
\dot{\theta}= & \frac{x \dot{y}-y \dot{x}}{r^{2}} \\
& \frac{x^{2}+x y-x y\left(x^{2}+y^{2}\right)-x y+y^{2}+x y\left(x^{2}+5 y^{2}\right)}{r^{2}} \\
= & \underline{\underline{1+4 r^{2} \cos \theta \sin ^{3} \theta} .} \tag{8}
\end{align*}
$$

c) The condition $\dot{r}>0$ translates into $1-r^{2}\left(1+4 \cos ^{2} \theta \sin ^{2} \theta\right)=1-r^{2}\left(1+\sin ^{2} 2 \theta\right)>0$. This is satisfied for all θ if $1-2 r^{2}>0$ since $\sin ^{2} 2 \theta \leq 1$. Thus

$$
\begin{equation*}
r_{1}=\underline{\underline{\frac{1}{\sqrt{2}}}} . \tag{9}
\end{equation*}
$$

d) A similar argument gives $\dot{r}<0$ if $1-r^{2}\left(1+\sin ^{2} 2 \theta\right)<0$, and is satisfied if $1-r^{2}<0$ (Since $\sin ^{2} 2 \theta \geq 0$). Thus

$$
\begin{equation*}
r_{2}=\underline{\underline{1}} \tag{10}
\end{equation*}
$$

e) A fixed point must satisfy $\dot{r}=0$, i. e. $\left(1-r^{2}\left(1+4 \cos ^{2} \theta \sin ^{2} \theta\right)\right)=0$. Inserting this into the equation $\dot{\theta}=0$, we obtain

$$
\begin{equation*}
1+4 \cos \theta \sin ^{2} \theta(\sin \theta+\cos \theta)=0 \tag{11}
\end{equation*}
$$

This equation has no solution (see Fig. 1) and the system has therefore no fixed point.

Figure 1: Left-hand side of Eq. (11): $f(\theta)=1+4 \cos \theta \sin ^{2} \theta(\sin \theta+\cos \theta)$.

The Poincare-Bendixson theorem then implies that there is a limit cycle within the trapping region given by the annulus with $r_{1}=1 / \sqrt{2}$ and $r_{1}=1$. This is shown in Fig. 2

Problem 7.3.4

The dynamics of the equation is given by

$$
\begin{align*}
\dot{x} & =x\left(1-4 x^{2}-y^{2}\right)-\frac{1}{2} y(1+x), \tag{12}\\
\dot{y} & =y\left(1-4 x^{2}-y^{2}\right)+2 x(1+x) . \tag{13}
\end{align*}
$$

Figure 2: Phase portrait of problem 7.3.1.
a) Clearly the origin is a fixed point. The Jacobian matrix is given by

$$
A(x, y)=\left(\begin{array}{cc}
1-y^{2}-12 x^{2}-\frac{1}{2} y & -2 x y-\frac{1}{2}(1+x) \tag{14}\\
-8 x y+2+4 x & 1-4 x^{2}-3 y^{2}
\end{array}\right) .
$$

Evaluated at the origin, we find

$$
A(0,0)=\left(\begin{array}{cc}
1 & -\frac{1}{2} \tag{15}\\
2 & 1
\end{array}\right)
$$

The eigenvalues are given by the equation $(\lambda-1)^{2}+1=0$, i.e. $\lambda=1 \pm i$ and so the origin is an unstable spiral.
b) Let $V(x, y)=\left(1-4 x^{2}-y^{2}\right)^{2}$. This yields

$$
\begin{align*}
\frac{d V}{d t} & =\frac{\partial V}{\partial x} \dot{x}+\frac{\partial V}{\partial y} \dot{y} \tag{16}\\
& =-4\left(1-4 x^{2}-y^{2}\right)^{2}\left(4 x^{2}+y^{2}\right)
\end{align*}
$$

For points not on the ellipse $4 x^{2}+y^{2}=1$, we have $\dot{V}<0$. This tells ut that we flow towards lower values of V. We have $V=0$ on the ellipse $4 x^{2}+y^{2}=1$ and $V>0$ away from it. Hence we will approach the ellipse as $t \rightarrow \infty$.

