TFY4305 solutions exercise set 13 2014

Problem 7.3.1

The dynamics is given by the equations

$$\dot{x} = x - y - x(x^2 + 5y^2),$$
 (1)

$$\dot{y} = x + y - y(x^2 + y^2)$$
. (2)

a) The Jacobian matrix is given by

$$A(x,y) = \begin{pmatrix} 1 - 3x^2 - 5y^2 & -1 - 10xy \\ 1 - 2xy & 1 - x^2 - 3y^2 \end{pmatrix}.$$
 (3)

Evaluated at the origin, we find

$$A(0,0) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

$$\tag{4}$$

The eigenvalues are given by the equation $(\lambda - 1)^2 + 1 = 0$, i.e.

$$\lambda = 1 \pm i. \tag{5}$$

Hence the origin is an <u>unstable spiral</u>.

b) We have

$$r\dot{r} = x\dot{x} + y\dot{y}$$

= $x^{2} + y^{2} - x^{2}(x^{2} + 5y^{2}) - y^{2}(x^{2} + y^{2})$
= $r^{2} - r^{4}(1 + 4\cos^{2}\theta\sin^{2}\theta)$, (6)

and so

$$\dot{r} = \underline{r\left(1 - r^2(1 + 4\cos^2\theta\sin^2\theta)\right)}.$$
(7)

Similarly:

$$\dot{\theta} = \frac{x\dot{y} - y\dot{x}}{r^2} \\ \frac{x^2 + xy - xy(x^2 + y^2) - xy + y^2 + xy(x^2 + 5y^2)}{r^2} \\ = \underline{1 + 4r^2\cos\theta\sin^3\theta}.$$
(8)

c) The condition $\dot{r} > 0$ translates into $1 - r^2(1 + 4\cos^2\theta\sin^2\theta) = 1 - r^2(1 + \sin^2 2\theta) > 0$. This is satisfied for all θ if $1 - 2r^2 > 0$ since $\sin^2 2\theta \le 1$. Thus

$$r_1 = \frac{1}{\sqrt{2}} \,. \tag{9}$$

d) A similar argument gives $\dot{r} < 0$ if $1 - r^2(1 + \sin^2 2\theta) < 0$, and is satisfied if $1 - r^2 < 0$ (Since $\sin^2 2\theta \ge 0$). Thus

$$r_2 = \underline{\underline{1}} . \tag{10}$$

e) A fixed point must satisfy $\dot{r} = 0$, i. e. $(1 - r^2(1 + 4\cos^2\theta \sin^2\theta)) = 0$. Inserting this into the equation $\dot{\theta} = 0$, we obtain

$$1 + 4\cos\theta\sin^2\theta(\sin\theta + \cos\theta) = 0.$$
(11)

This equation has no solution (see Fig. 1) and the system has therefore no fixed point.

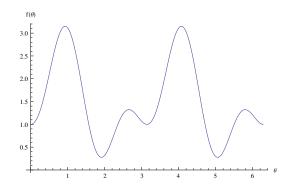


Figure 1: Left-hand side of Eq. (11): $f(\theta) = 1 + 4\cos\theta\sin^2\theta(\sin\theta + \cos\theta)$.

The Poincare-Bendixson theorem then implies that there is a limit cycle within the trapping region given by the annulus with $r_1 = 1/\sqrt{2}$ and $r_1 = 1$. This is shown in Fig. 2

Problem 7.3.4

The dynamics of the equation is given by

$$\dot{x} = x(1 - 4x^2 - y^2) - \frac{1}{2}y(1 + x),$$
 (12)

$$\dot{y} = y(1 - 4x^2 - y^2) + 2x(1 + x).$$
 (13)

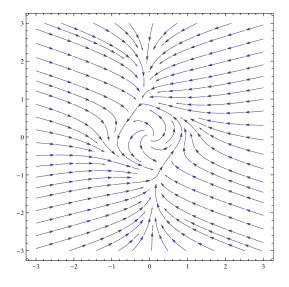


Figure 2: Phase portrait of problem 7.3.1.

a) Clearly the origin is a fixed point. The Jacobian matrix is given by

$$A(x,y) = \begin{pmatrix} 1-y^2 - 12x^2 - \frac{1}{2}y & -2xy - \frac{1}{2}(1+x) \\ -8xy + 2 + 4x & 1 - 4x^2 - 3y^2 \end{pmatrix}.$$
 (14)

Evaluated at the origin, we find

$$A(0,0) = \begin{pmatrix} 1 & -\frac{1}{2} \\ 2 & 1 \end{pmatrix} .$$
 (15)

The eigenvalues are given by the equation $(\lambda - 1)^2 + 1 = 0$, i.e. $\lambda = 1 \pm i$ and so the origin is an unstable spiral.

b) Let $V(x, y) = (1 - 4x^2 - y^2)^2$. This yields

$$\frac{dV}{dt} = \frac{\partial V}{\partial x}\dot{x} + \frac{\partial V}{\partial y}\dot{y} = -4(1 - 4x^2 - y^2)^2(4x^2 + y^2).$$
(16)

For points not on the ellipse $4x^2 + y^2 = 1$, we have $\dot{V} < 0$. This tells ut that we flow towards lower values of V. We have V = 0 on the ellipse $4x^2 + y^2 = 1$ and V > 0 away from it. Hence we will approach the ellipse as $t \to \infty$.