TFY4305 solutions exercise set 11 2014

Problem 6.6.5

a) The equation that governs the dynamics is

$$
\begin{equation*}
\ddot{x}+f(\dot{x})+g(x)=0 . \tag{1}
\end{equation*}
$$

If we define $y=\dot{x}$, we can write Eq. (1) as

$$
\begin{align*}
\dot{x} & =y \tag{2}\\
\dot{y} & =-f(y)-g(x) . \tag{3}
\end{align*}
$$

Under the transformation $t \rightarrow-t$ and $y \rightarrow-y$, both sides of the first equation change sign. Since $f(y)$ is an even function and $d y / d t$ is invariant under the above transformation, the second equation is also invariant. Hence the system is invariant under time translation.
b) The Jacobian matrix evaluated at a fixed point $\left(x^{*}, y^{*}\right)$ us

$$
A\left(x^{*}, y^{*}\right)=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
-g^{\prime}\left(x^{*}\right) & -f^{\prime}\left(y^{*}\right)
\end{array}\right)
$$

The eigenvalues are

$$
\begin{equation*}
\lambda_{1,2}=\frac{-f^{\prime}\left(y^{*}\right) \pm \sqrt{\left[f^{\prime}\left(y^{*}\right)\right]^{2}-4 g^{\prime}\left(x^{*}\right)}}{2} \tag{5}
\end{equation*}
$$

Any fixed point must have $y^{*}=0$. If $f(y)$ is an even function, $f^{\prime}(y)$ is an odd function and so $f^{\prime}(0)=0$. Thus the eigenvalues reduce to

$$
\begin{equation*}
\lambda_{1,2}= \pm i \sqrt{g^{\prime}\left(x^{*}\right)} . \tag{6}
\end{equation*}
$$

Depending on the sign of $g^{\prime}\left(x^{*}\right)$, the eigenvalues are either purely imaginary or purely real with different sign. This corresponds to either a center or a saddle. In the special case
$g^{\prime}\left(x^{*}\right)=0$, both eigenvalues are vanishing. Inspecting the matrix $A\left(x^{*}, y^{*}\right)$ in this case, one finds a single eigenvector

$$
\begin{equation*}
v=\binom{1}{0} \tag{7}
\end{equation*}
$$

Thus we have a degenerate node.

Problem 6.8.7

The dynamics is governed by the equations

$$
\begin{align*}
\dot{x} & =x\left(4-y-x^{2}\right), \tag{8}\\
\dot{y} & =y(x-1) . \tag{9}
\end{align*}
$$

The fixed points are $(0,0),(1,3)$, and $(\pm 2,0)$. The Jacobian matrix is given by

$$
A(x, y)=\left(\begin{array}{cc}
4-y-3 x^{2} & -x \tag{10}\\
y & x-1
\end{array}\right)
$$

Evaluated at the origin, we find

$$
A(0,0)=\left(\begin{array}{cc}
4 & 0 \tag{11}\\
0 & -1
\end{array}\right)
$$

Hence the eigenvalues are $\lambda=-1$ and $\lambda=4$, and so the origin is a saddle. In the same way, one finds that $(-2,0)$ is a stable node $(\lambda=-9$ and $\lambda=-3),(2,0)$ is a saddle point $(\lambda=-9$ and $\lambda=1$), and $(1,3)$ is a stable spiral $(\lambda=(-1 \pm i \sqrt{2}))$.

A closed orbit would have to encircle the node or the spiral or both. If an orbit would encircle the node, it would have to cross the x-axis. But the flow on the x-axis is horizontal and so curves would cross which is forbidden. A cycle cannot encircle the spiral since the spiral is joined to the saddle at $(2,0)$ by a branch of its unstable manifold and cycles cannot cross trajectories. The phase portrait is shown in Fig. 1.

Figure 1: Phase portrait of problem 6.8.7.

