TFY4305 solutions exercise set 12014

Problem 2.2.3

The equation reads

$$
\begin{equation*}
\dot{x}=x\left(1-x^{2}\right), \tag{1}
\end{equation*}
$$

The fixed points are the solutions to $x\left(1-x^{2}\right)=0$. This yields

$$
\begin{equation*}
\underline{x=0,} \quad x= \pm 1 . \tag{2}
\end{equation*}
$$

Furthermore, $f^{\prime}(x)=1-3 x^{2}$ Since $f^{\prime}(x=0)=1, x=0$ is an unstable fixed point. Since $f^{\prime}(x= \pm 1)=-2, x= \pm 1$ are stable fixed points.

Figure 1: Vector field including the three fixed points.

The exact solution can be found by separation of variables.

$$
\begin{equation*}
\frac{d x}{x\left(1-x^{2}\right)}=d t \tag{3}
\end{equation*}
$$

The left-hand side can be rewritten using partial fractional decomposition.

$$
\begin{equation*}
\int d x\left[\frac{1}{x}-\frac{1}{2} \frac{1}{x-1}-\frac{1}{2} \frac{1}{x+1}\right]=\int d t \tag{4}
\end{equation*}
$$

Integrating term by term and rearranging yields

$$
\begin{equation*}
\frac{1}{2} \ln \left|\frac{x^{2}}{x^{2}-1}\right|=t+C \tag{5}
\end{equation*}
$$

where C is an integration constant. Exponentiating gives

$$
\begin{equation*}
\pm \frac{x^{2}}{x^{2}-1}=K e^{2 t} \tag{6}
\end{equation*}
$$

where $K=e^{2 C}$. This is quadratic equation for x and can be easily solved. For the upper sign, we obtain

$$
\begin{equation*}
x(t)=\underline{ \pm \frac{\sqrt{K} e^{t}}{\sqrt{K e^{2 t}-1}}} . \tag{7}
\end{equation*}
$$

For the lower sign, we find

$$
\begin{equation*}
x(t)= \pm \underline{\underline{\sqrt{K} e^{t}}} . \tag{8}
\end{equation*}
$$

Note that the solutions tend to $x= \pm 1$ as $t \rightarrow \infty$. In the first case, we have $x(0)= \pm \sqrt{\frac{K}{K-1}}$ and corresponds to the initial condition where $|x(0)|>1$. In the second case, we have $x(0)= \pm \sqrt{\frac{K}{K+1}}$ and corresponds to the initial condition where $|x(0)|<1$. If the initial condition is $x(0)= \pm 1$, we are at a stable fixed point and we have $x(t)= \pm 1$ for all t. Finally if $x(0)=0$, we start at the unstable fixed point and remain there. Also note the inflection points at $x= \pm \frac{1}{\sqrt{3}}$.

Figure 2: Exact solution for various initial values as explained in main text.

Problem 2.4.7

We have

$$
\begin{equation*}
\dot{x}=a x-x^{3} . \tag{9}
\end{equation*}
$$

The fixed points are found by solving $a x-x^{3} . x=0$ is always a fixed point and $x= \pm \sqrt{a}$ for $a>0$. Moreover,

$$
\begin{equation*}
f^{\prime}(x)=a-3 x^{2} \tag{10}
\end{equation*}
$$

and therefore $f(x=0)=a . \quad x=0$ is thus unstable for $a>0$ and stable for $a<0$. For $a=0$, we have $f(x)=-x^{3}$ which is negative for positive x and vice versa. Hence $x=0$ is a stable fixed point for $a=0$. For $x= \pm \sqrt{a}$, we have $f^{\prime}(\pm \sqrt{a})=-2 a$ which is negative for positive a and hence these fixed points are stable.

Problem 2.6.1

The point is that the harmonic oscillator is not a first-order system. It is a system of two coupled differential equations. Define $\dot{x}=y$. This yields

$$
\begin{align*}
m \dot{y} & =-k x \tag{11}\\
\dot{x} & =y \tag{12}
\end{align*}
$$

and we conclude that the system is two dimensional and so does not correspond to flow on the line.

Problem 2.7.6

The dynamics is governed by the equation

$$
\begin{equation*}
\dot{x}=r+x-x^{3} \tag{13}
\end{equation*}
$$

where r is a parameter. The potential function $V(x)$ is given by integrating $V^{\prime}(x)=-f(x)=$ $-r-x+x^{3}$. This yields

$$
\begin{equation*}
V(x)=\underline{\underline{-r x-\frac{1}{2}} x^{2}+\frac{1}{4} x^{4}+C}, \tag{14}
\end{equation*}
$$

where C is an integration constant which we henceforth set to zero.
In order to gain insight into the number and position of fixed points as a function of the parameter r, it is useful to plot the function $g(x)=x^{3}-x$ and the horizontal line $h(x)=r$. The fixed points are then given by the solutions to $g(x)=h(x)$.

The extrema $x_{ \pm}$of $g(x)$ are given by

$$
\begin{align*}
g^{\prime}(x) & =3 x^{2}-1 \\
& =0, \tag{15}
\end{align*}
$$

which gives $x_{ \pm}= \pm 1 / \sqrt{3}$. Thus $\left|g\left(x_{ \pm}\right)\right|=2 / 3 \sqrt{3}$. This implies that there is one fixed point for $|r|>2 / 3 \sqrt{3}$, two fixed points for $|r|=2 / 3 \sqrt{3}$ and three fixed points for $|r|<2 / 3 \sqrt{3}$. This is shown in Fig. 3.

Figure 3: Plot of the functions $g(x)$ and the horizontal line $h(x)=r$ for various values of r.

Figure 4: Plot of the potential $V(x)$ for various values of r.

The potential $V(x)$ is plotted for the same values of r in Fig. 4. For $r=0$, we see that there are two minima, namely $x= \pm 1$ and one maximum $x=0$. These correspond to two stable fixed points and one unstable fixed point. For $r=2 / 3 \sqrt{3}$, we see that the stable fixed point to the left of the origin has merged with the unstable minimum and is half-stable. For $r=4 / 3 \sqrt{3}$, there is only stable fixed point to the right of the origin.

