
Classification of undesirable events in oil well
operation

Evren M. Turan
Department of Chemical Engineering

Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

evren.m.turan@ntnu.no

Johannes Jäschke
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Abstract—Various algorithms are compared for the automatic
classification of undesirable events during the operation of oil
wells. The 3W database compiled by Petrobras and released
publicly in 2019 is used to compare classifiers and some aspects
of the workflow. Classification is performed in the transient phase
of the event, and with the aim to help operators identify which
of seven classes of unwanted events is occurring. A decision tree
classifier is fitted, and is able to successfully detect the real events,
with an F1-score of 85% on test data, with most events classified
at 90+% accuracy. Hyperparameters of the workflow were chosen
based on the F1-score. Compared to prior work, in which a
random forests was fitted, the classifier identified in this work is
simpler, while achieving similar performance.

Index Terms—Fault detection and classification, oil well, ma-
chine learning

I. INTRODUCTION

Abnormal Event Management is the task of detecting an
abnormal event, diagnosing its cause, and returning the process
to normal and safe operation [1], [2]. The detection and
diagnosis steps can be regarded as a machine learning problem,
and there have been various attempts to develop autonomous
classification methods to aid operators in this task [3]–[6], [8].
The 3W dataset, compiled by Petrobras, is the first realistic
and public dataset of rare undesirable events in oil wells [1]. In
this work various classifiers and workflow hyperparameters are
compared, in the task of supervised, multiclass classification
of undesirable events, during their transient phase. Prior work
on the same dataset [8] used a random forest to perform this
classification, however only this classifier was fitted, and the
work compared one-class, multiple binary, and single mul-
ticlass classification. In the current work a (smaller) decision
tree is chosen that performs similarly to the optimised random
forests developed in [8], and its performance is compared to
that of several other classifiers.

A. The 3W dataset

The 3W dataset is made up of over 2000 events, each of
which is a time series from a real or simulated offshore well.
Hand-drawn profiles of undesirable events are also present in
the dataset, however these are not considered in this work as
they lack the granularity of the other data. The breakdown
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TABLE I
BREAKDOWN OF EVENTS IN THE 3W DATABASE, FOR DESCRIPTIONS OF

EACH CLASS SEE [1].

Class Number Type of event Real Simulated Total
0 Normal 597 597
1 Abrupt Increase of BSW 5 114 119
2 Spurious Closure of DHSV 22 16 38
3 Severe Slugging 32 74 106
4 Flow Instability 344 344
5 Rapid Productivity Loss 12 439 451
6 Quick Restriction in PCK 6 215 221
- Scaling in PCK 4 4
7 Hydrate in Production Line 3 81 84

of real and simulated data into classes is shown in Table I.
Real data was acquired from 21 wells, during actual operation
between 2012-2018, while simulated data was obtained from
the OLGA Dynamic Multiphase Flow Simulator [7]. Classifier
training requires a sufficiently large and representative dataset
for each class for good generalisation to future data. Thus,
simulated data is required to be used to supplement the real
data. The class “Scaling in PCK” has a very low number of
events, and it is excluded in this work.

Each event corresponding to real wells have measurements
from the sensors in Table II, with data recorded every second.
The locations of the sensors (excluding the gas lift related
sensors) are shown Fig.1. The simulated wells have the same
“sensors” apart from P-CKGL and T-CKGL which are not
simulated. All the wells in the dataset are naturally flowing
wells, i.e. their reservoir pressure is sufficient to allow for
hydrocarbon production [1]. They are equipped with a gas lift,
to allow for operation in an artificially aided fashion should
this be desired [1].

Within a time series, each time entry is labelled as belonging
to one of three periods of operation: normal, faulty transient or
faulty steady state, with different labels given depending on the
fault [1]. Faulty transient periods are those in which dynamics
caused by the undesirable event are ongoing, with faulty steady
state operation beginning when the dynamics cease. See Fig.2,
for an example of an event profile of hydrate formation in the
production line. The transient stage was labelled as beginning
at 01:01, with the initial dynamics, of P-PDG and P-TPT, not
visible in the normalised figure. Between 03:00 - 05:00, it



TABLE II
SENSORS IN THE 3W DATABASE, [1], [8].

Name Description Units
P-PDG Pressure at permanent downhole gauge (PDG) Pa
P-TPT Pressure at temperature/pressure transducer (TPT) Pa
T-TPT Temperature at TPT °C
P-MON-CKP Pressure upstream of production choke (CKP) Pa
T-JUS-CKP Temperature downstream of CKP °C
P-CKGL Pressure downstream of gas lift choke (CKGL) Pa
T-CKGL Temperature downstream of CKGL °C
QGL Gas lift flow rate m3/s

Fig. 1. Simplified schematic of a offshore well, taken from [1].

could be that the hydrate crystals had reached sufficient size to
form a plug which severely impacted the flow of hydrocarbons.
Note that faults 3 & 4 (severe slugging and flow instability)
are characterised by continually changing dynamics and hence
are always in the faulty transient period.

In this work various classification methods are compared
with one another, with the aim of identifying the occurrence
and type of undesirable event during the faulty transient stage
with the aim of allowing early classification.

II. WORKFLOW OVERVIEW

A. Data Preprocessing

As previously stated, hand-drawn data is excluded in this
work. Simulated data is included as otherwise the frequency
of certain classes would be very low. As discussed in Section
I-A the simulated events do not include the P-CKGL and T-
CKGL sensor data, hence these features are removed from
the real well data. This is necessary to prevent the classifiers
from distinguishing between simulated and real data sets. To
reduce the size and noise of the data, the time series were
down-sampled from entries every second to ten seconds, by a
local average over this period.

B. Feature engineering

There are various approaches in time series classification
(see [9] for a overview), and in this work a feature based
approach is considered. The time series is subdivided into
windows, and in each window various features of arbitrary

complexity are calculated to describe dynamics within the win-
dow. This division into time windows and feature calculations
reduce the problem to a supervised classification problem. For
more details on the features that can be calculated see [10] and
the references therein. The choice of time window size is an
important hyperparameter as it controls the size of the new
dataset and the amount of information in the features. Here,
the TSFRESH package [11] is used to extract features, with
the following features chosen (for each window):

• The first to fourth moments (mean, variance, skewness,
kurtosis) of the time series and the absolute Fourier
transform of it

• Miscellaneous features describing the distribution of the
data and how it changes: maximum, minimum, median,
quantiles, coefficient of variation, mean change, average
second derivative

• The coefficients of a linear and third degree polynomial
model. The linear model is fitted directly to the data,
while the polynomial is fitted as part of a Langevin model
as described in [12]

C. Feature selection

The previous step results in the formation numerous fea-
tures, and it can be desirable to only select a subset of these.
There are many options to select a subset of features. The
simplest option is to remove features with low or zero variance,
i.e. almost unchanging features

Another method is to use some form of statistical test to
filter out the most significant features. An example of such
a test is implemented in the TSFRESH package [11]. A
hypothesis test is used to test the significance of each feature
vector for predicting the class. The resulting vector of p-values
is evaluated by the Benjamini-Yekutieli procedure [13] to filter
the features. For a multiclass problem, one can specify how
many classes a feature should be significant for.

One can also perform filtering by fitting a linear classifier,
with an L1 norm, and selecting the features with non-zero
coefficients to be used by a subsequent classifier. Equivalently
this can be performed with a decision tree, with features
chosen based on their importance, as reported by the algorithm
[14].

A decomposition method can also be used, with Principle
Component Analysis (PCA) being a common choice [15]. In
PCA a set of orthogonal components is formed which explain
decreasing amounts of the total variance, and typically the first
N components are chosen and the rest are regarded as noise
[15]. An issue with PCA in classification is that low variance
components can sometimes be important in the classification
task.

Regardless of the method of feature selection, before clas-
sification all features should be normalised by subtracting the
mean and scaling by the standard deviation of the data. This
should be performed only considering the training set, i.e.
excluding the currently held out fold in kfolds and the test
data. This scaling is necessary, because the pressure data is
orders of magnitude larger than the temperature data, and some



Fig. 2. Example of class 7 event, with normalised sensor data. The transient stage began at 01:01, with approximate steady state reached at 06:21

classification algorithms assume that features have zeros mean
and unit variance [14], [15].

D. Classification

There are many classifiers that can be chosen. Linear meth-
ods tend to be simple and computationally efficient (especially
for large datasets), and if a linear method is able to classify the
data well then there is no advantage to using a more complex
method. Tree based methods learn decision rules to classify
the data, and are among the most flexible and widely used
classifiers [9], [16]. The predictions of several decision trees
can be combined to improve robustness by using an ensemble
method, such as in random forest and AdaBoost [16]. The
specific linear and tree based methods compared in this work
are:

• Logistic regression A classification algorithm, similar to
linear regression, where a binary output is modelled by
a logistic function.

• Support Vector Classifier (SVC) A linear SVC finds
the hyperplane that creates the biggest margin between
training points of two different classes [16]. Non-linear
classification can be performed by the kernel trick.

• Linear and Quadratic Discriminant Analysis (LDA &
QDA) Both of these methods fit a class conditional, Gaus-
sian distribution to the data. A sample is then allocated to
the class that maximises the posterior probability given
by Bayes Rule with LDA assuming that the covariance
matrix of all classes are equal [14], [16]. These methods
do not have hyperparameters.

• Decision Trees The feature space is divided into rect-
angles by a set of if-then-else decisions, with samples
within a rectangle allocated to the same class [14], [16].

Over fitting is prevented by pruning (setting a complexity
parameter) or setting parameters that control the size of
the tree (e.g. maximum depth, minimum samples per
split). Minimal cost-complexity pruning is the pruning
algorithm used.

• Random Forest A random forest is made up of an
ensemble of decision trees where each decision tree is
grown with a random sample of the training set and with
a random subset of features to be used at each splitting
point. The prediction of the random forest is made by
combining the results of each tree, in sci-kit learn this is
done by averaging their probabilistic predictions [14].

• AdaBoost A sequence of small decision trees (or some
other weak learner) are fitted on modified versions of
the data, such that later trees focus on the incorrectly
classified instances [14]

The classifier implementations in Scikit-Learn are used,
with the Stochastic Gradient Descent optimization technique
used for logistic regression and SVC. Methods that are not
inherently multiclass (e.g. logistic regression) use a one-vs-rest
approach [14]. A similar feature based approach was taken in
[8], however a smaller set of features were calculated and PCA
was used before classification by a random forest algorithm.

III. METHODOLOGY

A. Training, validation and test sets

When comparing hyperparameters and model performance
it is important to validate correctly to have an unbiased
estimate of the classifiers’ performance [15]. To this end 30%
of the original events are split into a test set before the work
flow. Kfold cross validation was performed on the remaining
data to compare hyper parameters, with five folds. In the



validation and test splits, the relative number of classes is kept
constant and all time windows belonging to an event are kept
in the same set.

B. Metrics

The F1-score is used as the metric to decide the best
hyper-parameters and classifier, with the balanced accuracy (or
recall) also reported for additional information. The F1-score
is the harmonic mean of precision and recall (which take into
account Type I and II errors respectively). The unweighted
average (macro) F1-score of each class is taken, to correct for
the imbalance in the dataset. The balance accuracy is similarly
the macro-average of recall scores per class [14].

C. Hyper parameters

A grid search is used to identify the hyperparameters of
the workflow, with the sets of values shown in Table III.
Additionally, the use of feature selection is investigated by
comparing the use of all features, and only selecting features
that are relevant for all classes when using the feature selection
algorithm of the TSFRESH package [11].

TABLE III
DETAILS OF HYPERPARAMETER GRID SEARCH.

Hyperparameter Values Classifier
Time window size (τ , s) {300, 600, 900} All
Regularization parameter (RP)* {1e-7,...,1e-1} SVC, logistic
Complexity parameter (CP) {1e-5,...,1e-1} Decision tree
Number of trees {50, 100, 150, 175} Random forest

” ” {100, 250, 400, 550} AdaBoost
Maximum tree depth {5, 7, 10, None} Random forest

” ” {1, 3, 5} AdaBoost
Number of features at splits {5, √nfeatures, 15} Random forest
Learning rate {0.01, 0.1, 1} AdaBoost

* Also used to calculate the learning rate per [17]

IV. RESULTS

A. Comparison of classifiers

1) Without feature selection: The results of the classifier
cross validation are shown in Table IV. The hyperparameters
are chosen based on the F1 score, and by this metric the
best classifier is the random forest, followed by AdaBoost and
the decision tree classier. Interestingly, the ensemble/aggregate
tree classifiers have similar F1 score and accuracy to the single
decision tree. Ensemble models tend to perform better than
their singular counterpart, typically due to instability in the
singular model and by avoiding over-fitting. It could be in this
data set the number of samples is large and varied enough for
the decision tree to be essentially stable. Some of the workflow
(e.g. cross validation) and classifiers (e.g. random forest)
are partially random. For consistency the random states are
fixed, allowing deterministic simulations. The use of different
random states give similar results.

Attention should be drawn to the fact that LDA outperforms
QDA, which may also appear unusual. It may be that the
worse performance is due to QDA being a more flexible
classifier than is required, i.e. in comparison the method

TABLE IV
RESULTS OF CLASSIFIER CROSS VALIDATION

Classifier F1 Accuracy τ (s) Hyperparameters
No feature selection

LDA 0.83 0.86 300 -
QDA 0.69 0.70 300 -
Linear SVC 0.83 0.87 900 RP = 1e-4
Logistic 0.82 0.88 900 RP = 1e-4
Decision Tree 0.89 0.93 600 CP† = 1e-4
Random Forest 0.91 0.94 900 Max depth: 10, max

features: 5, Num trees: 150
AdaBoost 0.90 0.92 900 Num trees: 100, max tree

depth: 5,learning rate: 0.01
With feature selection

LDA 0.81 0.83 300 -
QDA 0.75 0.83 900 -
Linear SVC 0.81 0.88 300 RP = 1e-4
Logistic 0.81 0.86 300 RP = 1e-3
Decision Tree 0.90 0.93 900 CP = 1e-4
Random Forest 0.90 0.93 900 Max depth: 10, max

features: 5, Num trees: 175
AdaBoost 0.89 0.92 900 Num trees: 100, max tree

depth: 5, learning rate: 0.01
† Corresponds to a tree with depth of 16 and 283 nodes.
‡ Corresponds to a tree with depth of 20 and 389 nodes.

itself has an increased variance and the fitted model did not
have a corresponding reduction in bias [18]. This is also
supported due to the good performance of the SVC and logistic
regression models which are linear methods like LDA.

2) With feature selection: When selecting feature with
the Benjamini-Yekutieli procedure the linear classifiers show
slightly worse performance, and QDA is the only classifier to
perform notable better with an increase of 0.06 in the F1 score.
It should be noted that although the decision tree complexity
parameter is the same, a deeper (larger) tree is used to achieve
nearly the same score. Also, the chosen time window of the
decision tree increased. This is significant as it is preferred to
make predictions as early as possible, i.e. to not wait for more
time to pass after the abnormal event begins. Although feature
selection reduces the fitting time, it has negligible influence on
the scoring time, hence once the classifier is trained the speed
improvement is not significant. The use of PCA was briefly
investigate, and it was found that the features were not strongly
correlated, e.g. the dimensionality was mostly retained when
using 99% explained variance as a cut-off.

In the previous work [8] a random forest was chosen and
accuracy was to identify the hyper parameters (0.97 accuracy
with 102 trees, maximum depth of 24). Note that this is a
more complex forest than identified in this work, and is likely
due to the fact that a smaller set of features were calculated,
making the classification more difficult.

Based on the cross validation results the decision tree
with no feature selection is chosen as the best classifier. In
comparison to the more complex tree methods, there can
be minor improvement with the ensemble methods, however
this fluctuates depending on the random state set in the
fitting procedure, with the decision tree essentially giving
the same performance as the ensemble methods throughout.
Additionally the use of the smaller time window with the



Fig. 3. Confusion matrix of decision tree.

TABLE V
CLASSIFICATION METRICS FOR DECISION TREE ON TEST DATA

Class Precision Recall F1-score
Normal 0.95 0.85 0.90
Abrupt Increase of BSW 0.83 0.98 0.90
Spurious Closure of DHSV 0.42 0.60 0.49
Severe Slugging 0.97 0.91 0.94
Flow Instability 0.94 0.96 0.95
Rapid Productivity Loss 0.91 0.94 0.92
Quick Restriction in PCK 0.76 0.86 0.81
Hydrate in Production Line 0.84 0.90 0.87
macro avg 0.83 0.88 0.85

decision tree is preferred. Compared to the linear methods
the performance is better of the decision tree is better.

B. Test set results

The decision tree with identified hyperparameters is fit to
all the training data and results are computed on the test set,
shown in the confusion matrix Fig.3 and Table V. The F1-
score and accuracy are 0.85 and 0.88 respectively. These are
similar to the cross validation results, and suggests that the
kfold validation was representative of the test set.

The confusion matrix shows that the model correctly iden-
tifies almost all faults, except for class 2, ”Spurious closure of
DHSV” which only has an accuracy of 60% correct prediction
and F1-score of 49%. The poor ability to predict this class
may be because this class occurs the least in the dataset
(see Table I), and thus there was not sufficient data to train
for this class. While this was also an issue in [8] it is
not so pronounced, however in that work 15% of hydrate
formation was incorrectly predicted as sever slugging. This
mismatch is not observed in this data, and is likely due to
a feature(s) calculated in the current work that made these
classes distinguishable.

V. CONCLUSION

This work describes a method to classify undesirable events
in oil well operation during their faulty transient stage. Seven
different fault types can be distinguished from normal oil
well operations. Features describing the events are calculated
in time windows, with feature selection having low impact
on classifier training and performance. Classifiers and hy-
perparameters are compared in a grid search, with 5-fold
cross validation, and a decision tree with complexity pruning
parameter of 1e-4 is chosen. On the test set the decision tree



achieves an F1-score of 0.85 and balanced accuracy of 0.88.
Additionally, the decision tree is able to perform the classifica-
tion in 10 minute windows, allowing for early identification of
the fault. The decision tree is able to classify all faults well,
except for ”Spurious closure of DHSV” which may be due
to its under-representation in the data. Interestingly, ensemble
methods such as random forest and AdaBoost did not show
an improvement in performance over the decision tree. This
could be because the tree is stable enough that there is not
a significant reduction in variance when using the ensemble
methods. Compared to previous work, the decision tree is
smaller than the random forest developed by [8] on the same
dataset, likely due to the calculation of additional descriptive
features in this work.
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