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Abstract

Uncertainty is always an issue when dealing with models. This is also the case for model
predictive control (MPC), which is a control scheme that uses a model of some system
for predicting its future behavior. The nominal MPC does not consider uncertainty in its
predictions, leading to plant-model mismatch. If we do consider uncertainty, we then have
robust model predictive control (RMPC). Here, one method of RMPC is the scenario-tree
based MPC, where we create different scenarios based on the most influential parameters.
In order to find these parameters, we should conduct a sensitivity analysis (SA). However,
in today’s applications of RMPC, when the most sensitive parameters are found, they are
stuck with to the end of time. Is this reasonable? We suspect that this is not the case,
especially for batch processes. In this project, the aim was to study MPC, RMPC and SA,
as well as implementing the closed-loop MPC and open-loop MPC, and using SA on the
open-loop MPC. This was done for a simple fermentation process in a batch bioreactor.
The case study was restricted to only the Sobol’ method as SA, where the simulation was
done in Python through the use of CasADi. It was found that, with respect to the constraint
on the biomass Xs, i.e., Xs ≤ 3.7, that closed-loop and open-loop MPC have constraint
violations when considering parametric uncertainty, i.e., θi ∼ U(95% θi, 105% θi). Here,
the greatest violations were 3.723 and 3.948, respectively, from 100 iterations, which is
unacceptable for a hard constraint. Hence, we want to use the scenario-tree based MPC.
Firstly, we need to identify the most sensitive parameters. Using Sobol’ method, the most
sensitive parameters were identified as µm, Yx and Sin, and the least sensitive parameters
were identified as km, ki, ν and Yp. The best result was acquired for N = 217 number of
samples, but this simulation lasted 6 hours, 46 minutes and 25 seconds. It was concluded
that the computational expenses was too high. Future work should consider trying other
methods of SA, as well as implementing the scenario-tree based MPC itself.
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Chapter 1
Introduction

1.1 Motivation
Uncertainty is always an issue when dealing with models. This is also the case for model
predictive control (MPC). MPC is a common control scheme in which a model of some
system is used for predicting the future behavior of the system. MPC solves an online
optimization problem, that is, it minimizes or maximizes an objective function to obtain
the optimal control action [12]. However, the nominal MPC does not consider uncertainty
in its predictions, leading to plant-model mismatch. That is, even if the MPC has feedback,
it still needs back-off if there are hard constraints in the system.

The solution to this problem is introducing robustness into the MPC, i.e., we instead
have robust model predictive control (RMPC) that considers uncertainty. There are several
methods of RMPC, where one of them is the scenario-tree based method [12]. We consider
different scenarios in the MPC to enhance robustness, and we create these scenarios based
on the most sensitive parameter. In today’s applications of RMPC, this chosen parameters
is stuck with to the end of time. Is this reasonable? We suspect that this is not the case,
especially for batch processes. For instance, some process in a batch bioreactor, such as
an ethanol fermentation, might have great differences in the yeast growth rate from one
stage in the process to another. This growth rate depends on some of the plant parameters,
and some of the outputs depend directly on the growth rate. Here, say that we have some
hard constraint on one of the outputs. We could implement a large back-off to ensure that
this constraint is satisfied, or we could try the scenario-tree based MPC. That is, we could
create an algorithm that uses sensitivity analysis (SA) for the scenario-tree branching along
the time-horizon, and for every iteration of the MPC. Because of high computational costs
related to the RMPC and SA, it is natural to limit ourselves to only one, or maybe a few,
uncertain parameters. Thus, in this project, where the case study is a fermentation process
in a batch bioreactor, the focus is on applying SA to an important constraint of the MPC.
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Chapter 1. Introduction

1.2 Thesis structure
The aim of this specialization project was to study MPC, RMPC, and various SA methods,
as well as implementing the closed-loop and open-loop MPC, and using the Sobol’ method
on the open-loop MPC. This was done for a fermentation process in a batch bioreactor.

Firstly, theory on MPC is presented in Chapter 2. Here we start with introducing the
general MPC in Section 2.1, before talking about orthogonal collation in Section 2.1.1.
After that, we take on RMPC in Section 2.2 and scenario-tree based MPC in Section 2.2.1.

Secondly, theory on SA is presented in Chapter 3. Here we start with introducing the
concept of SA in Section 3.1, before talking about local SA in Section 3.1.1, settings of SA
in Section 3.1.2 and global SA in Section 3.1.3. After that, we talk about the Sobol’method
in Section 3.2 and Saltelli’s modification in Section 3.2.1. Other methods are taken on in
Section 3.3, i.e., Morris screening in Section 3.3.1, Monte Carlo filtering in Section 3.3.2
and FORM/SORM in Section 3.3.3.

The case study and optimization problem is presented in Chapter 4. Here we start by
introducing the case study in Section 4.1, before formulating this as MPC in Section 4.1.1,
and describing how we would use SA for this in Section 4.1.2.

The results on MPC and SA are presented and discussed in Chapter 5. Here we start
by presenting and discussing results for the closed-loop MPC in Section 5.1, before doing
the same for open-loop MPC in Section 5.2 and SA of the open-loop MPC in Section 5.3.

Finally, conclusions are made in Chapter 6. Here we start by concluding the discussed
results in Section 6.1, before talking about possible future work in Section 6.2.

Furthermore, Python codes that were used for closed-loop MPC and open-loop MPC,
and as well for the Sobol’ method, are attached in the Appendix.
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Chapter 2
Model predictive control

2.1 Model predictive control
Model predictive control (MPC) is a common control scheme in which a model of some
system is used for predicting the future behavior of the system [12]. MPC solves an online
optimization problem, that is, it minimizes or maximizes an objective function to obtain
optimal control action that drives the predicted output trajectory to the reference trajectory.
There are several advantages with MPC when compared to the typical PID-controllers [15]:
(i) ability to handle multi-input multi-output (MIMO) systems that may have interactions
between inputs and outputs, (ii) providing a systematic way of handling constraints upon
inputs and outputs, (iii) being able to coordinate control calculations with the calculation of
optimum set points, and (iv) ability to provide early warnings of potential problems if the
model is accurate. There are also disadvantages with MPC, that is: (i) requirement of an
accurate process model, (ii) online complexity, (iii) model might be difficult to maintain,
(iv) commissioning costs of the modeling, and (v) less transparent control algorithm [15].

In general control theory, the outputs are called controlled variables (CVs), whilst the
inputs are called manipulated variables (MVs), and the disturbances are called feedforward
variables (DVs). The overall objectives of MPC, ranked by importance, are typically [11]:

1. Prevent violations of input and output constraints.
2. Drive the CVs to their steady-state optimal values.
3. Drive the MVs to their steady-state optimal values using remaining DOF.
4. Prevent excessive movement of MVs.
5. When signals and actuators fail, control as much of the plant as possible.

Here, DOF is an abbreviation for the degrees of freedom. A block diagram for the
general MPC controller is shown in Figure 2.1. A process model is used for predicting the
current output. The differences between the actual and predicted outputs, referred to as the
residuals, makes the feedback signal to the Prediction block. These acquired predictions
are used for set-point calculations and control calculations. Inequality constraints can be

3



Chapter 2. Model predictive control

required on both of these calculations. The set points (targets) for the control calculations
are found based on the steady-state optimization of the process. The typical optimization
objectives are maximizing profit, minimizing cost, or maximizing production. Moreover,
the control calculations are based on the current measured output and the predicted output.
The objective is to determine the sequence of control actions, so that the predicted output
response adjusts optimally to the target [15]. This is shown in Figure 2.2, where the process
is simulated discretely over the prediction horizon np, and control actions are allowed over
the control horizon nm. It is required that the control horizon cannot surpass the prediction
horizon, i.e., 1 ≤ nm ≤ np < ∞, and the process must return to the steady state [15].

Inputs

Pre

Prediction

Predicted
outputs Control

calculations

Set points
(targets)

Set-point
calculations

Inputs
Process

Process
outputs

Model

Model
outputs

Residuals

Figure 2.1: General MPC block diagram [15].

Past Future
Set points (target)

Past output

Predicted future output

Past control action

Future control action

Control horizon, nm

Prediction horizon, np

k-1 k k+1 k+2 k+nm-1 k+np

Figure 2.2: Concept of single-input single output (SISO) general MPC [15].
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2.1 Model predictive control

The figures 2.1 and 2.2 represent the general set-point tracking MPC. Here, the typical
objective function for this kind of control scheme can be formulated as the following [4]:

min
x,u

np∑
k=1

(xk − xSP,k)
TQ(xk − xSP,k)︸ ︷︷ ︸

state set-point tracking

+

nm∑
k=1

(uk − uref,k)
TR1(uk − uref,k)︸ ︷︷ ︸

input set-point tracking

+

nm∑
k=1

∆uT
k R2∆uk.︸ ︷︷ ︸

input usage penalty︸ ︷︷ ︸
regularization terms

(2.1)
However, for this specialization project, instead of using the general set-point tracking

MPC scheme, we instead have an economic MPC (EMPC). That is, the set-point tracking
is neglected, and the real-time optimization (RTO) is done together with the MPC instead
of in the above control layer. The optimization is done with respect to a cost function,
J(xk, uk), which typically maximizes product. The objective of an EMPC can be [4]

min
x,u

np∑
k=0

J(xk, uk) +

nm∑
k=1

∆uT
kR∆uk, (2.2)

which is an unconstrained optimization problem. Now, having inequality constraints on in-
puts and outputs is an important benefit of MPC. For example, a given flow rate (MV) has
the lower limit of zero and some upper limit determined by pumps, control valves and pip-
ing characteristics, whilst the product quality (CV) in a distillation column has the lower
limit of zero and some upper limit determined by dynamics or customers’ demand [15].
Additionally, if one included penalty on the magnitude of the manipulated variable steps,
then the constrained optimization problem for an economic MPC can be written as [4]

min
x,u

np∑
k=0

J(xk, uk) +

nm∑
k=1

∆uT
kR∆uk (2.3a)

subject to
xk+1 = F (xk, uk, θk), k = 0, . . . , np − 1 (2.3b)
g(xk, uk, θk) ≤ 0, k = 1, . . . , np (2.3c)
xmin ≤ xk ≤ xmax, k = 1, . . . , np (2.3d)
umin ≤ uk ≤ umax, k = 1, . . . , nm (2.3e)

−∆umax ≤ ∆uk ≤ ∆umax, k = 1, . . . , nm (2.3f)
where

x0 = x(0), (2.3g)
∆uk = uk − uk−1, k = 1, . . . , nm (2.3h)
∆uk = 0, k = nm + 1, . . . , np (2.3i)

where J(xk, uk) is the cost function, xk is the measured output, allowed between xmin

and xmax, and uk is the calculated input, allowed between umin and umax. Furthermore,
∆uk denotes the input movement, which is allowed to vary between ∆umin and ∆umax.
The predicted state, xk+1, is a found from the integrator, F (xk, uk, θk), where θk is the
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Chapter 2. Model predictive control

measured parameters. The nonlinear inequality constraints on the system are denoted by
g(xk, uk, θk), and the input movement penalization matrix is denoted by the R matrix [4].

2.1.1 Orthogonal collocation
Orthogonal collocation on finite elements is a direct transcription method that allows for a
simultaneous approach of an optimization problem. That is, instead of using an ODE/DAE
solver, the integration is done together with the optimizer. Put differently, ”one write out
the integrator equations” and solve them together with the other constraints in the nonlinear
program (NLP) [1]. As a result, one obtain very large NLPs, but with sparse structures that
can be exploited by the NLP solver. For simplification, consider now the ODE:

ẋ = f(x), x(0) = x0. (2.4)

Assume that the solution x(t) can be approximated by the K + 1 order polynomial:

xK
i (t) = α0 + α1t+ α2t

2 + · · ·αKtK , (2.5)

valid on the finite-time elements t ∈ [ti, ti+1]. Using Lagrange interpolation polynomials
and the j = 0, . . . ,K interpolation points (tj , xi,j) in the interval [ti, ti+1], results in [1]

xK
i (t) =

K∑
j=0

lj(τ)xi,j , (2.6)

where lj(τ) is the Lagrangrian basis polynomial with dimensionless time τ ∈ [0, 1] [1]:

lj(τ) =

K∏
k=0,k ̸=j

τ − τk
τj − τk

, τ =
t− tt
∆ti

, ∆ti = ti+1 − ti. (2.7)

It is important to note that the basis polynomial lj(τ) is defined such that lj(τj) = 1
and lj(τi) = 0 for all the interpolation points where i ̸= j. Such a polynomial ensures
that xK(ti,j) = xi,j , and the polynomial is fitted to all the finite elements, see Figure 2.3.
Finally, the integration equations to be used in the optimizer, can be formulated as [1]

K∑
j=0

dlj
dτ

∣∣∣∣
τk︸ ︷︷ ︸

aj,k

xi,j

∆t
= f(xi,k), k = 1, . . . ,K, (2.8)

where aj,k are constants that can be pre-computed. Furthermore, there is one equation
missing, that is needed to ensure ensure continuity between the finite elements, which is [1]

xi+1,0 = xK
i (ti+1) =

K∑
j=0

lj(1)xi,j︸ ︷︷ ︸
dj

, (2.9)
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2.1 Model predictive control

where, similarly to the collocation coefficients aj,k, the continuity coefficients dj can be
pre-computed. There are different approaches to orthogonal collocation, all with varying
number of collocation points and positions. The most common ones are Gauss-Lobatta,
Gauss-Legendre and Gauss-Radau, where the last two approaches are shown in Table 2.1.

K(ti+1) = xi+1,0

xi+2,0

collocation points

finite element

xi,0

xi
K(t)

ti ti+1
ti+2

�0 �1 �2 �3

Δt

Figure 2.3: Lagrange polynomials to approximate solution of an ODE [10].

Table 2.1: Gauss–Legendre and Gauss-Radau roots as collocation points [1].

Degree K Gauss–Legendre Gauss-Radau
1 0.500000 1.000000
2 0.211325 0.333333

0.788675 1.000000
3 0.112702 0.155051

0.500000 0.644949
0.887298 1.000000

4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000

5 0.046910 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860240
0.953090 1.000000
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Chapter 2. Model predictive control

Finally, one could have reformulated the MPC, i.e., eq. (2.3), to the following [1]:

min
xi,k,xk,uk

np∑
k=0

J(xk, uk) +

nm∑
k=1

∆uT
kR∆uk (2.10a)

subject to
K∑
j=0

aj,k
xi,j

∆t
= f(xi,k), k = 1, . . . ,K (2.10b)

g(xk, uk, θk) ≤ 0, k = 1, . . . , np (2.10c)
xmin ≤ xk ≤ xmax, k = 1, . . . , np (2.10d)
umin ≤ uk ≤ umax, k = 1, . . . , nm (2.10e)

−∆umax ≤ ∆uk ≤ ∆umax, k = 1, . . . , nm (2.10f)
where

x0 = x(0), (2.10g)
∆uk = uk − uk−1, k = 1, . . . , nm (2.10h)
∆uk = 0, k = nm + 1, . . . , np (2.10i)

xi+1,0 =

K∑
j=0

djxi,j , i = 1, . . . ,K (2.10j)

xi,K =

K∑
j=0

djxK,j , x1,0 = x(t0) (2.10k)

2.2 Robust model predictive control
In standard MPC formulations, the model sees the world as perfect, when in reality there
are disturbances and uncertainties that should be accounted for [12]. If not, this can lead to
plant-model mismatch, which gives worse performance and possibly constraint violations.
The solution to this problem is introducing robustness into the controller. Robust model
predictive control (RMPC) serves this purpose, and it includes various methods of MPC
that guarantee to optimal performance while also considering uncertainty in the system.
Some methods are the min-max MPC, tube-based MPC and scenario-tree based MPC [6] [7].

The min-max MPC strategy involves optimization of the worst-case performance with
respect to the uncertainties [6]. Unfortunately, this results in conservative control and with
small domains of feasibility. Solving min-max MPC problems often is too computationally
demanding for practical implementation, especially for closed-loop MPC. The tube-based
MPC is a more recently developed approach of RMPC, and it focuses more on efficiency.
Here, an ancillary feedback controller that acts on the state deviations, is designed in order
for keeping the actual state trajectories within an invariant ”tube” around the nominal
trajectory, which is calculated by solving the nominal MPC [16]. However, this project
focuses on the latter RMPC method mentioned, that is, the scenario-tree based MPC.
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2.2 Robust model predictive control

2.2.1 Scenario-tree based MPC
Scenario-tree based MPC, which is similar to the likes of scenario-based MPC (SMPC),
multi-scenario MPC (MS-MPC), or multi-stage scenario-based MPC, revolves around the
idea of introducing different scenarios in the MPC to give robustness [6]. Here, the future
uncertainties in the prediction horizon are represented through a scenario-tree. The control
trajectories are then computed online for the different scenarios. For instance, for only one
robust horizon, i.e., the optimization problem is only branched once, the scenario-tree
MPC could look like Figure 2.4. Here, each of the scenarios has its own separate cost, and
the objective is to find input sequence {uk, . . . , uk+N} that minimizes the expected cost.

xk
xk+1

(2)

xk+1
(1)

xk+N
(2)

xk+N
(1)

xk+1
(3) xk+N

(3)

Past Future

tk tk+1 tk+N

J(1)

J(2)

J(3)

min
x,u

J = (1/3) (J(1)+J(2)+J(3))

nom

high

low

Figure 2.4: Scenario-tree based MPC with one robust horizon.

These scenarios are defined by considering one, or maybe a few, uncertain parameters
out of potentially many uncertain plant parameters. For simplicity, say that we only want
one uncertain parameter at the time tk. This is not unreasonable, as we are restricted by
computational complexity. Which of the parameters that are chosen for generating the
scenarios is done online by a method of sensitivity analysis. In general, one should select
the parameter that affects the cost function the most. In Figure 2.4, we have three possible
scenarios of the parameter θ, i.e., θhigh, θnom and θlow. How do we choose what scenario
that should be realized? For this we have to create an algorithm that selects θ based on J ,
as well as selecting the weighting of each scenario. In Figure 2.4, the weightings are equal
for simplicity. Implementation of these scenario-trees was out of scope for this project.
The focus is on sensitivity analysis, which is presented in Chapter 3. We restrain ourselves
to only parametric uncertainty, as uncertain inputs would give extra computational costs.
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Chapter 3
Sensitivity analysis

3.1 Sensitivity analysis
Sensitivity analysis (SA) is defined as the study of how the uncertainty in the outputs of a
model can be apportioned to the different sources of uncertainty in the model inputs [14].
Generally, there are two main approaches to SA: (i) Local sensitivity analysis (LSA) and
(ii) Global sensitivity analysis (GSA). LSA methods are usually implemented through
calculating the partial derivatives of the outputs with respect to the inputs. GSA methods,
however, are carried out by apportioning the output uncertainty to the inputs’ uncertainty,
using probability distributions for the inputs’ entire range [13]. This report focuses on GSA.

3.1.1 Local sensitivity analysis

In literature we are often met with sensitivity defined as based on derivatives. It is indeed,
that the partial derivative ∂Yj/∂Xi can be used as a definition on the sensitivity of Yj

against Xi. This approach is attractive due to its efficiency in computational time, as the
required model executions are generally small [13]. Thus, the sensitivity can be written as

Sp
Xi

=
∂Yj

∂Xi
, (3.1)

where Yj are the model outputs and Xi are the model inputs. The superscript p denotes
”partial derivative”. The derivatives Sp

Xi
are non-normalized, and one way of improving

eq. (3.1) is by introducing sigma-normalized derivatives, which can be formulated as [14]

Sσ
Xi

=
σXi∂Yj

σYj
∂Xi

. (3.2)

However, derivative-based approaches are unwarranted when the model inputs have
uncertainty and when the model is nonlinear. For that reason, this project focuses on GSA.
We seek to use conditional variances for describing the sensitivities [14].
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Chapter 3. Sensitivity analysis

3.1.2 Settings in sensitivity analysis
In literature we can find cases where different sensitivity methods are used for the same
problem in a non-structured practise [13]. This can yield quite different results, e.g., when
it comes to ranking the input factors after importance. Here, it is difficult to know for
sure what is the true answer. For this issue, we use ”settings” as a method for framing the
sensitivity task, such that the results can be entrusted. There are different settings, but for
selecting the most appropriate one, we have to carefully consider: (i) the output of interest,
and (ii) the concept of ”importance”. Here follows a list of some possible settings [14]:

• Factor Prioritization (FP) setting is used to identify an input factor (or a group of
input factors), that when fixed at its true value, gives the largest variance reduction
of the output. That is, the identified input factor (or a group of input factors) is the
one that accounts for the most of the output variance.

• Factor Fixing (FF) setting is used to identify input factors in the model, which,
allowed to vary freely over the range of uncertainty, contributes very little to the
output variance. Then, the identified input factors can be fixed at any value within
their range of variation, without affecting the output variance.

• Variance Cutting (VC) setting is used to the reduce the output variance to below a
given tolerance. Typically, this may be desirable in reliability analysis.

• Factor Mapping (FM) setting is used to identify what values of the input factors
leads to model realizations in some given range of the model output space.

Out of the four settings mentioned, the first three are susceptible to variance-based SA,
i.e., a form of GSA. The utility of variance-based SA comes from its many applications [14].

3.1.3 Global sensitivity analysis
GSA methods are carried out by apportioning the output uncertainty to the input factors’
uncertainty, using probability distributions that cover the input factors’ entire range [13].
These ranges are important, as they represent the knowledge that we have or are lacking,
with respect to the model and its parameterization. One well-known approach of GSA is
the variance-based sensitivity analysis, which uses variance as the basis to find a measure
of the input influence on the output variation. This choice feels natural, as variance can
be used as a measure of dispersion or variability in the model prediction, indicating its
precision due to input variations. Nevertheless, consider now the generic model [14]

Y = f(X1, X2, . . . , X3). (3.3)

Here, each Xi has a non-null range of variation or uncertainty. Imagine now that we
fix the factor Xi at some value x∗

i . Let VX∼i(Y |Xi = x∗
i ) be the resulting variance of Y ,

taken over X∼i (i.e., all the factors except Xi). This is called the conditional variance,
since it is conditional on Xi being fixed to x∗

i . Now, if we average this over all the possible
point x∗

i , the dependence on x∗
i disappears. This can be formulated as EXi

(VX∼i
(Y |Xi)).

In fact, we always have EXi
(VX∼i

(Y |Xi)) ≤ V (Y ), which comes from the equality [14],

EXi
(VX∼i

(Y |Xi)) + VXi
(EX∼i

(Y |Xi)) = V (Y ). (3.4)

12



3.1 Sensitivity analysis

Hence, from observing eq. (3.1), a small EXi(VX∼i(Y |Xi)) or a large VXi(EX∼i(Y |Xi))
implies that Xi is an important factor. The conditional variance VXi(EX∼i(Y |Xi)) is also
called the first-order effect of Xi on Y . Likewise, we have the sensitivity measure [14],

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
, (3.5)

which is called the first-order sensitivity index of Xi on Y , and we must have Si ∈ [0, 1].
Now, what if the conditional variance had multiple factors instead of one? For instance,
say that we have two factors Xi, Xj . Then, the conditional variance can be written as [14]

V (E(Y |Xi, Xj))

V (Y )
, (3.6)

where i ̸= j, and we dropped the indices of both E and V . Then, the following is true:

V (E(Y |Xi, Xj)) = Vi + Vj + Vij , (3.7)

where Vi, Vj and Vij can be written as

Vi = V (E(Y |Xi)) (3.8a)
Vj = V (E(Y |Xj)) (3.8b)
Vij = V (E(Y |Xi, Xj))− Vi − Vj . (3.8c)

Here, Vij represents the interaction between the factors Xi and Xj . A non-linear
additive model (e.g., Y =

∑
i X

2
i ) will not have any Vij terms, while a non-linear non-

additive model (e.g., Y =
∏

i Xi) will have non-zero Vij terms. That is, even for a
non-additive model, we are able to fully understand the model’s sensitivities, granted that
patience is required for the time consuming computations. For k input factors, we have [14]∑

i

Si +
∑
i

∑
j>i

Sij +
∑
i

∑
j>i

∑
l>j

Sijl + · · ·+ S123...k = 1. (3.9)

Moreover, we can express eq. (3.1) by the total effect index. That is, the total effect
accounts for the contribution from the output variation due to the factor Xi (i.e., the first-
order effect) plus all the higher effects due to interactions. This can be formulated as [14]

STi = 1−
V (E(Y |X∼i))

V (Y )
=

E(V (Y |X∼i))

V (Y )
. (3.10)

Up until now, we have assumed that the input factors are independent of each other.
The reasoning behind this is quite natural, as dependent input samples are time consuming
to generate, and the required sample size for computing sensitivity measures for dependent
samples is much higher. Thus, it is advised to work with only uncorrelated samples [14].
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Chapter 3. Sensitivity analysis

In Section 3.1.2 we talked about settings. How does settings relate to the first-order
sensitivity index Si and the total sensitivity index STi? The short answer is that Si relates
to the Factor Prioritization (FP) and STi

relates to the Factor Fixing (FF). For instance,
when it comes to research prioritization, one could ask the question ”Which factor is the
most deserving of further analysis?”, in which we link Si to the FP setting. Or when it
comes to model simplification, one could ask the question ”Can some factors of the model
be fixed or simplified?”, in which we link STi to the FF setting [14]. Such questions are
important to ask beforehand. In Section 2.2.1 we talked about scenario-trees, and that
these trees should be based on the most sensitive parameter. However, is it Si, STi

or both
that should be used in the scenario-tree algorithm? For now, we leave this unanswered.

3.2 Sobol’ method
The Sobol’ method is one such method of variance-based SA, formed by I. M. Sobol’ [17].
Now, consider a square-integrable function f over Ωk, the k-dimensional unit hypercube,

Ωk = (X | 0 ≤ xi ≤ 1; i = 1, ..., k), (3.11)

where Sobol’ method considers an expansion of f into terms of increasing dimensions [14],

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + · · ·+ f12...k. (3.12)

Here, each of the terms are also square integrable over the domain, and they are only
functions of the index factors, i.e., fi = fi(Xi), and fij = f(Xi, Xj), and so forth. This
is not a series decomposition, as the number of terms is finite. More specifically, it has
2k terms, where one term is constant (f0), and there are k first-order functions, and

(
k
2

)
second order functions (fij), and so forth. This expansion is called a high-dimensional
model representation (HDMR), and it is not unique. That is, for some model f , it could be
an infinite number of choices for its terms. Furthermore, if each of the terms have mean
equal to zero, i.e.,

∫
f(xi)dxi = 0, then Sobol’ proved that all the terms are orthogonal in

pairs, i.e.,
∫
f(xi)f(xj)dxidxj = 0. Consequently, each of these terms can be univocally

calculated with the conditional expectation of the model output Y . Thus, it follows that [14]

f0 = E(Y ) (3.13a)
fi = E(Y |Xi)− E(Y ) (3.13b)
fij = E(Y |Xi, Xj)− fi − fj − E(Y ). (3.13c)

The conditional expectation E(Y |Xi) can be calculated by slicing the Xi domain and
averaging the values of Y |Xi. The variance of E(Y |Xi) can be considered as a summary
measure of sensitivity. In fact, V (fi(Xi)) is another way of writing V [E(Y |Xi)], so that if
we divide by unconditional variance V (Y ), we obtain the first-order sensitivity index [14],

Si =
V [E(Y |Xi)]

V (Y )
, (3.14)
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which is the main effect contribution of each input factor to the output variance. However,
we might have interaction effects too. Two factors interact when their effect on output Y
cannot be written as a sum of their individual effects. Decomposing eq. (3.1) gives that [14]

Vi = V (fi(Xi)) = V [E(Y |Xi)] (3.15a)
Vij = V (fij(Xi, Xj)) = V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj)). (3.15b)

Here, V (E(Y |Xi, Xj)) measures the joint effect of the pair Xi, Xj on the output Y ,
and V (fij) is equal to this joint effect minus the first-order effects for the same factors.
V (fij) is also known as the second-order effect. Similarly, this can be done for higher-
order terms. We abbreviate V (fi) = Vi, V (fij) = Vij , and so on, and square integrate
each term of the eq. (3.1) over Ωk, giving a so-called ANOVA-HDMR decomposition [14]:

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+ V12...k. (3.16)

Dividing both sides of the eq. (3.1) by V (Y ), results in∑
i

Si +
∑
i

∑
j>i

∑
l>j

Sijl + · · ·+ S123...k = 1. (3.17)

Total effects come as consequences of Sobol’s variance decomposition. The total effect
index accounts for the total contribution to the output variation due to factor Xi, i.e, its
first-order effect, plus all higher-order effects. For instance, say that some model has three
input factors. Then, the total effect of X1 is the sum of all terms in eq. (3.1), which is [14]

ST1 = S1 + S12 + S13 + S123. (3.18)

Here, the total index consists of four terms, where the latter three terms give useful
information on the non-additive features. The unconditional variance is decomposed [14],

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)). (3.19)

Another way of defining the total index is by decomposing the output variance V (Y )
in terms of main effect and residual, conditioning with respect to all factors except one [14],

V (Y ) = V (E(Y |X∼i)) + E(V (Y |X∼i)). (3.20)

Here, V (Y ) − V (E(Y |X∼i)) = E(V (Y |X∼i) denotes the remaining variance of Y
that would be left, on average, if we could find the true values of X∼i. If we divide this by
the unconditional variance V (Y ), we can finally obtain the total effect index for X∼i

[14]:

STi =
E[V (Y |X∼i)]

V (Y )
= 1− V [E(Y |X∼i)]

V (Y )
. (3.21)

Now, we want to use the Monte Carlo based numerical procedure for computing the
first-order and total-effect indices for a model of k input factors. This is the best available
procedure for computing indices purely based on model evaluations [14]. In next section,
we propose a shortcut for computing indices more efficiently, i.e., Saltelli’s modification.
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3.2.1 Saltelli’s modification
We want to generate a (N, 2k) matrix containing random numbers, and we the define the
two matrices A and B, each containing half of the random sample (see 3.1 and 3.1). Here,
N is the base sample, i.e., typically a few thousands, and k is the number of inputs [14].

A =


x
(1)
1 x

(1)
2 · · · x

(1)
i · · · x

(1)
k

x
(2)
1 x

(2)
2 · · · x

(2)
i · · · x

(2)
k

· · · · · · · · · · · · · · · · · ·
x
(N−1)
1 x

(N−1)
2 · · · x

(N−1)
i · · · x

(N−1)
k

x
(N)
1 x

(N)
2 · · · x

(N)
i · · · x

(N)
k

 (3.22)

B =


x
(1)
k+1 x

(1)
k+2 · · · x

(1)
k+i · · · x

(1)
2k

x
(2)
k+1 x

(2)
k+2 · · · x

(2)
k+i · · · x

(2)
2k

· · · · · · · · · · · · · · · · · ·
x
(N−1)
k+1 x

(N−1)
k+2 · · · x

(N−1)
k+i · · · x

(N−1)
2k

x
(N)
k+1 x

(N)
k+2 · · · x

(N)
k+i · · · x

(N)
2k

 (3.23)

Now, matrix Ci is made of all columns in B except from the i’th, which is from A [14]:

C =


x
(1)
k+1 x

(1)
k+2 · · · x

(1)
i · · · x

(1)
2k

x
(2)
k+1 x

(2)
k+2 · · · x

(2)
i · · · x

(2)
2k

· · · · · · · · · · · · · · · · · ·
x
(N−1)
k+1 x

(N−1)
k+2 · · · x

(N−1)
i · · · x

(N−1)
2k

x
(N)
k+1 x

(N)
k+2 · · · x

(N)
i · · · x

(N)
2k

 (3.24)

Using the sample matrices A, B and Ci, we compute the model output for all the
sampled input values, giving the following N×1 dimensional vectors of model outputs [14]:

yA = f(A), yB = f(B), yCi = f(Ci). (3.25)

We assume these vectors are everything needed for finding the first-order indices Si

and total-effect indices STi , for some input factor Xi. The total cost is only N(k + 2),
which is quite lower than the original N2 amount of iterations for the brute-force method.
Now, the recommended formula for estimating the first-order sensitivity indices is [14]

Si =
V [E(Y |Xi)]

V (Y )
=

yA · yCi − f2
0

yA · yA − f2
0

=
(1/N)

∑N
j=1 y

(j)
A y

(j)
Ci

− f2
0

(1/N)
∑N

j=1 y
(j)
A y

(j)
A − f2

0

, (3.26)

where we have the mean defined as

f2
0 =

( 1

N

N∑
j=1

y
(j)
A

)2

. (3.27)
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Here, (·) is the scalar product of two vectors. Similarly, the total-effect indices are [14]:

STi = 1− V [E(Y |X∼i)]

V (Y )
= 1− yB · yCi − f2

0

yA · yA − f2
0

= 1−
(1/N)

∑N
j=1 y

(j)
B y

(j)
Ci

− f2
0

(1/N)
∑N

j=1 y
(j)
A y

(j)
A − f2

0

.

(3.28)
In the scalar product yA · yCi, the values of output Y from the matrix A are multiplied

by the values of output Y in which all factor except Xi are resampled while the values of
the input factor Xi remains fixed. If Xi is non-influential, then high and low values of yA
and yCi are randomly associated. However, if Xi is influential, then high (or low) values
of yA is multiplied by high (or low) values of yCi, thus increasing the value of the resulting
scalar product. It is by design such that STi always is greater than or equal to Si

[14].

There are several methods for generating random samples for A and B. One proposal is
the Latin hypercube sampling (LHS), which is normal for Monte Carlo (MC) simulations.
It might reduce the required iterations significantly. [13] LHS is inspired of the Latin square,
having one sample in each row and column of the square. Moreover, hypercube means a
cube with more dimensions than three. LHS is carried out by dividing some probability
distribution into N equal parts, for each of the input factors, and then sampling randomly
within that part. This typically performs better than the random- or stratified sampling [13].

3.3 Other methods
There are other SA methods that are interesting for the scenario-tree based MPC, but were
not implemented in this project; in short: (i) Morris screening is interesting due to its low
computational time, (ii) Monte Carlo filtering is interesting because it could tell us what
realizations violate some constraint, and (iii) FORM/SORM is interesting since it can give
the possibility of violating some constraint. Now, let us talk more about these methods.

3.3.1 Morris screening
Morris screening is another important method of GSA. In general, screening methods are
used for identifying importance of the input factors, by using a quite small number of runs.
This gives somewhat simple sensitivity measures. However, the most useful information
lies in the ranking itself instead of in the accuracy of the input factors with respect to the
model outputs. Hence, Morris screening is valuable in early SA phases, as it is useful for
finding input factors of less importance, which can be left out of further SA [14].

Consider now a model Y of independent inputs Xi, where i = 1, . . . , k, varying in the
k-dimensional unit cube over the p chosen levels. For some value of X = (X1, X2, X3),
the elementary effect EEi for the i’th input factor can be formulated as [14]

EEi =
[Y (X1, X2, . . . , Xi−1, Xi +∆, . . . , Xk)− Y (X1, X2, . . . , X3)]

∆
, (3.29)

where p denotes number of levels, and ∆ denotes a value ∈ {1/(p−1), . . . , 1−1/(p−1)}.
The total sensitivity index STi can be used for identifying non-influential inputs factors [14],
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STi =
EX∼i

(VXi
(Y |X∼i))

V (Y )
, (3.30)

but when the computational cost of STi
is expensive, we instead use an effective substitute.

We can use the sensitivity measures proposed by Morris, i.e., µ and σ, as estimates of mean
and standard deviation of the input factor distribution, respectively [14]. One could also use
another estimated mean, µ∗, proposed by Campolongo [2]. It is advised to use all three of
these statistics, in order to obtain more sensitivity information at little extra computations.
Calculation of the elementary effects is a sampling based approach. Here, we can sample
input factors from the randomized sampling matrix B∗, which can be formulated as

B∗ = (Jk+1,1x
∗ + (∆/2)[(2B− Jk+1,1)D

∗ + Jk+1,1])P
∗, (3.31)

where we have Jk+1,1 as a (k + 1)× k matrix of 1’s, and x∗ is some random value of X.
The diagonal matrix D∗ is of k dimensions, with every element being either +1 or −1,
and the k × k random permutation matrix is denoted P∗, where every row contains one
element equal to 1, while all others elements are 0, and there are no columns that have 1’s
in the same positions. The matrix B is a strictly lower triangular matrix of 1’s [14].

Say that we have l in the set of {1, . . . , k}, and then, if xl and xl+1 are samples of the
j’th trajectory, differing in their i′th component, the elementary effect of the factor i is

EEj
i (x

l) =
y(xl+1)− y(xl)

∆
, (3.32)

if we have an increase of the i’th component of xl by ∆, but

EEj
i (x

l+1) =
y(xl)− y(xl+1)

∆
, (3.33)

if we have an decrease of the i’th component of xl by ∆. When we have r elementary
effects per input factor available (EEj

i , i = 1, . . . , k, j = 1, . . . , r), then µi, µ∗
i and σ2

i ,
with respect to the distributions, can be computed for every input factor [14],

µi =
1

r

r∑
j=1

EEj
i (3.34a)

µ∗
i =

1

r

r∑
j=1

|EEj
i | (3.34b)

σ2
i =

1

r − 1

r∑
j=1

(EEj
i − µ)2, (3.34c)

in which EEj
i denotes the elementary effects with respect to the input factor i, along the

trajectory j. Now, based on eq. (3.1), we could rank importance of all the input factors [14].
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3.3.2 Monte Carlo filtering
Another important method of GSA is the Monte Carlo filtering (MCF). Here, one refrains
from identifying a optimal solution of the model output Y , but instead focus on mapping
values of the input factors into the output space, then filtering out input corresponding to
the unacceptable Y values [13]. Thus, elements of the MC sample that classifies as ”good”
realizations are flagged as behavioural, while elements that classifies as ”bad” realizations
are flagged as non-behavioural. The general idea is that, if the subsets ”behavioural” and
”non-behavioural” are not similar to one another, then the input factor is influential [14].

3.3.3 FORM/SORM
Sometimes we are not interested in the magnitude of the output Y (thus, neither variation),
but rather in the probability of Y exceeding some critical value [13]. For instance, say that
we have some constraint Y − Ycrit ≤ 0, which gives a hypersurface in the space Ω of the
input factors X. Then, the quantity that we are rather interested in, would be the minimum
distance between some design point for X and Ω. We denote this distance β for some joint
distribution of the input factor X. With a such setting, we can choose β with respect to X
as the sensitivity measure. The first-order reliability method provides such measures.

In structural reliability, the first-order reliability method (FORM) and second-order
reliability method (SORM) are considered amongst the most reliable methods. Generally,
their accuracy depend on three parameters, i.e., (i) the curvature radius at the design point,
(ii) the number of random variables, and (iii) the first-order reliability index [13].

FORM tries to identify a design point in Ω that gives the biggest possibility of failure.
We denote each uncertain input factor as Xi, in which there are n uncertain factors in the
model output Y , and X denotes the vector of all the n input factors. Then, we can define
failure by the performance function g(X). Failure would mean exceeding some critical
value when the model is run. What differs FORM and SORM from one another, is that
g(X) is linear for FORM, but non-linear for SORM. Otherwise, these methods are alike,
in which they utilize an optimization algorithm to identify the point that is the most likely
for failure, taking into consideration the input factors and the performance function g(X).
When this point (i.e., the design point) is identified, some first-order (second-order) surface
is fitted to the point in order for evaluating an approximated probability of failure [13].
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Chapter 4
Optimization problem

4.1 The case study
The chosen case study is a fermentation process in a batch bioreactor. A simple flowsheet
of this process is shown in Figure 4.1. The system consists of four states (Xs, Ss, Ps, Vs),
one input (u) and seven parameters (µm,Km,Ki, ν, Yp, Yx, Sin). There is only one flow
of substrate feed entering the reactor, and it is assumed that the reactor is perfectly mixed
under isothermal conditions. The overall objective of the process is to maximize product.

Vs [l]

Xs [g/l]

Ss [g/l]

Ps [g/l]

biomass

substrate

product

reactor

volume

perfectly mixed

batch reactor

(isothermal)

substrate feed

Figure 4.1: Simplified flowsheet of the batch bioreactor [8].
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The process is described by the following ordinary differential equation (ODE) [8]:

Ẋs = µ(Ss)Xs −
u

Vs
Xs (4.1a)

Ṡs = −µ(Ss)Xs

Yx
− νXs

Yp
+

u

Vs
(Sin − Ss) (4.1b)

Ṗs = νXs −
u

Vs
Ps (4.1c)

V̇s = u (4.1d)
where

µ(Ss) =
µmSs

Km + Ss + (S2
s/Ki)

(4.1e)

Here, Xs[g/l] is the biomass concentration, Ss[g/l] is the substrate concentration,
Ps[g/l] is the product concentration, and Vs[l] is the reactor volume. The feed flow rate
is denoted by u[m3/min], and the auxiliary term, µ[min−1], is the specific growth rate.
Furthermore, µm[min−1] is the maximum specific growth rate, Km[g/l] is the saturation
constant, Ki[g/l] is the inhibition constant, ν[g product/(g cells ·min)] is the specific
rate of product formation, Yp[−] is the product yield, Yp[−] is the biomass yield, and
Sin[g/l] is the inlet substrate concentration. The initial values for the states and the input,
along with the nominal values for the parameters, are shown in Table 4.1.

Table 4.1: Initial values for states and input, and nominal values for parameters [8].

Symbol Initial value Nominal Value Unit
Xs 1.0 [g/l]
Ss 0.5 [g/l]
Ps 0.0 [g/l]
Vs 120.0 [l]
u 0.0081 [m3/min]
µm 0.02 [min−1]
Km 0.05 [g/l]
Ki 5.0 [g/l]

ν 0.004 [ g product
g cells·min ]

Yp 1.2 [−]
Yx 0.4 [−]
Sin 200.0 [g/l]
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4.1.1 Model predictive control
Using eq. (3.3) for this case study, we can formulate the economic MPC as

min
x,u

np∑
k=0

− Ps,k +

nm∑
k=1

∆uT
kR∆uk (4.2a)

subject to
xk+1 = F (xk, uk, θk), k = 0, . . . , np − 1 (4.2b)
g(xk, uk, θk) ≤ 0, k = 1, . . . , np (4.2c)
xmin ≤ xk ≤ xmax, k = 1, . . . , np (4.2d)
umin ≤ uk ≤ umax, k = 1, . . . , nm (4.2e)

−∆umax ≤ ∆uk ≤ ∆umax, k = 1, . . . , nm (4.2f)
where

x0 = x(0), (4.2g)
∆uk = uk − uk−1, k = 1, . . . , nm (4.2h)
∆uk = 0, k = nm + 1, . . . , np (4.2i)

where the constraints on the outputs, inputs and input changes are shown in Table 4.2.

Table 4.2: Constraints on the outputs, inputs and input changes [8].

Symbol Lower constraint Upper constraint Unit
Xs 0.0 3.7 [g/l]
Ss 0.0 ∞ [g/l]
Ps 0.0 3.0 [g/l]
Vs 0.0 ∞ [m3]
u 0.0 0.2 [m3/min]
∆u -0.003 0.003 [m3/min]

Closed-loop and open-loop control parameters are presented in the tables 4.3 and 4.4.
We can now simulate the MPC, which can be done in Python through the use of CasADi,
that is, an open-source tool for nonlinear optimization and algorithmic differentiation [3].
As presented in Section 2.2.1, we are using orthogonal collocation as an approach of the
optimization problem, in which three Gauss-Radau collocation points per finite element
was chosen. The natural choice of the solver for this MPC in Python, is the ”Interior Point
OPTimizer”, or Ipopt, that uses a search filter method for identifying the local solution [5].

23



Chapter 4. Optimization problem

Table 4.3: Closed-loop control parameters.

Symbol Value Unit
np 20 [−]
nm 3 [−]
R 1.0 [−]

Table 4.4: Open-loop control parameters.

Symbol Value Unit
np 150 [−]
nm 150 [−]
R 1.0 [−]

When an optimal solution of the MPC is found, we plot the control inputs and the states
against the discrete time-axis t ∈ [0, 150], where each interval accounts for one minute.
Then, we introduce uncertainty in the system, by sampling parameters θi from a uniform
distribution, i.e., θi ∼ U(95% θi, 105% θi), and doing this for each time tk. We repeat this
N number of times, and obtain N number of uncertainty plots, where we particularly want
to study violations of the constraint on Xs, i.e., Xs ≤ 3.7. If there are great violations of
this constraint, it could be worth using sensitivity analysis and scenario-tree based MPC.

This case study was inspired by do-mpc [9], which is an open-source toolbox for RMPC,
and the developers created an example, i.e., Batch Bioreactor, for this toolbox. This case
is quite the same as ours. Here, they have implemented a scenario-tree based MPC with Yx

and Sin as the uncertain parameters. However, it is not mentioned why these are selected
as the uncertain parameters. Neither does it seem like they have used SA, and the scenarios
always seem based on Yx and Sin

[8]. Thus, we seek to SA for finding answers.

4.1.2 Sensitivity analysis
Of all the sensitivity analysis methods presented in Chapter 3, this project was restricted to
implementation of only the Sobol’ method. It seems reasonable to use Sobol’ method for
performing SA on the parameters θi with respect to the constraint on Xs, i.e., Xs ≤ 3.7,
as this is an important constraint not to violate. In particular, this regards the FP setting,
because we are interested in identifying the parameter θi that accounts for the most of the
output variance. This is linked with the first-order sensitivity indices Si, which is what we
obtain from the Sobol’ method, together with the total-effect indices STi

. Now, the STi
’s

are rather linked with the FF setting, where we are interested in identifying the parameters
θi that contributes very little to the output variance [14]. As for now, we assume that both the
Si’s and STi

’s could be valuable in the branching of scenario-trees, even though the Si’s
seemingly are more important. Thus, we plot the Si and STi

against the discrete time-axis
t ∈ [0, 150] in their respective figures. Here, we sample the uncertain parameters θi from
a uniform distribution, i.e., θi ∼ U(95% θi, 105% θi), with regards to the Latin hypercube
sampling approach. The number of samples, N , is an important factor, and we plot Si and
STi for an increasing N . Here, we use N = 215, N = 216 and N = 217, and plot using
both regular and stacked (i.e., sensitivities are stacked) plots for the best visualization.
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Chapter 5
Results and discussion

We have calculated the optimal control inputs and output trajectories for the closed-loop
and open-loop MPC. This was done for both nominal parameters and uncertain parameters.
The results are shown in Section 5.1 and Section 5.2, respectively. We have also computed
Sobol’ sensitivity indices for the open-loop MPC, in which the results are in Section 5.3.
The scripts that were used for these simulations, are all presented in Appendix.

25



Chapter 5. Results and discussion

5.1 Closed-loop MPC
Figure 5.1 shows control inputs and output trajectories for the nominal closed-loop MPC.

Figure 5.1: Input and output trajectories for the nominal closed-loop MPC.

26



5.1 Closed-loop MPC

Figure 5.2 shows control inputs and output trajectories for the uncertain closed-loop MPC.
Here, we have randomly sampled the parameters θi from a uniform distribution, that is,
θi ∼ U(95% θi, 105% θi), at every time step, for N = 100 number of iterations.

Figure 5.2: Input and output trajectories for the uncertain closed-loop MPC. N=100.
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Chapter 5. Results and discussion

Figure 5.3 shows the output trajectories of biomass Xs for the uncertain closed-loop MPC.
Here, we have randomly sampled the parameters θi from a uniform distribution, that is,
θi ∼ U(95% θi, 105% θi), at every time step, for N = 100 number of iterations.

Figure 5.3: Xs output trajectories for the uncertain closed-loop MPC. N=100.
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5.1 Closed-loop MPC

If we compare the control inputs and output trajectories in Figure 5.1 to the example
case of do-mpc [8], we can confirm similarities. The control inputs u look somewhat alike,
as well with the output trajectories for Xx, Ss, Ps and Vs. The relative ”small” differences
between these plots are due to the MPCs being different. In Figure 5.1, we used a nominal
closed-loop MPC, while do-mpc had RMPC implemented. They considered uncertainty
in the parameters Yx and Sin, and implemented a scenario-tree based MPC with a robust
horizon of 1 with 9 scenarios. Thus, it is natural that the plots look somewhat different.

In particular, it is the constraint on the biomass Xs that we are interested in studying,
i.e., Xs ≤ 3.7. In Figure 5.1 for the nominal closed-loop MPC, there are no uncertainties
in the parameters, and thus, the constraint on Xs is satisfied. However, what if we do
introduce uncertainty? This is done in Figure 5.2. Here, we recognize similarities with the
control inputs and output trajectories from Figure 5.1, but as we now have uncertainties,
the acquired trajectories vary quite a lot, e.g., look at the substrate Ss. However, it is still
the biomass constraint that we are interested in studying, as it is a hard constraint.

Thus, in Figure 5.3, we have used the same results as calculated in Figure 5.2, but only
focused on the Xs plot. From this figure, we observe that the biomass constraint Xs ≤ 3.7
is violated. It is not violated by much, but it is being violated for several of the iterations.
At the most, Xs takes the value of 3.723, which is not acceptable for our hard constraint.
The solution would be to add back-off to the MPC, or we could make our MPC robust,
e.g., doing a scenario-tree based approach, just like they did in the example of do-mpc [8].
If we were to include extra back-off to the MPC, this would ensure that we do not violate
the constraint, but it could possibly be worse for performance if the back-off is too large.
Hence, we seek to the scenario-tree based MPC for answers, but unlike that for do-mpc,
we want to include SA in selecting the parameters for the scenario-trees. As the Sobol’
method got quite computationally expensive, we instead tried implementing this for the
open-loop MPC. We will say more about this in the next sections, but the concept remains
the same for the open-loop; we want to find the parameter θi that is the most sensitive to
the constraint on Xs. The results of this can be applied to a scenario-tree based MPC.

29



Chapter 5. Results and discussion

5.2 Open-loop MPC
Figure 5.4 shows control inputs and output trajectories for the nominal open-loop MPC.

Figure 5.4: Input and output trajectories for the nominal open-loop MPC.
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5.2 Open-loop MPC

Figure 5.5 shows control inputs and output trajectories for the uncertain open-loop MPC.
Here, we have randomly sampled the parameters θi from a uniform distribution, that is,
θi ∼ U(95% θi, 105% θi), at every time step, for N = 100 number of iterations.

Figure 5.5: Input and output trajectories for the uncertain open-loop MPC. N=100.
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Figure 5.6 shows the output trajectories of biomass Xs for the uncertain open-loop MPC.
Here, we have randomly sampled the parameters θi from a uniform distribution, that is,
θi ∼ U(95% θi, 105% θi), at every time step, for N = 100 number of iterations.

Figure 5.6: Xs output trajectories for the uncertain open-loop MPC. N=100.
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5.2 Open-loop MPC

Comparing Figure 5.4 with Figure 5.1, it is clear that the closed-loop MPC results in
better performance than with the open-loop MPC. This is expected, since the closed-loop
MPC has feedback to the plant, whilst the open-loop MPC does not. The control inputs
and output trajectories in Figure 5.1 look more similar to the example of do-mpc, than for
Figure 5.4. This is clear if we look at the control inputs u and the substrate trajectory Ss.
Here, in Figure 5.4, the control actions are not as smooth as in Figure 5.1, and the substrate
has an increase at around 60 minutes, which is not present for the closed-loop. However,
it is still the constraint on Xs that we are interested in studying. In Figure 5.4, we observe
that the constraint on Xs is satisfied, which is good. But once again, every model should
account for uncertainty, and thus, we introduce uncertainty for the open-loop in Figure 5.5.

From observing the Xs trajectories in Figure 5.5, it is clear that the constraint on Xs,
i.e., Xs ≤ 3.7, is not satisfied. This is another reason of why the closed-loop MPC has
better performance than the open-loop MPC. This is a hard constraint, meaning that we
want it to be satisfied. Violations of such constraints are typically bad for the economics.
In Figure 5.2, the largest violation was Xs = 3.723, but in Figure 5.5 we have the largest
violation as Xs = 3.948. Hence, it is clear that feedback improves the MPC when being
exposed to parametric uncertainty. This is illustrated better when comparing Figure 5.3
and Figure 5.6. We observe more deviation from the constraint for the open-loop MPC.

Likewise, as for the closed-loop MPC, the constraint violation is also unacceptable for
the open-loop MPC, and to an even higher extent. The solution to this is either adding in
a back-off or using a method of RMPC instead, or one could implement a combination
of the two. In this project, we have focused on the RMPC solution with a scenario-tree
based approach of the MPC. We want to use SA for selecting the uncertain parameter to be
considered in the scenarios, and since the Sobol’ method got computationally expensive,
we decided to use SA on the open-loop MPC. By identifying the most sensitive parameter
θi to the constraint on Xs, we get valuable information for the scenario-tree based MPC.
Due to computational costs, it is not slightly efficient to base the scenario-trees on all the
plant parameters. That is why we have to choose one uncertain parameter, or maybe two.
We will talk more about the Sobol’ method for the open-loop MPC in the next section.
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Chapter 5. Results and discussion

5.3 Sensitivity Analysis
Figure 5.7 and Figure 5.8 show the first-order and total-effect Sobol’ indices, respectively,
when the number of samples N per parameter θi equals 215, and indices are not stacked.

Figure 5.7: First-order Sobol’ indices for the plant parameters. N = 215. Not stacked.

Figure 5.8: Total-effect Sobol’ indices for the plant parameters. N = 215. Not stacked.
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5.3 Sensitivity Analysis

Figure 5.9 and Figure 5.10 show the first-order and total-effect Sobol’ indices, respectively,
when the number of samples N per parameter θi equals 215, and indices are stacked.

Figure 5.9: First-order Sobol’ indices for the plant parameters. N = 215. Stacked.

Figure 5.10: Total-effect Sobol’ indices for the plant parameters. N = 215. Stacked.
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Figure 5.11 and Figure 5.12 show first-order and total-effect Sobol’ indices, respectively,
when the number of samples N per parameter θi equals 216, and indices are not stacked.

Figure 5.11: First-order Sobol’ indices for the plant parameters. N = 216. Not stacked.

Figure 5.12: Total-effect Sobol’ indices for the plant parameters. N = 216. Not stacked.
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5.3 Sensitivity Analysis

Figure 5.13 and Figure 5.14 show first-order and total-effect Sobol’ indices, respectively,
when the number of samples N per parameter θi equals 216, and indices are stacked.

Figure 5.13: First-order Sobol’ indices for the plant parameters. N = 216. Stacked.

Figure 5.14: Total-effect Sobol’ indices for the plant parameters. N = 216. Stacked.
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Figure 5.15 and Figure 5.16 show first-order and total-effect Sobol’ indices, respectively,
when the number of samples N per parameter θi equals 217, and indices are not stacked.

Figure 5.15: First-order Sobol’ indices for the plant parameters. N = 217. Not stacked.

Figure 5.16: Total-effect Sobol’ indices for the plant parameters. N = 217. Not stacked.
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5.3 Sensitivity Analysis

Figure 5.17 and Figure 5.18 show first-order and total-effect Sobol’ indices, respectively,
when the number of samples N per parameter θi equals 217, and indices are stacked.

Figure 5.17: First-order Sobol’ indices for the plant parameters. N = 217. Stacked.

Figure 5.18: Total-effect Sobol’ indices for the plant parameters. N = 217. Stacked.
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The stacked plots are great for visualizing the importance of the sensitivity indices.
The figures 5.9, 5.13 and 5.17 show the first-order Sobol’ indices for N = 215, N = 216

and N = 217 number of samples, respectively. Here, it is clear that µm, Yx and Sin are the
most influential parameters on the Xs constraint, i.e., Xs ≤ 3.7. We can somewhat verify
this result by comparing with the uncertain parameters in the do-mpc example, which were
Yx and Sin. The reason behind why do-mpc did not include µm as an uncertain parameter,
is probably due to computational expenses. However, this could also be due the fact that
the influence of µm on Xs decreases a lot after about 80 minutes, and the influence of
Yx and Sin increases a lot during this time. That is, when the Xs predictions are getting
closer to the constraint, it seems that the importance of Yx and Sin increases. This is
an interesting take, as it questions whether it is worth including µm in the scenario-trees.
However, we presume that it is worth including, due to several uncertainty iterations in
Figure 5.6 violating the constraint on Xs before 80 minutes. Another reason for including
µm in the scenario-trees, is that the behavior of Xs before 80 minutes also is important,
which has an effect on the later predictions after 80 minutes. Thus, the figures 5.9, 5.13
and 5.17 show that µm, Yx and Sin are the most influential parameters on Xs ≤ 3.7.

Just now, we talked about the most sensitive parameters, that being µm, Yx and Sin.
As mentioned in Section 4.1.2, the FP setting is linked with the Si’s and the FF setting
is linked with the STi

’s. So far we have identified the parameters θi that account for the
most of the Xs variance, according to the FP setting, but we have not yet identified the
parameters θi that contribute very little to the Xs variance, according to the FF setting.
Thus, the stacked plots of the total-effect Sobol’ indices are shown in the figures 5.10,
5.14 and 5.18, for N = 215, N = 216 and N = 217 number of samples, respectively.
Here, we observe that km, ki, ν and Yp are the parameters θi that contribute the least to
the variance in Xs. Thus, we could have excluded these parameters for the scenario-trees,
such that the computational expenses decreases.

We have talked about stacked plots for the first-order and total-effect Sobol’ indices,
but what about the non-stacked plots? These are not as illustrative when comparing the
contribution from each parameter, but they are shown in order to illustrate the negative
sensitivities that we get. It is so, that the first-order Sobol’ indices should sum to 1, and
that all indices should be non-negative [14]. If we look at all the stacked-plots for the first-
order Sobol’ indices, we can clearly see that they do not sum to 1 for each time, but they
somewhat tend to either way. The reason behind this is that we have negative first-order
sensitivities, which we can see from the figures 5.7, 5.11 and 5.15, for N = 215, N = 216

and N = 217 number of samples, respectively. In theory, this is not possible, but as the
Sobol’ method with Saltelli’s modification is an approximation, we get negative indices
from eq. (3.26) if we have f2

0 > yA · yCi
. That is, we can get negative signs if the Sobol’

indices are close to zero (i.e., unimportant parameters). Increasing the number of samples
N should give less probability of encountering negative sensitivities. Moreover, the total-
effect indices should also be non-negative, and as seen in the figures 5.8, 5.12 and 5.16,
they are not. Total-effect indices should always be greater or equal to first-order indices,
which we see that are wrong in the stacked plots. This is due to negative first-order indices.
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One might ask; ”if it is so that we get less negative Sobol’ indices for greater number
of samples N , why would we not just increase N?”. As seen by comparing the figures
5.7-5.10 to the figures 5.11-5.14 to the figures 5.15-5.18, we have less negative Sobol’
indices for greater N. If we increased the number of samples to, e.g., N = 218, we would
probably have even less negative indices. The reason why this is inefficient, is because of
the computational expenses. Using the Sobol’ method on the open-loop MPC for N = 215

lasted approximately 1 hour, 42 minutes and 27 seconds. Also, for N = 216 it was 3 hours,
13 minutes and 8 seconds, and for N = 217 it was 6 hours, 46 minutes and 25 seconds.

Thus, using the Sobol’ method as SA of the parameters θi on the Xs constraint for the
open-loop MPC, resulted in a good indicator of what θi’s that affects the output variation
the most, and what θi’s that has little effect on the output variation. However, numerical
errors of the estimation, i.e., negative sensitivities, meant that the Sobol’ method resulted
in too unreasonable answers for being implemented in a scenario-tree based MPC.
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Chapter 6
Conclusion

6.1 Conclusion
With respect to the constraint on the biomass Xs, i.e., Xs ≤ 3.7, it was found that the
closed-loop MPC outperformed the open-loop when parametric uncertainty was present.
Both MPCs had violations of the constraint, but the greatest violation of the closed-loop
(3.723) was smaller than of the open-loop (3.948). However, as this is a hard constraint,
we should add back-off to the MPC or implement a method of RMPC, or a combination
of the two. Here, we wanted to study the scenario-tree based MPC as a method of RMPC.

Due to computational expenses, we only want one, or maybe two or three, uncertain
parameters to be considered for the scenario-trees. As the constraint on Xs is important
to satisfy, we wanted to identify the parameters θi that is the most influential to the output
variation for Xs, and the parameters θi that are the least influential on the output variation.
We used Sobol’ method as SA for this, and computed first-order and total-effect indices.

It was found that, from the first-order Sobol’ indices, that µm, Yx and Sin were the
most sensitive parameters. From the total-effect indices we found that km, ki, ν and Yp

were the least sensitive parameters. However, we can only use these results as qualitative
indicators on sensitivity, as we had numerical errors due to getting negative Sobol’ indices.

However, for an increasing amount of samples N , it was found that we obtained less
negative indices. If we increased N even further, we would probably have obtained only
non-negative sensitivities. The best result was acquired for N = 217, but this simulation
lasted 6 hours, 46 minutes and 25 seconds. Hence, it was concluded that the computational
expenses was too high; at least for our case study.
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6.2 Further work
Further work on this project should include trying other methods of SA for the case study.
Typically, this would be the Morris screening, Monte Carlo filtering and FORM/SORM,
that were introduced in Section 3.3. Moreover, further work should also include trying to
implement an algorithm for the scenario-tree based MPC. Only then may we know if it is
worth the extra computational effort, instead of just using a large back-off for the MPC.
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Appendix

Code listings closed-loop MPC

Main file for closed-loop MPC without uncertainty (cl wo unc.py)

1 i m p o r t os
2 i m p o r t p a t h l i b
3 i m p o r t w a r n i n g s
4 i m p o r t numpy as np
5 i m p o r t s c i p y as sc
6 i m p o r t c a s a d i a s cd
7 from p l a n t c l i m p o r t ode model
8 from p l a n t c l i m p o r t i n t e g r a t o r
9 from p l a n t c l i m p o r t o p t i m i z e r

10 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
11 from u t i l i t i e s i m p o r t s a m p l e n o r m a l
12 from u t i l i t i e s i m p o r t s a m p l e u n i f o r m
13

14 p r o j d i r = p a t h l i b . Pa th ( f i l e ) . p a r e n t . p a r e n t . p a r e n t
15 d a t a d i r = os . p a t h . j o i n ( p r o j d i r , ” d a t a ” )
16 f p a t h t = os . p a t h . j o i n ( d a t a d i r , ” t . npy ” )
17 f p a t h u = os . p a t h . j o i n ( d a t a d i r , ” u . npy ” )
18 t , u = np . l o a d ( f p a t h t ) , np . l o a d ( f p a t h u )
19

20 p l o t s d i r = os . p a t h . j o i n ( p r o j d i r , ” p l o t s ” )
21 i f n o t os . p a t h . i s d i r ( p l o t s d i r ) :
22 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
23

24 i m a g e d i r = os . p a t h . j o i n ( p l o t s d i r , ” c l w o u n c ” )
25 i f n o t os . p a t h . i s d i r ( i m a g e d i r ) :
26 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
27

28 u0 = u [ 0 ] # Feed f low r a t e [mˆ{3} / min ]
29 xs0 = 1 . # C o n c e n t r a t i o n b iomass [ g / l ]
30 s s 0 = . 5 # C o n c e n t r a t i o n s u b s t r a t e [ g / l ]
31 ps0 = 0 . # C o n c e n t r a t i o n p r o d u c t [ g / l ]
32 vs0 = 1 2 0 . # T o t a l volume r e a c t o r [mˆ 3 ]
33 x0 = np . a r r a y ( [ xs0 , ss0 , ps0 , vs0 ] )
34

35 mu m0 = . 0 2 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
36 k m0 = . 0 5 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
37 k i 0 = 5 . # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t
38 nu0 = . 0 0 4 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
39 yp0 = 1 . 2 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
40 yx0 = . 4 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
41 s i n 0 = 2 0 0 . # C o n c e n t r a t i o n s u b s t r a t e i n l e t [ u n i t ]
42 p0 = np . a r r a y ( [ mu m0 , k m0 , k i 0 , nu0 , yp0 , yx0 , s i n 0 ] )
43

44 f = ode model ( ) # Ob t a i n ODE−model
45 dim x , dim u , d i m t = 4 , 1 , t . shape [ 0 ]
46 x o p t s = np . z e r o s ( ( dim x , d i m t ) )
47 u o p t s = np . z e r o s ( ( dim u , d i m t ) )
48

49 x o p t s [ : , 0 ] = x0 . f l a t t e n ( )
50 u o p t s [ : , 0 ] = u0 . f l a t t e n ( )
51

52 f o r k i n r a n g e ( 1 , d i m t ) :
53 d t = np . a r r a y ( [ t [ k − 1 ] , t [ k ] ] )
54 uk = np . a r r a y ( u o p t s [ : , k − 1 ] )
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55 xk = np . a r r a y ( x o p t s [ : , k − 1 ] )
56 p i = s a m p l e u n i f o r m ( 0 . 9 5 , 1 . 0 5 , p0 )
57 u o p t = o p t i m i z e r ( f , xk , dt , uk , p0 )
58 x o p t = i n t e g r a t o r ( f , xk , dt , uk , p0 )
59 x o p t s [ : , k ] = x o p t # f o r p l o t t i n g
60 u o p t s [ : , k ] = u o p t # f o r p l o t t i n g
61

62 f i g 1 , ax1 = p l t . s u b p l o t s ( 5 , 1 , s h a r e x = ’ a l l ’ )
63 p l t k w a r g s = {” l i n e w i d t h ” : 1 , ” a l p h a ” : .4}
64 ax1 [ 0 ] . s t e p ( t , u o p t s [ 0 , : ] , ** p l t k w a r g s )
65 ax1 [ 1 ] . p l o t ( t , x o p t s [ 0 , : ] , ** p l t k w a r g s )
66 ax1 [ 2 ] . p l o t ( t , x o p t s [ 1 , : ] , ** p l t k w a r g s )
67 ax1 [ 3 ] . p l o t ( t , x o p t s [ 2 , : ] , ** p l t k w a r g s )
68 ax1 [ 4 ] . p l o t ( t , x o p t s [ 3 , : ] , ** p l t k w a r g s )
69 ax1 [ 0 ] . s e t y l a b e l ( r ” $u \ : [mˆ{3} / min ] $ ” )
70 ax1 [ 1 ] . s e t y l a b e l ( r ” $X s \ : [ g / l ] $ ” )
71 ax1 [ 2 ] . s e t y l a b e l ( r ” $S s \ : [ g / l ] $ ” )
72 ax1 [ 3 ] . s e t y l a b e l ( r ” $P s \ : [ g / l ] ] $ ” )
73 ax1 [ 4 ] . s e t y l a b e l ( r ” $V s \ : [mˆ{3} ] $ ” )
74 ax1 [ 4 ] . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
75

76 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image1 . png ” )
77 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
78 p l t . show ( ) # p l o t i n SciView

Listing 6.1: mpc closed loop / cl wo unc.py

Main file for closed-loop MPC with uncertainty (cl w unc.py)

1 i m p o r t os
2 i m p o r t p a t h l i b
3 i m p o r t w a r n i n g s
4 i m p o r t numpy as np
5 i m p o r t s c i p y as sc
6 i m p o r t c a s a d i a s cd
7 from p l a n t c l i m p o r t ode model
8 from p l a n t c l i m p o r t i n t e g r a t o r
9 from p l a n t c l i m p o r t o p t i m i z e r

10 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
11 from u t i l i t i e s i m p o r t s a m p l e n o r m a l
12 from u t i l i t i e s i m p o r t s a m p l e u n i f o r m
13

14 p r o j d i r = p a t h l i b . Pa th ( f i l e ) . p a r e n t . p a r e n t . p a r e n t
15 d a t a d i r = os . p a t h . j o i n ( p r o j d i r , ” d a t a ” )
16 f p a t h t = os . p a t h . j o i n ( d a t a d i r , ” t . npy ” )
17 f p a t h u = os . p a t h . j o i n ( d a t a d i r , ” u . npy ” )
18 t , u = np . l o a d ( f p a t h t ) , np . l o a d ( f p a t h u )
19

20 p l o t s d i r = os . p a t h . j o i n ( p r o j d i r , ” p l o t s ” )
21 i f n o t os . p a t h . i s d i r ( p l o t s d i r ) :
22 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
23

24 i m a g e d i r = os . p a t h . j o i n ( p l o t s d i r , ” c l w u n c ” )
25 i f n o t os . p a t h . i s d i r ( i m a g e d i r ) :
26 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
27

28 u0 = u [ 0 ] # Feed f low r a t e [mˆ{3} / min ]
29 xs0 = 1 . # C o n c e n t r a t i o n b iomass [ g / l ]
30 s s 0 = . 5 # C o n c e n t r a t i o n s u b s t r a t e [ g / l ]
31 ps0 = 0 . # C o n c e n t r a t i o n p r o d u c t [ g / l ]
32 vs0 = 1 2 0 . # T o t a l volume r e a c t o r [mˆ 3 ]
33 x0 = np . a r r a y ( [ xs0 , ss0 , ps0 , vs0 ] )
34

35 mu m0 = . 0 2 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
36 k m0 = . 0 5 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
37 k i 0 = 5 . # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t
38 nu0 = . 0 0 4 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
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39 yp0 = 1 . 2 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
40 yx0 = . 4 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
41 s i n 0 = 2 0 0 . # C o n c e n t r a t i o n s u b s t r a t e i n l e t [ u n i t ]
42 p0 = np . a r r a y ( [ mu m0 , k m0 , k i 0 , nu0 , yp0 , yx0 , s i n 0 ] )
43

44 N = 100 # Number o f samples t a k e n
45 f = ode model ( ) # Ob t a i n ODE−model
46 dim x , dim u , d i m t = 4 , 1 , t . shape [ 0 ]
47 x o p t s = np . z e r o s ( ( dim x , d im t , N) )
48 u o p t s = np . z e r o s ( ( dim u , d im t , N) )
49

50 f o r i i n r a n g e (N ) :
51 x o p t s [ : , 0 , i ] = x0 . f l a t t e n ( )
52 u o p t s [ : , 0 , i ] = u0 . f l a t t e n ( )
53 p i = s a m p l e u n i f o r m ( . 9 5 , 1 . 0 5 , p0 )
54 f o r k i n r a n g e ( 1 , d i m t ) :
55 t k = np . a r r a y ( [ t [ k − 1 ] , t [ k ] ] )
56 uk = np . a r r a y ( u o p t s [ : , k − 1 , i ] )
57 xk = np . a r r a y ( x o p t s [ : , k − 1 , i ] )
58 u o p t = o p t i m i z e r ( f , xk , tk , uk , p0 )
59 x o p t = i n t e g r a t o r ( f , xk , tk , uk , p i )
60 u o p t s [ : , k , i ] = u o p t # f o r p l o t t i n g
61 x o p t s [ : , k , i ] = x o p t # f o r p l o t t i n g
62

63 f i g 1 , ax1 = p l t . s u b p l o t s ( 5 , 1 , s h a r e x = ’ a l l ’ )
64 p l t k w a r g s = {” l i n e w i d t h ” : 1 , ” a l p h a ” : .4}
65 f o r j i n r a n g e (N ) :
66 ax1 [ 0 ] . s t e p ( t , u o p t s [ 0 , : , j ] , ** p l t k w a r g s )
67 ax1 [ 1 ] . p l o t ( t , x o p t s [ 0 , : , j ] , ** p l t k w a r g s )
68 ax1 [ 2 ] . p l o t ( t , x o p t s [ 1 , : , j ] , ** p l t k w a r g s )
69 ax1 [ 3 ] . p l o t ( t , x o p t s [ 2 , : , j ] , ** p l t k w a r g s )
70 ax1 [ 4 ] . p l o t ( t , x o p t s [ 3 , : , j ] , ** p l t k w a r g s )
71 ax1 [ 0 ] . s e t y l a b e l ( r ” $u \ : [mˆ{3} / min ] $ ” )
72 ax1 [ 1 ] . s e t y l a b e l ( r ” $X s \ : [ g / l ] $ ” )
73 ax1 [ 2 ] . s e t y l a b e l ( r ” $S s \ : [ g / l ] $ ” )
74 ax1 [ 3 ] . s e t y l a b e l ( r ” $P s \ : [ g / l ] ] $ ” )
75 ax1 [ 4 ] . s e t y l a b e l ( r ” $V s \ : [mˆ{3} ] $ ” )
76 ax1 [ 4 ] . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
77

78 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image1 . png ” )
79 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
80 p l t . show ( ) # p l o t i n SciView
81

82 f i g 2 , ax2 = p l t . s u b p l o t s ( 1 , 1 , s h a r e x = ’ a l l ’ )
83 p l t k w a r g s = {” l i n e w i d t h ” : 1 , ” a l p h a ” : .4}
84 f o r j i n r a n g e (N ) :
85 ax2 . p l o t ( t , x o p t s [ 0 , : , j ] , ** p l t k w a r g s )
86 p l t . h l i n e s ( 3 . 7 , t [ 0 ] , t [ − 1 ] , ** p l t k w a r g s ,
87 c o l o r = ’ k ’ , l a b e l = r ” $X s \ l e q 3 . 7 $ ” )
88 ax2 . s e t y l a b e l ( r ” $X s \ : [ g / l ] $ ” )
89 ax2 . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
90 p l t . l e g e n d ( l o c = ( . 0 1 , . 9 2 ) )
91 p l t . y l im ( [ . 9 , 4 . 1 ] )
92

93 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image2 . png ” )
94 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
95 p l t . show ( ) # p l o t i n SciView

Listing 6.2: mpc closed loop / cl w unc.py

File for the closed-loop MPC plant and optimizer (plant cl.py)

1 i m p o r t os
2 i m p o r t p a t h l i b
3 i m p o r t w a r n i n g s
4 i m p o r t numpy as np
5 i m p o r t s c i p y as sc
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6 i m p o r t c a s a d i a s cd
7

8 # D e c l a r i n g s t a t e s s y m b o l i c
9 xs = cd . SX . sym ( ’ xs ’ , 1 )

10 s s = cd . SX . sym ( ’ s s ’ , 1 )
11 ps = cd . SX . sym ( ’ ps ’ , 1 )
12 vs = cd . SX . sym ( ’ vs ’ , 1 )
13 x = cd . v e r t c a t ( xs , ss , ps , vs )
14

15 # D e c l a r i n g i n p u t s s y m b o l i c
16 u = cd . SX . sym ( ’ u ’ , 1 )
17

18 # D e c l a r i n g MV− change s y m b o l i c
19 du = cd . SX . sym ( ’ du ’ , 1 )
20

21 # D e c l a r i n g t ime − a x i s s y m b o l i c
22 t = cd . SX . sym ( ’ t ’ , 1 )
23

24 # D e c l a r i n g p a r a m e t e r s s y m b o l i c
25 mu m = cd . SX . sym ( ’mu m ’ , 1 )
26 k m = cd . SX . sym ( ’ k m ’ , 1 )
27 k i = cd . SX . sym ( ’ k i ’ , 1 )
28 nu = cd . SX . sym ( ’ nu ’ , 1 )
29 yp = cd . SX . sym ( ’ yp ’ , 1 )
30 yx = cd . SX . sym ( ’ yx ’ , 1 )
31 s i n = cd . SX . sym ( ’ s i n ’ , 1 )
32 p = cd . v e r t c a t ( mu m , k m , k i , nu , yp , yx , s i n )
33

34

35 # D e f i n i n g t h e ODE− sys tem
36 d e f o d e s y s t e m ( ) :
37 # D e c l a r i n g t h e k i n e t i c model
38 mu = ( mu m * s s ) / ( k m + s s + ( ( s s ** 2) / k i ) )
39 # D e c l a r i n g t h e b iomass e q u a t i o n
40 d x s d t = mu * xs − ( u / vs ) * xs
41 # D e c l a r i n g t h e s u b s t r a t e e q u a t i o n
42 d s s d t = −(mu * xs ) / yx − ( nu * xs ) / yp + ( u / vs ) * ( s i n − s s )
43 # D e c l a r i n g t h e p r o d u c t e q u a t i o n
44 d p s d t = nu * xs − ( u / vs ) * ps
45 # D e c l a r i n g t h e volume e q u a t i o n
46 d v s d t = u
47 # R e t u r n i n g t h e s e ODEs t o g e t h e r
48 r e t u r n cd . v e r t c a t ( d x s d t , d s s d t , d p s d t , d v s d t )
49

50

51 # D e f i n i n g t h e ODE−model
52 d e f ode model ( ) :
53 s y s = o d e s y s t e m ( )
54 p aug = cd . v e r t c a t ( u , p , t )
55

56 # D e c l a r i n g t h e ODE− d i c t i o n a r y
57 ode = {” x ” : x , ” p ” : p aug , ” ode ” : s y s * t}
58

59 # D e c l a r i n g o p t i o n s d i c t i o n a r y
60 o p t s = {” max num steps ” : 200 ,
61 ” a b s t o l ” : 1e −10 , ” r e l t o l ” : 1e −10}
62

63 # D e c l a r i n g t h e ODE− i n t e g r a t o r
64 f = cd . i n t e g r a t o r ( ”F” , ” cvodes ” , ode , o p t s )
65

66 # R e t u r n i n g t h e ODE− i n t e g r a t o r
67 r e t u r n f
68

69

70 # I n t e g r a t i n g t h e ODE−model
71 d e f i n t e g r a t o r ( f , x0 , tk , u0 , p0 ) :
72 x0 = cd . v e r t c a t ( x0 )
73 u0 = cd . v e r t c a t ( u0 )
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74 d t = cd . v e r t c a t ( t k [ 1 ] − t k [ 0 ] )
75 pk = cd . v e r t c a t ( u0 , p0 , d t )
76 f end = f ( x0=x0 , p=pk )
77 x f n p = np . a r r a y ( f end [ ” x f ” ] ) . f l a t t e n ( )
78 r e t u r n x f n p
79

80

81 d e f o p t i m i z e r ( f , x0 , tk , u0 , p0 ) :
82 dg = 3 # o r t h o g o n a l c o l l o c a t i o n wi th 3 p o i n t s p r e l e m e n t
83 t a u r o o t = np . append ( 0 , cd . c o l l o c a t i o n p o i n t s ( dg , ’ r a d a u ’ ) )
84 b = np . z e r o s ( ( dg + 1 , 1 ) )
85 c = np . z e r o s ( ( dg + 1 , dg + 1 ) )
86 d = np . z e r o s ( ( dg + 1 , 1 ) )
87

88 f o r i i n r a n g e ( dg + 1 ) :
89 c o e f f = 1
90 # C o n s t r u c t Lagrange p o l y n o m i a l s t o g e t t h e
91 # p o l y n o m i a l b a s i s a t t h e c o l l o c a t i o n p o i n t .
92 f o r r i n r a n g e ( dg + 1 ) :
93 i f r != i :
94 c o e f f = np . c o n v o l v e ( c o e f f , [ 1 . , − t a u r o o t [ r ] ] )
95 c o e f f = c o e f f / ( t a u r o o t [ i ] − t a u r o o t [ r ] )
96

97 # E v a l u a t e t h e p o l y n o m i a l a t t h e f i n a l t ime t o
98 # g e t c o e f f i c i e n t s o f t h e c o n t i n u i t y e q u a t i o n .
99 d [ i ] = np . p o l y v a l ( c o e f f , 1 . )

100

101 # E v a l u a t e t ime d e r i v a t i v e o f t h e p o l y n o m i a l a t a l l c o l l o c a t i o n
102 # p o i n t s t o o b t a i n t h e c o e f f i c i e n t s o f t h e c o n t i n u i t y e q u a t i o n .
103 pde r = np . p o l y d e r ( c o e f f )
104 f o r r i n r a n g e ( dg + 1 ) :
105 c [ i ] [ r ] = np . p o l y v a l ( pder , t a u r o o t [ r ] )
106

107 # E v a l u a t e t h e i n t e g r a l o f t h e p o l y n o m i a l t o
108 # g e t c o e f f i c i e n t s o f t h e q u a d r a t u r e f u n c t i o n .
109 p i n t = np . p o l y i n t ( c o e f f )
110 b [ i ] = np . p o l y v a l ( p i n t , 1 . )
111

112 # D e c l a r e m a t r i x f o r p e n a l i z i n g SP d e v i a t i o n s
113 q = np . a r r a y ( [ [ 1 . , 0 . , 0 . , 0 . ] ,
114 [ 0 . , 0 . , 0 . , 0 . ] ,
115 [ 0 . , 0 . , 0 . , 0 . ] ,
116 [ 0 . , 0 . , 0 . , 0 . ] ] )
117

118 # D e c l a r e m a t r i x f o r p e n a l i z i n g MV movements
119 r = 1 . # t h e same as do−MPC has used !
120

121 # D e c l a r e t h e o b j e c t i v e f u n c t i o n
122 j = (1 / 2 ) * ( − ps + du . T @ r @ du )
123

124 # O b t a i n i n g t h e ODE− sys tem
125 s y s = o d e s y s t e m ( )
126

127 # D e c l a r e t h e CasADi f u n c t i o n
128 f = cd . F u n c t i o n ( ’ f ’ , [ x , u , p , t , du ] , [ sys , j ] )
129

130 # D e c l a r e w, w0 , lbw , ubw , g , lbg , ubg , g1 , lbg1 , ubg1
131 w, w0 = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
132 g , g1 = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
133 lbw , ubw = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
134 lbg , ubg = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
135 lbg1 , ubg1 = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
136

137 # D e c l a r e x p l t , u p l t f o r t h e p l o t t i n g p a r t
138 x p l t , u p l t = cd . h o r z c a t ( [ ] ) , cd . h o r z c a t ( [ ] )
139

140 # D e c l a r e c o n s t r a i n t s ; u min , u max , du max
141 u min , u max , du max = 0 . , . 2 , . 0 0 3
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142

143 # D e c l a r e c o n s t r a i n t s ; xs max , ps max
144 xs max , ps max = 3 . 7 , 3 . 0
145

146 # D e c l a r e t h e h o r i z o n s npr , n c t
147 npr , n c t = 20 , 3
148

149 # I n i t i a l i z e t h e o b j e c t i v e
150 j = 0
151

152 # L i f t t h e i n i t i a l c o n d i t i o n s
153 xk = cd .MX. sym ( ’ x0 ’ , 4 )
154 w = cd . v e r t c a t (w, xk )
155 w0 = cd . v e r t c a t ( w0 , x0 )
156 lbw = cd . v e r t c a t ( lbw , x0 )
157 ubw = cd . v e r t c a t ( ubw , x0 )
158 x p l t = cd . h o r z c a t ( x p l t , xk )
159

160 f o r k i n r a n g e ( npr ) :
161 # New NLP v a r i a b l e f o r t h e c o n t r o l
162 uk = cd .MX. sym ( ’ u ’ + s t r ( k ) )
163 w = cd . v e r t c a t (w, uk )
164 w0 = cd . v e r t c a t ( w0 , u0 )
165 lbw = cd . v e r t c a t ( lbw , u min )
166 ubw = cd . v e r t c a t ( ubw , u max )
167 u p l t = cd . h o r z c a t ( u p l t , uk )
168

169 # S t a t e a t t h e c o l l o c a t i o n p o i n t s
170 x k i = [ [ ] * i f o r i i n r a n g e ( dg ) ]
171 f o r i i n r a n g e ( dg ) :
172 x k i [ i ] = cd .MX. sym ( ’ x ’ + s t r ( k ) + ’ ’ + s t r ( i ) , 4 )
173 w = cd . v e r t c a t (w, x k i [ i ] )
174 w0 = cd . v e r t c a t ( w0 , 1 . , . 5 , 0 . , 1 2 0 . )
175 lbw = cd . v e r t c a t ( lbw , 0 . , 0 . , 0 . , 0 . )
176 ubw = cd . v e r t c a t ( ubw , np . i n f , np . i n f , np . i n f , np . i n f )
177

178 # Loop ove r c o l l o c a t i o n p o i n t s
179 xk end = d [ 0 ] * xk
180

181 # I f − s e n t e n c e f o r f i n d i n g duk
182 i f k <= ( n c t − 1 ) :
183 i f k == 0 :
184 duk = uk − u0
185 e l s e :
186 duk = uk − uk0
187 g1 = cd . v e r t c a t ( g1 , duk )
188 l bg1 = cd . v e r t c a t ( lbg1 , −du max )
189 ubg1 = cd . v e r t c a t ( ubg1 , du max )
190 e l s e :
191 duk = uk − uk0
192 g1 = cd . v e r t c a t ( g1 , duk )
193 l bg1 = cd . v e r t c a t ( lbg1 , 0 . )
194 ubg1 = cd . v e r t c a t ( ubg1 , 0 . )
195

196 # I f − s e n t e n c e f o r f i n d i n g duk
197 i f k != ( npr − 1 ) :
198 uk0 = uk
199 e l s e :
200 uk0 = uk0
201

202 d t = t k [ 1 ] − t k [ 0 ]
203 f o r i i n r a n g e ( dg ) :
204 # E x p r e s s i o n f o r s t a t e d e r i v a t i v e a t c o l l o c a t i o n p o i n t
205 xp = c [ 0 , i + 1 ] * xk
206 f o r r i n r a n g e ( dg ) :
207 xp += c [ r + 1 , i + 1 ] * x k i [ r ]
208

209 # Append c o l l o c a t i o n e q u a t i o n s
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210 f i , q i = f ( x k i [ i ] , uk , p0 , dt , 0 )
211 g = cd . v e r t c a t ( g , d t * f i − xp )
212 l b g = cd . v e r t c a t ( lbg , 0 . , 0 . , 0 . , 0 . )
213 ubg = cd . v e r t c a t ( ubg , 0 . , 0 . , 0 . , 0 . )
214

215 # Add c o n t r i b u t i o n t o t h e end s t a t e
216 xk end += d [ i + 1 ] * x k i [ i ]
217

218 # Add c o n t r i b u t i o n t o quad f u n c t i o n
219 j += b [ i + 1 ] * q i * d t
220

221 # New NLP v a r i a b l e f o r s t a t e a t end
222 xk = cd .MX. sym ( ’ x ’ + s t r ( k + 1 ) , 4 )
223 w = cd . v e r t c a t (w, xk )
224 w0 = cd . v e r t c a t ( w0 , 1 . , . 5 , 0 . , 1 2 0 . )
225 lbw = cd . v e r t c a t ( lbw , 0 . , 0 . , 0 . , 0 . )
226 ubw = cd . v e r t c a t ( ubw , xs max , np . i n f , ps max , np . i n f )
227 x p l t = cd . h o r z c a t ( x p l t , xk )
228

229 # Add e q u a l i t y c o n s t r a i n t
230 g = cd . v e r t c a t ( g , xk end − xk )
231 l b g = cd . v e r t c a t ( lbg , 0 . , 0 . , 0 . , 0 . )
232 ubg = cd . v e r t c a t ( ubg , 0 . , 0 . , 0 . , 0 . )
233

234 # F o r m a l i z e i t i n t o an NLP problem
235 prob = { ’ x ’ : cd . v e r t c a t (w) , ’ g ’ : cd . v e r t c a t ( g , g1 ) , ’ f ’ : j}
236

237 # We may use an o p t i o n s d i c t i o n a r y
238 o p t s = { ’ i p o p t . p r i n t l e v e l ’ : 0 , ’ p r i n t t i m e ’ : 0}
239

240 # Ass ign s o l v e r − IPOPT i n t h i s c a s e
241 s o l v e r = cd . n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , prob , o p t s )
242

243 # C o n v e r t i n g from CasADi MX t o np . a r r a y
244 w0 = np . a r r a y ( w0 ) . f l a t t e n ( )
245 lbw = np . a r r a y ( lbw ) . f l a t t e n ( )
246 ubw = np . a r r a y ( ubw ) . f l a t t e n ( )
247 l b g = np . a r r a y ( l b g ) . f l a t t e n ( )
248 ubg = np . a r r a y ( ubg ) . f l a t t e n ( )
249 l bg1 = np . a r r a y ( lbg1 ) . f l a t t e n ( )
250 ubg1 = np . a r r a y ( ubg1 ) . f l a t t e n ( )
251 l bg2 = np . append ( lbg , l bg1 )
252 ubg2 = np . append ( ubg , ubg1 )
253

254 # Using cd . F u n c t i o n t o g e t t h e x and u t r a j e c t o r i e s from w
255 t r a j e c t o r i e s = cd . F u n c t i o n ( ’ t r a j e c t o r i e s ’ , [w] , [ x p l t , u p l t ] , [ ’w’ ] , [ ’ x ’ , ’ u ’ ] )
256

257 # So lve − u s i n g t h e p r e v i o u s d e f i n e d i n i t i a l g u e s s and bounds
258 s o l = s o l v e r ( x0=w0 , l b x =lbw , ubx=ubw , l b g = lbg2 , ubg=ubg2 )
259 x op t , u o p t = t r a j e c t o r i e s ( s o l [ ’ x ’ ] )
260 x o p t = x o p t . f u l l ( ) # t o numpy a r r a y
261 u o p t = u o p t . f u l l ( ) # t o numpy a r r a y
262 r e t u r n u o p t [ 0 ] [ 0 ] # on ly f i r s t i n p u t

Listing 6.3: mpc closed loop / plant cl.py

File for the closed-loop MPC utilities (utilities.py)

1 i m p o r t os
2 i m p o r t p a t h l i b
3 i m p o r t w a r n i n g s
4 i m p o r t numpy as np
5 i m p o r t s c i p y as sc
6 i m p o r t c a s a d i a s cd
7

8

9 d e f s a m p l e n o r m a l ( t h e t a n o m ) :
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10 t h e t a s a m p l e = np . random . s t a n d a r d n o r m a l ( t h e t a n o m . shape [ 0 ] )
11 r e t u r n t h e t a s a m p l e
12

13

14 d e f s a m p l e u n i f o r m ( low , high , t h e t a n o m ) :
15 t h e t a l o w = low * t h e t a n o m
16 t h e t a h i g h = h igh * t h e t a n o m
17 t h e t a s a m p l e = np . random . un i fo rm ( t h e t a l o w , t h e t a h i g h , t h e t a n o m . shape [ 0 ] )
18 r e t u r n t h e t a s a m p l e

Listing 6.4: mpc closed loop / utilities.py

Code listings open-loop MPC

Main file for open-loop MPC without uncertainty (ol wo unc.py)

1 i m p o r t os
2 i m p o r t t ime
3 i m p o r t p a t h l i b
4 i m p o r t w a r n i n g s
5 i m p o r t numpy as np
6 i m p o r t s c i p y as sc
7 i m p o r t c a s a d i a s cd
8 from p l a n t o l i m p o r t ode model
9 from p l a n t o l i m p o r t i n t e g r a t o r

10 from p l a n t o l i m p o r t o p t i m i z e r
11 from s o b o l i m p o r t func
12 from s o b o l i m p o r t s e n s i t i v i t y
13 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
14 from s o b o l i m p o r t u n i f o r m s a m p l e
15

16 p r o j d i r = p a t h l i b . Pa th ( f i l e ) . p a r e n t . p a r e n t . p a r e n t
17 d a t a d i r = os . p a t h . j o i n ( p r o j d i r , ” d a t a ” )
18 f p a t h t = os . p a t h . j o i n ( d a t a d i r , ” t . npy ” )
19 f p a t h u = os . p a t h . j o i n ( d a t a d i r , ” u . npy ” )
20 t , u = np . l o a d ( f p a t h t ) , np . l o a d ( f p a t h u )
21

22 p l o t s d i r = os . p a t h . j o i n ( p r o j d i r , ” p l o t s ” )
23 i f n o t os . p a t h . i s d i r ( p l o t s d i r ) :
24 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
25

26 i m a g e d i r = os . p a t h . j o i n ( p l o t s d i r , ” o l wo unc ” )
27 i f n o t os . p a t h . i s d i r ( i m a g e d i r ) :
28 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
29

30 u0 = u [ 0 ] # Feed f low r a t e [mˆ{3} / min ]
31 xs0 = 1 . # C o n c e n t r a t i o n b iomass [ g / l ]
32 s s 0 = . 5 # C o n c e n t r a t i o n s u b s t r a t e [ g / l ]
33 ps0 = 0 . # C o n c e n t r a t i o n p r o d u c t [ g / l ]
34 vs0 = 1 2 0 . # T o t a l volume r e a c t o r [mˆ 3 ]
35 x0 = np . a r r a y ( [ xs0 , ss0 , ps0 , vs0 ] )
36

37 mu m0 = . 0 2 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
38 k m0 = . 0 5 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
39 k i 0 = 5 . # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t
40 nu0 = . 0 0 4 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
41 yp0 = 1 . 2 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
42 yx0 = . 4 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
43 s i n 0 = 2 0 0 . # C o n c e n t r a t i o n s u b s t r a t e i n l e t [ u n i t ]
44 p0 = np . a r r a y ( [ mu m0 , k m0 , k i 0 , nu0 , yp0 , yx0 , s i n 0 ] )
45

46 f = ode model ( ) # Ob t a i n ODE−model
47 t k = np . a r r a y ( [ t [ 0 ] , t [ 1 ] ] ) # t − d i f f
48 t = np . l i n s p a c e ( 0 , 150 , 151) # t − a x i s
49 u o p t = o p t i m i z e r ( f , x0 , tk , u0 , p0 )
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50 x p l t = i n t e g r a t o r ( f , x0 , t , u op t , p0 )
51

52 f i g 1 , ax1 = p l t . s u b p l o t s ( 5 , 1 , s h a r e x = ’ a l l ’ )
53 p l t k w a r g s = {” l i n e w i d t h ” : 1 , ” a l p h a ” : .4}
54 ax1 [ 0 ] . s t e p ( t [ : − 1 ] , u op t , ** p l t k w a r g s )
55 ax1 [ 1 ] . p l o t ( t [ : − 1 ] , x p l t [ 0 , : ] , ** p l t k w a r g s )
56 ax1 [ 2 ] . p l o t ( t [ : − 1 ] , x p l t [ 1 , : ] , ** p l t k w a r g s )
57 ax1 [ 3 ] . p l o t ( t [ : − 1 ] , x p l t [ 2 , : ] , ** p l t k w a r g s )
58 ax1 [ 4 ] . p l o t ( t [ : − 1 ] , x p l t [ 3 , : ] , ** p l t k w a r g s )
59 ax1 [ 0 ] . s e t y l a b e l ( r ” $u \ : [mˆ{3} / min ] $ ” )
60 ax1 [ 1 ] . s e t y l a b e l ( r ” $X s \ : [ g / l ] $ ” )
61 ax1 [ 2 ] . s e t y l a b e l ( r ” $S s \ : [ g / l ] $ ” )
62 ax1 [ 3 ] . s e t y l a b e l ( r ” $P s \ : [ g / l ] ] $ ” )
63 ax1 [ 4 ] . s e t y l a b e l ( r ” $V s \ : [mˆ{3} ] $ ” )
64 ax1 [ 4 ] . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
65

66 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image1 . png ” )
67 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
68 p l t . show ( ) # p l o t i n SciView
69

70 # I f we want t o compute t h e s e n s i t i v i t i e s :
71 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
72 # t i m e 0 = t ime . t ime ( ) # t r a c k s t h e Sobol t ime
73 # s i s , s t i s = s e n s i t i v i t y ( f , x0 , t , u op t , p0 )
74 # t i m e f = t ime . t ime ( ) # t r a c k s t h e Sobol t ime
75 # p r i n t ( f ” C a l c u l a t i o n t ime : { t i m e f − t i m e 0 }”)
76 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

Listing 6.5: mpc open loop / ol wo unc.py

Main file for open-loop MPC with uncertainty (ol w unc.py)

1 i m p o r t os
2 i m p o r t t ime
3 i m p o r t p a t h l i b
4 i m p o r t w a r n i n g s
5 i m p o r t numpy as np
6 i m p o r t s c i p y as sc
7 i m p o r t c a s a d i a s cd
8 from p l a n t o l i m p o r t ode model
9 from p l a n t o l i m p o r t i n t e g r a t o r

10 from p l a n t o l i m p o r t o p t i m i z e r
11 from s o b o l i m p o r t func
12 from s o b o l i m p o r t s e n s i t i v i t y
13 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
14 from s o b o l i m p o r t u n i f o r m s a m p l e
15

16 p r o j d i r = p a t h l i b . Pa th ( f i l e ) . p a r e n t . p a r e n t . p a r e n t
17 d a t a d i r = os . p a t h . j o i n ( p r o j d i r , ” d a t a ” )
18 f p a t h t = os . p a t h . j o i n ( d a t a d i r , ” t . npy ” )
19 f p a t h u = os . p a t h . j o i n ( d a t a d i r , ” u . npy ” )
20 t , u = np . l o a d ( f p a t h t ) , np . l o a d ( f p a t h u )
21

22 p l o t s d i r = os . p a t h . j o i n ( p r o j d i r , ” p l o t s ” )
23 i f n o t os . p a t h . i s d i r ( p l o t s d i r ) :
24 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
25

26 i m a g e d i r = os . p a t h . j o i n ( p l o t s d i r , ” o l w u n c ” )
27 i f n o t os . p a t h . i s d i r ( i m a g e d i r ) :
28 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
29

30 u0 = u [ 0 ] # Feed f low r a t e [mˆ{3} / min ]
31 xs0 = 1 . # C o n c e n t r a t i o n b iomass [ g / l ]
32 s s 0 = . 5 # C o n c e n t r a t i o n s u b s t r a t e [ g / l ]
33 ps0 = 0 . # C o n c e n t r a t i o n p r o d u c t [ g / l ]
34 vs0 = 1 2 0 . # T o t a l volume r e a c t o r [mˆ 3 ]
35 x0 = np . a r r a y ( [ xs0 , ss0 , ps0 , vs0 ] )
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36

37 mu m0 = . 0 2 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
38 k m0 = . 0 5 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
39 k i 0 = 5 . # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t
40 nu0 = . 0 0 4 # K i n e t i c p a r a m e t e r c o n s t a n t g u e s s [ u n i t ]
41 yp0 = 1 . 2 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
42 yx0 = . 4 # Y i e l d c o e f f i c i e n t c o n s t a n t g u e s s [ u n i t ]
43 s i n 0 = 2 0 0 . # C o n c e n t r a t i o n s u b s t r a t e i n l e t [ u n i t ]
44 p0 = np . a r r a y ( [ mu m0 , k m0 , k i 0 , nu0 , yp0 , yx0 , s i n 0 ] )
45

46 N = 100 # Number o f samples t a k e n
47 f = ode model ( ) # Ob t a i n ODE−model
48 dim x , dim u , d i m t = 4 , 1 , t . shape [ 0 ]
49 t k = np . a r r a y ( [ t [ 0 ] , t [ 1 ] ] ) # t − d i f f
50 t = np . l i n s p a c e ( 0 , 150 , 151) # t − a x i s
51 u o p t = o p t i m i z e r ( f , x0 , tk , u0 , p0 )
52 x p l t = np . z e r o s ( ( dim x , d im t , N) )
53 x s p l t = np . z e r o s ( ( d im t , N) )
54

55 f o r i i n r a n g e (N ) :
56 p i = u n i f o r m s a m p l e ( p0 ) # sample random params
57 x p l t [ : , : , i ] = i n t e g r a t o r ( f , x0 , t , u op t , p i )
58 x s p l t [ : , i ] = func ( f , x0 , t , u op t , p i )
59

60 f i g 1 , ax1 = p l t . s u b p l o t s ( 5 , 1 , s h a r e x = ’ a l l ’ )
61 p l t k w a r g s = {” l i n e w i d t h ” : 1 , ” a l p h a ” : .4}
62 f o r j i n r a n g e (N ) :
63 ax1 [ 0 ] . s t e p ( t [ : − 1 ] , u op t , ** p l t k w a r g s )
64 ax1 [ 1 ] . p l o t ( t [ : − 1 ] , x p l t [ 0 , : , j ] , ** p l t k w a r g s )
65 ax1 [ 2 ] . p l o t ( t [ : − 1 ] , x p l t [ 1 , : , j ] , ** p l t k w a r g s )
66 ax1 [ 3 ] . p l o t ( t [ : − 1 ] , x p l t [ 2 , : , j ] , ** p l t k w a r g s )
67 ax1 [ 4 ] . p l o t ( t [ : − 1 ] , x p l t [ 3 , : , j ] , ** p l t k w a r g s )
68 ax1 [ 0 ] . s e t y l a b e l ( r ” $u \ : [mˆ{3} / min ] $ ” )
69 ax1 [ 1 ] . s e t y l a b e l ( r ” $X s \ : [ g / l ] $ ” )
70 ax1 [ 2 ] . s e t y l a b e l ( r ” $S s \ : [ g / l ] $ ” )
71 ax1 [ 3 ] . s e t y l a b e l ( r ” $P s \ : [ g / l ] ] $ ” )
72 ax1 [ 4 ] . s e t y l a b e l ( r ” $V s \ : [mˆ{3} ] $ ” )
73 ax1 [ 4 ] . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
74

75 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image1 . png ” )
76 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
77 p l t . show ( ) # p l o t i n SciView
78

79 f i g 2 , ax2 = p l t . s u b p l o t s ( 1 , 1 , s h a r e x = ’ a l l ’ )
80 p l t k w a r g s = {” l i n e w i d t h ” : 1 , ” a l p h a ” : .4}
81 f o r j i n r a n g e (N ) :
82 ax2 . p l o t ( t [ : − 1 ] , x s p l t [ : , j ] , ** p l t k w a r g s )
83 p l t . h l i n e s ( 3 . 7 , t [ 0 ] , t [ − 1 ] , ** p l t k w a r g s ,
84 c o l o r = ’ k ’ , l a b e l = r ” $X s \ l e q 3 . 7 $ ” )
85 ax2 . s e t y l a b e l ( r ” $X s \ : [ g / l ] $ ” )
86 ax2 . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
87 p l t . l e g e n d ( l o c = ( . 0 1 , . 9 2 ) )
88 p l t . y l im ( [ . 9 , 4 . 1 ] )
89

90 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image2 . png ” )
91 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
92 p l t . show ( ) # p l o t i n SciView
93

94 # I f we want t o compute t h e s e n s i t i v i t i e s :
95 # t i m e 0 = t ime . t ime ( ) # t r a c k s t h e Sobol t ime
96 # s i s , s t i s = s e n s i t i v i t y ( f , x0 , t , u op t , p0 )
97 # t i m e f = t ime . t ime ( ) # t r a c k s t h e Sobol t ime
98 # p r i n t ( f ” C a l c u l a t i o n t ime : { t i m e f − t i m e 0 }”)

Listing 6.6: mpc open loop / ol w unc.py
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Main file for the open-loop MPC sensitivities (sensitivity.py)

1 i m p o r t os
2 i m p o r t t ime
3 i m p o r t p a t h l i b
4 i m p o r t numpy as np
5 i m p o r t c a s a d i a s cd
6 i m p o r t s c i p y . s t a t s a s sc
7 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
8

9 p r o j d i r = p a t h l i b . Pa th ( f i l e ) . p a r e n t . p a r e n t . p a r e n t
10 d a t a d i r = os . p a t h . j o i n ( p r o j d i r , ” d a t a ” )
11 f p a t h s i s = os . p a t h . j o i n ( d a t a d i r , ” u n i f 1 3 1 0 7 2 s i s . npy ” )
12 f p a t h s t i s = os . p a t h . j o i n ( d a t a d i r , ” u n i f 1 3 1 0 7 2 s t i s . npy ” )
13 s i s , s t i s = np . l o a d ( f p a t h s i s ) , np . l o a d ( f p a t h s t i s )
14

15 p l o t s d i r = os . p a t h . j o i n ( p r o j d i r , ” p l o t s ” )
16 i f n o t os . p a t h . i s d i r ( p l o t s d i r ) :
17 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
18

19 i m a g e d i r = os . p a t h . j o i n ( p l o t s d i r , ” s e n s i t i v i t y ” )
20 i f n o t os . p a t h . i s d i r ( i m a g e d i r ) :
21 r a i s e E x c e p t i o n ( ” E x c e p t i o n : can ’ t f i n d p a t h . ” )
22

23 t s = np . l i n s p a c e ( 0 , 150 , 151) # d e c l a r e t h e t ime − a x i s
24 c l r = ( p l t . r cPa rams [ ’ axes . p r o p c y c l e ’ ] . by key ( ) [ ’ c o l o r ’ ] )
25 l a b e l s = [ r ” $\mu {m}$ ” , r ” $k {m}$ ” , r ” $k { i}$ ” , r ” $\nu$ ” ,
26 r ” $y {p}$ ” , r ” $y {x}$ ” , r ” $ s { i n}$ ” ]
27

28 f i g 1 , ax1 = p l t . s u b p l o t s ( 1 , 1 , s h a r e x = ’ a l l ’ )
29 f o r i i n r a n g e ( l e n ( l a b e l s ) ) :
30 ax1 . p l o t ( t s [ 1 : − 1 ] , s i s [ i , 1 : ] , c o l o r = c l r [ i ] , a l p h a = . 9 5 , l a b e l = l a b e l s [ i ] )
31 ax1 . s t a c k p l o t ( t s [ 1 : − 1 ] , s i s [ i , 1 : ] , c o l o r = c l r [ i ] , a l p h a = . 4 5 )
32 ax1 . s e t y l a b e l ( r ” $S { i} \ : [ −] $ ” )
33 ax1 . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
34 p l t . l e g e n d ( l o c = ( 0 . , . 2 5 ) )
35 p l t . y l im ( [ − . 2 , 1 . 2 ] )
36 p l t . x l im ( [ 0 . , 1 5 0 . ] )
37

38 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image1 . png ” )
39 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
40 p l t . show ( ) # p l o t i n SciView
41

42 f i g 2 , ax2 = p l t . s u b p l o t s ( 1 , 1 , s h a r e x = ’ a l l ’ )
43 f o r i i n r a n g e ( l e n ( l a b e l s ) ) :
44 ax2 . p l o t ( t s [ 1 : − 1 ] , s t i s [ i , 1 : ] , c o l o r = c l r [ i ] , a l p h a = . 9 5 , l a b e l = l a b e l s [ i ] )
45 ax2 . s t a c k p l o t ( t s [ 1 : − 1 ] , s t i s [ i , 1 : ] , c o l o r = c l r [ i ] , a l p h a = . 4 5 )
46 ax2 . s e t y l a b e l ( r ” $S {T { i}} \ : [ −] $ ” )
47 ax2 . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
48 p l t . l e g e n d ( l o c = ( 0 . , . 2 5 ) )
49 p l t . y l im ( [ − . 2 , 1 . 2 ] )
50 p l t . x l im ( [ 0 . , 1 5 0 . ] )
51

52 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image2 . png ” )
53 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
54 p l t . show ( ) # p l o t i n SciView
55

56 f i g 3 , ax3 = p l t . s u b p l o t s ( 1 , 1 , s h a r e x = ’ a l l ’ )
57 ax3 . s t a c k p l o t ( t s [ 1 : − 1 ] , s i s [ 0 , 1 : ] , s i s [ 1 , 1 : ] , s i s [ 2 , 1 : ] , s i s [ 3 , 1 : ] ,
58 s i s [ 4 , 1 : ] , s i s [ 5 , 1 : ] , s i s [ 6 , 1 : ] , l a b e l s = l a b e l s )
59 ax3 . s e t y l a b e l ( r ” $S { i} \ : [ −] $ ” )
60 ax3 . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
61 p l t . l e g e n d ( l o c = ( 0 . , 0 . ) )
62 p l t . y l im ( [ − . 8 , 2 . 4 ] )
63 p l t . x l im ( [ 0 . , 1 5 0 . ] )
64

65 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image3 . png ” )
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66 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
67 p l t . show ( ) # p l o t i n SciView
68

69 f i g 4 , ax4 = p l t . s u b p l o t s ( 1 , 1 , s h a r e x = ’ a l l ’ )
70 ax4 . s t a c k p l o t ( t s [ 1 : − 1 ] , s t i s [ 0 , 1 : ] , s t i s [ 1 , 1 : ] , s t i s [ 2 , 1 : ] , s t i s [ 3 , 1 : ] ,
71 s t i s [ 4 , 1 : ] , s t i s [ 5 , 1 : ] , s t i s [ 6 , 1 : ] , l a b e l s = l a b e l s )
72 ax4 . s e t y l a b e l ( r ” $S {T { i}} \ : [ −] $ ” )
73 ax4 . s e t x l a b e l ( r ” $ t \ : [ min ] $ ” )
74 p l t . l e g e n d ( l o c = ( 0 . , 0 . ) )
75 p l t . y l im ( [ − . 8 , 2 . 4 ] )
76 p l t . x l im ( [ 0 . , 1 5 0 . ] )
77

78 f p a t h i m g = os . p a t h . j o i n ( i m a g e d i r , ” image4 . png ” )
79 p l t . s a v e f i g ( f p a t h i m g , d p i =600) # save t h e p l o t
80 p l t . show ( ) # p l o t i n SciView

Listing 6.7: mpc open loop / sensitivity.py

File for the open-loop MPC plant and optimizer (plant ol.py)

1 i m p o r t os
2 i m p o r t t ime
3 i m p o r t p a t h l i b
4 i m p o r t numpy as np
5 i m p o r t c a s a d i a s cd
6 i m p o r t s c i p y . s t a t s a s sc
7 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
8

9 # D e c l a r i n g s t a t e s s y m b o l i c
10 xs = cd . SX . sym ( ’ xs ’ , 1 )
11 s s = cd . SX . sym ( ’ s s ’ , 1 )
12 ps = cd . SX . sym ( ’ ps ’ , 1 )
13 vs = cd . SX . sym ( ’ vs ’ , 1 )
14 x = cd . v e r t c a t ( xs , ss , ps , vs )
15

16 # D e c l a r i n g i n p u t s s y m b o l i c
17 u = cd . SX . sym ( ’ u ’ , 1 )
18

19 # D e c l a r i n g MV− change s y m b o l i c
20 du = cd . SX . sym ( ’ du ’ , 1 )
21

22 # D e c l a r i n g t ime − a x i s s y m b o l i c
23 t = cd . SX . sym ( ’ t ’ , 1 )
24

25 # D e c l a r i n g p a r a m e t e r s s y m b o l i c
26 mu m = cd . SX . sym ( ’mu m ’ , 1 )
27 k m = cd . SX . sym ( ’ k m ’ , 1 )
28 k i = cd . SX . sym ( ’ k i ’ , 1 )
29 nu = cd . SX . sym ( ’ nu ’ , 1 )
30 yp = cd . SX . sym ( ’ yp ’ , 1 )
31 yx = cd . SX . sym ( ’ yx ’ , 1 )
32 s i n = cd . SX . sym ( ’ s i n ’ , 1 )
33 p = cd . v e r t c a t ( mu m , k m , k i , nu , yp , yx , s i n )
34

35

36 # D e f i n i n g t h e ODE− sys tem
37 d e f o d e s y s t e m ( ) :
38 # D e c l a r i n g t h e k i n e t i c model
39 mu = ( mu m * s s ) / ( k m + s s + ( ( s s ** 2) / k i ) )
40 # D e c l a r i n g t h e b iomass e q u a t i o n
41 d x s d t = mu * xs − ( u / vs ) * xs
42 # D e c l a r i n g t h e s u b s t r a t e e q u a t i o n
43 d s s d t = −(mu * xs ) / yx − ( nu * xs ) / yp + ( u / vs ) * ( s i n − s s )
44 # D e c l a r i n g t h e p r o d u c t e q u a t i o n
45 d p s d t = nu * xs − ( u / vs ) * ps
46 # D e c l a r i n g t h e volume e q u a t i o n
47 d v s d t = u
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48 # R e t u r n i n g t h e s e ODEs t o g e t h e r
49 r e t u r n cd . v e r t c a t ( d x s d t , d s s d t , d p s d t , d v s d t )
50

51

52 # D e f i n i n g t h e ODE−model
53 d e f ode model ( ) :
54 s y s = o d e s y s t e m ( )
55 p aug = cd . v e r t c a t ( u , p , t )
56

57 # D e c l a r i n g t h e ODE− d i c t i o n a r y
58 ode = {” x ” : x , ” p ” : p aug , ” ode ” : s y s * t}
59

60 # D e c l a r i n g o p t i o n s d i c t i o n a r y
61 o p t s = {” max num steps ” : 200 ,
62 ” a b s t o l ” : 1e −10 , ” r e l t o l ” : 1e −10}
63

64 # D e c l a r i n g t h e ODE− i n t e g r a t o r
65 f = cd . i n t e g r a t o r ( ”F” , ” cvodes ” , ode , o p t s )
66

67 # R e t u r n i n g t h e ODE− i n t e g r a t o r
68 r e t u r n f
69

70

71 # I n t e g r a t i n g t h e ODE−model
72 d e f i n t e g r a t o r ( f , x0 , tk , u0 , p0 ) :
73 x dim = x0 . shape [ 0 ]
74 t d i m = t k . shape [ 0 ]
75 u dim = u0 . shape [ 0 ]
76 p dim = p0 . shape [ 0 ]
77 a s s e r t u dim == t d i m − 1
78

79 x0 = cd . v e r t c a t ( x0 )
80 u0 = cd . v e r t c a t ( u0 )
81 p0 = cd . v e r t c a t ( p0 )
82 d t = np . z e r o s ( t d i m − 1)
83 f o r i i n r a n g e ( t d i m − 1 ) :
84 d t [ i ] = t k [ i + 1 ] − t k [ i ]
85 d t = cd . v e r t c a t ( d t )
86

87 x f s = np . z e r o s ( ( x dim , t d i m − 1 ) )
88 x f s [ : , 0 ] = np . a r r a y ( x0 ) . f l a t t e n ( )
89 f o r i i n r a n g e ( t d i m − 1 ) :
90 pk = cd . v e r t c a t ( u0 [ i ] , p0 , d t [ i ] )
91 f f = f ( x0= x f s [ : , i ] , p=pk )
92 xf = np . a r r a y ( f f [ ” x f ” ] ) . f l a t t e n ( )
93 i f i < ( t d i m − 2 ) :
94 x f s [ : , i + 1 ] = xf
95 e l s e :
96 x f s [ : , i ] = x f
97 r e t u r n x f s
98

99

100 d e f o p t i m i z e r ( f , x0 , tk , u0 , p0 ) :
101 dg = 3 # o r t h o g o n a l c o l l o c a t i o n wi th 3 p o i n t s p r e l e m e n t
102 t a u r o o t = np . append ( 0 , cd . c o l l o c a t i o n p o i n t s ( dg , ’ r a d a u ’ ) )
103 b = np . z e r o s ( ( dg + 1 , 1 ) )
104 c = np . z e r o s ( ( dg + 1 , dg + 1 ) )
105 d = np . z e r o s ( ( dg + 1 , 1 ) )
106

107 f o r i i n r a n g e ( dg + 1 ) :
108 c o e f f = 1
109 # C o n s t r u c t Lagrange p o l y n o m i a l s t o g e t t h e
110 # p o l y n o m i a l b a s i s a t t h e c o l l o c a t i o n p o i n t .
111 f o r r i n r a n g e ( dg + 1 ) :
112 i f r != i :
113 c o e f f = np . c o n v o l v e ( c o e f f , [ 1 . , − t a u r o o t [ r ] ] )
114 c o e f f = c o e f f / ( t a u r o o t [ i ] − t a u r o o t [ r ] )
115

59



116 # E v a l u a t e t h e p o l y n o m i a l a t t h e f i n a l t ime t o
117 # g e t c o e f f i c i e n t s o f t h e c o n t i n u i t y e q u a t i o n .
118 d [ i ] = np . p o l y v a l ( c o e f f , 1 . )
119

120 # E v a l u a t e t ime d e r i v a t i v e o f t h e p o l y n o m i a l a t a l l c o l l o c a t i o n
121 # p o i n t s t o o b t a i n t h e c o e f f i c i e n t s o f t h e c o n t i n u i t y e q u a t i o n .
122 pde r = np . p o l y d e r ( c o e f f )
123 f o r r i n r a n g e ( dg + 1 ) :
124 c [ i ] [ r ] = np . p o l y v a l ( pder , t a u r o o t [ r ] )
125

126 # E v a l u a t e t h e i n t e g r a l o f t h e p o l y n o m i a l t o
127 # g e t c o e f f i c i e n t s o f t h e q u a d r a t u r e f u n c t i o n .
128 p i n t = np . p o l y i n t ( c o e f f )
129 b [ i ] = np . p o l y v a l ( p i n t , 1 . )
130

131 # D e c l a r e m a t r i x f o r p e n a l i z i n g SP d e v i a t i o n s
132 q = np . a r r a y ( [ [ 1 . , 0 . , 0 . , 0 . ] ,
133 [ 0 . , 0 . , 0 . , 0 . ] ,
134 [ 0 . , 0 . , 0 . , 0 . ] ,
135 [ 0 . , 0 . , 0 . , 0 . ] ] )
136

137 # D e c l a r e m a t r i x f o r p e n a l i z i n g MV movements
138 r = 1 . # t h e same as do−MPC has used !
139

140 # D e c l a r e t h e o b j e c t i v e f u n c t i o n
141 j = (1 / 2 ) * ( − ps + du . T @ r @ du )
142

143 # O b t a i n i n g t h e ODE− sys tem
144 s y s = o d e s y s t e m ( )
145

146 # D e c l a r e t h e CasADi f u n c t i o n
147 f = cd . F u n c t i o n ( ’ f ’ , [ x , u , p , t , du ] , [ sys , j ] )
148

149 # D e c l a r e w, w0 , lbw , ubw , g , lbg , ubg , g1 , lbg1 , ubg1
150 w, w0 = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
151 g , g1 = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
152 lbw , ubw = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
153 lbg , ubg = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
154 lbg1 , ubg1 = cd . v e r t c a t ( [ ] ) , cd . v e r t c a t ( [ ] )
155

156 # D e c l a r e x p l t , u p l t f o r t h e p l o t t i n g p a r t
157 x p l t , u p l t = cd . h o r z c a t ( [ ] ) , cd . h o r z c a t ( [ ] )
158

159 # D e c l a r e c o n s t r a i n t s ; u min , u max , du max
160 u min , u max , du max = 0 . , . 2 , . 0 0 3
161

162 # D e c l a r e c o n s t r a i n t s ; xs max , ps max
163 xs max , ps max = 3 . 7 , 3 . 0
164

165 # D e c l a r e t h e h o r i z o n s npr , n c t
166 npr , n c t = 150 , 150
167

168 # I n i t i a l i z e t h e o b j e c t i v e
169 j = 0
170

171 # L i f t t h e i n i t i a l c o n d i t i o n s
172 xk = cd .MX. sym ( ’ x0 ’ , 4 )
173 w = cd . v e r t c a t (w, xk )
174 w0 = cd . v e r t c a t ( w0 , x0 )
175 lbw = cd . v e r t c a t ( lbw , x0 )
176 ubw = cd . v e r t c a t ( ubw , x0 )
177 x p l t = cd . h o r z c a t ( x p l t , xk )
178

179 f o r k i n r a n g e ( npr ) :
180 # New NLP v a r i a b l e f o r t h e c o n t r o l
181 uk = cd .MX. sym ( ’ u ’ + s t r ( k ) )
182 w = cd . v e r t c a t (w, uk )
183 w0 = cd . v e r t c a t ( w0 , u0 )

60



184 lbw = cd . v e r t c a t ( lbw , u min )
185 ubw = cd . v e r t c a t ( ubw , u max )
186 u p l t = cd . h o r z c a t ( u p l t , uk )
187

188 # S t a t e a t t h e c o l l o c a t i o n p o i n t s
189 x k i = [ [ ] * i f o r i i n r a n g e ( dg ) ]
190 f o r i i n r a n g e ( dg ) :
191 x k i [ i ] = cd .MX. sym ( ’ x ’ + s t r ( k ) + ’ ’ + s t r ( i ) , 4 )
192 w = cd . v e r t c a t (w, x k i [ i ] )
193 w0 = cd . v e r t c a t ( w0 , 1 . , . 5 , 0 . , 1 2 0 . )
194 lbw = cd . v e r t c a t ( lbw , 0 . , 0 . , 0 . , 0 . )
195 ubw = cd . v e r t c a t ( ubw , np . i n f , np . i n f , np . i n f , np . i n f )
196

197 # Loop ove r c o l l o c a t i o n p o i n t s
198 xk end = d [ 0 ] * xk
199

200 # I f − s e n t e n c e f o r f i n d i n g duk
201 i f k <= ( n c t − 1 ) :
202 i f k == 0 :
203 duk = uk − u0
204 e l s e :
205 duk = uk − uk0
206 g1 = cd . v e r t c a t ( g1 , duk )
207 l bg1 = cd . v e r t c a t ( lbg1 , −du max )
208 ubg1 = cd . v e r t c a t ( ubg1 , du max )
209 e l s e :
210 duk = uk − uk0
211 g1 = cd . v e r t c a t ( g1 , duk )
212 l bg1 = cd . v e r t c a t ( lbg1 , 0 . )
213 ubg1 = cd . v e r t c a t ( ubg1 , 0 . )
214

215 # I f − s e n t e n c e f o r f i n d i n g duk
216 i f k != ( npr − 1 ) :
217 uk0 = uk
218 e l s e :
219 uk0 = uk0
220

221 d t = t k [ 1 ] − t k [ 0 ]
222 f o r i i n r a n g e ( dg ) :
223 # E x p r e s s i o n f o r s t a t e d e r i v a t i v e a t c o l l o c a t i o n p o i n t
224 xp = c [ 0 , i + 1 ] * xk
225 f o r r i n r a n g e ( dg ) :
226 xp += c [ r + 1 , i + 1 ] * x k i [ r ]
227

228 # Append c o l l o c a t i o n e q u a t i o n s
229 f i , q i = f ( x k i [ i ] , uk , p0 , dt , 0 )
230 g = cd . v e r t c a t ( g , d t * f i − xp )
231 l b g = cd . v e r t c a t ( lbg , 0 . , 0 . , 0 . , 0 . )
232 ubg = cd . v e r t c a t ( ubg , 0 . , 0 . , 0 . , 0 . )
233

234 # Add c o n t r i b u t i o n t o t h e end s t a t e
235 xk end += d [ i + 1 ] * x k i [ i ]
236

237 # Add c o n t r i b u t i o n t o quad f u n c t i o n
238 j += b [ i + 1 ] * q i * d t
239

240 # New NLP v a r i a b l e f o r s t a t e a t end
241 xk = cd .MX. sym ( ’ x ’ + s t r ( k + 1 ) , 4 )
242 w = cd . v e r t c a t (w, xk )
243 w0 = cd . v e r t c a t ( w0 , 1 . , . 5 , 0 . , 1 2 0 . )
244 lbw = cd . v e r t c a t ( lbw , 0 . , 0 . , 0 . , 0 . )
245 ubw = cd . v e r t c a t ( ubw , xs max , np . i n f , ps max , np . i n f )
246 x p l t = cd . h o r z c a t ( x p l t , xk )
247

248 # Add e q u a l i t y c o n s t r a i n t
249 g = cd . v e r t c a t ( g , xk end − xk )
250 l b g = cd . v e r t c a t ( lbg , 0 . , 0 . , 0 . , 0 . )
251 ubg = cd . v e r t c a t ( ubg , 0 . , 0 . , 0 . , 0 . )
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252

253 # F o r m a l i z e i t i n t o an NLP problem
254 prob = { ’ x ’ : cd . v e r t c a t (w) , ’ g ’ : cd . v e r t c a t ( g , g1 ) , ’ f ’ : j}
255

256 # We may use an o p t i o n s d i c t i o n a r y
257 o p t s = { ’ i p o p t . p r i n t l e v e l ’ : 0 , ’ p r i n t t i m e ’ : 0}
258

259 # Ass ign s o l v e r − IPOPT i n t h i s c a s e
260 s o l v e r = cd . n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , prob , o p t s )
261

262 # C o n v e r t i n g from CasADi MX t o np . a r r a y
263 w0 = np . a r r a y ( w0 ) . f l a t t e n ( )
264 lbw = np . a r r a y ( lbw ) . f l a t t e n ( )
265 ubw = np . a r r a y ( ubw ) . f l a t t e n ( )
266 l b g = np . a r r a y ( l b g ) . f l a t t e n ( )
267 ubg = np . a r r a y ( ubg ) . f l a t t e n ( )
268 l bg1 = np . a r r a y ( lbg1 ) . f l a t t e n ( )
269 ubg1 = np . a r r a y ( ubg1 ) . f l a t t e n ( )
270 l bg2 = np . append ( lbg , l bg1 )
271 ubg2 = np . append ( ubg , ubg1 )
272

273 # Using cd . F u n c t i o n t o g e t t h e x and u t r a j e c t o r i e s from w
274 t r a j e c t o r i e s = cd . F u n c t i o n ( ’ t r a j e c t o r i e s ’ , [w] , [ x p l t , u p l t ] , [ ’w’ ] , [ ’ x ’ , ’ u ’ ] )
275

276 # So lve − u s i n g t h e p r e v i o u s d e f i n e d i n i t i a l g u e s s and bounds
277 s o l = s o l v e r ( x0=w0 , l b x =lbw , ubx=ubw , l b g = lbg2 , ubg=ubg2 )
278 x op t , u o p t = t r a j e c t o r i e s ( s o l [ ’ x ’ ] )
279 x o p t = x o p t . f u l l ( ) # t o numpy a r r a y
280 u o p t = u o p t . f u l l ( ) # t o numpy a r r a y
281 r e t u r n u o p t [ 0 , : n c t ] # i n p u t − s e q u e n c e

Listing 6.8: mpc open loop / plant ol.py

File for the open-loop MPC Sobol’ indices (sobol.py)

1 i m p o r t os
2 i m p o r t t ime
3 i m p o r t p a t h l i b
4 i m p o r t numpy as np
5 i m p o r t c a s a d i a s cd
6 i m p o r t s c i p y . s t a t s a s sc
7 from p l a n t o l i m p o r t i n t e g r a t o r
8 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
9

10

11 # De f i ne f u n c t i o n
12 d e f func ( f , x0 , tk , u0 , p0 ) :
13 r e t u r n i n t e g r a t o r ( f , x0 , tk , u0 , p0 ) [ 0 ]
14

15

16 d e f u n i f o r m b o u n d s ( p0 ) :
17 p low = 0 . 9 5 * p0
18 p h i g h = 1 . 0 5 * p0
19 r e t u r n p low , p h i g h
20

21

22 d e f u n i f o r m s a m p l e ( p0 ) :
23 p dim = p0 . shape [ 0 ]
24 p low , p h i g h = u n i f o r m b o u n d s ( p0 )
25 r e t u r n np . random . un i fo rm ( p low , p h igh , p dim )
26

27

28 d e f u n i f o r m d i s t ( p0 ) :
29 p dim = p0 . shape [ 0 ]
30 p low , p h i g h = u n i f o r m b o u n d s ( p0 )
31 p d i s t = [ sc . un i fo rm ( l o c =p low [ i ] , s c a l e =( p h i g h [ i ] − p low [ i ] ) ) f o r i i n r a n g e ( p dim ) ]
32 r e t u r n p d i s t
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33

34

35 d e f s e n s i t i v i t y ( f , x0 , tk , u0 , p0 ) :
36 x dim = x0 . shape [ 0 ]
37 t d i m = t k . shape [ 0 ]
38 u dim = u0 . shape [ 0 ]
39 p dim = p0 . shape [ 0 ]
40 a s s e r t u dim == t d i m − 1
41 p d i s t = u n i f o r m d i s t ( p0 )
42

43 N = 2 ** 6 # ˜= 20 s e c
44 # N = 2 ** 8 # ˜= 55 s e c
45 # N = 2 ** 13 # ˜= 28 min
46 # N = 2 ** 15 # ˜= 6146.46780371666 s
47 # N = 2 ** 16 # ˜= 11587.509873390198 s
48 # N = 2 ** 17 # ˜= 24384.82639169693 s
49

50 s a m p l e r = sc . qmc . L a t i n H y p e r c u b e ( d =(2 * p dim ) )
51 sample s = s a m p l e r . random ( n=N) # no . samples
52 s a m p l e s p = np . z e r o s ( ( N, 2 * p dim ) )
53 f o r i i n r a n g e ( s a m p l e r . d ) :
54 i f i < p dim :
55 s a m p l e s p [ : , i ] = ( p d i s t [ i ] . ppf ( s amples [ : , i ] ) )
56 e l s e :
57 s a m p l e s p [ : , i ] = p d i s t [ i − p dim ] . ppf ( samples [ : , i ] )
58

59 A = s a m p l e s p [ : , : p dim ]
60 B = s a m p l e s p [ : , p dim : ]
61

62 yA = np . z e r o s ( ( t d i m − 1 , N) )
63 yB = np . z e r o s ( ( t d i m − 1 , N) )
64 yC = np . z e r o s ( ( t d i m − 1 , N) )
65

66 s i s = np . z e r o s ( ( p dim , t d i m − 1 ) )
67 s t i s = np . z e r o s ( ( p dim , t d i m − 1 ) )
68

69 f o r i i n r a n g e (N ) :
70 yA [ : , i ] = func ( f , x0 , tk , u0 , A[ i ] )
71 yB [ : , i ] = func ( f , x0 , tk , u0 , B[ i ] )
72 i f ( i % 1000) == 0 :
73 p r i n t ( f ”yA , yB : i t e r a t i o n { i } /{N}” )
74

75 f o r i i n r a n g e ( p dim ) :
76 C = B . copy ( )
77 C [ : , i ] = A [ : , i ]
78 f o r j i n r a n g e (N ) :
79 yC [ : , j ] = func ( f , x0 , tk , u0 , C[ j ] )
80 i f ( j % 1000) == 0 :
81 p r i n t ( f ”yC{ i } : i t e r a t i o n { j } /{N}” )
82 f o r j i n r a n g e ( 1 , t d i m − 1 ) :
83 f0 = ( ( 1 / N) * np . sum ( yA [ j , : ] ) ) ** 2
84 s i = ( ( ( 1 / N) * ( yA [ j , : ] @ yC [ j , : ] ) ) − f0 ) / (
85 ( ( 1 / N) * ( yA [ j , : ] @ yA [ j , : ] ) ) − f0 )
86 s t i = 1 − ( ( ( 1 / N) * ( yB [ j , : ] @ yC [ j , : ] ) ) − f0 ) / (
87 ( ( 1 / N) * ( yA [ j , : ] @ yA [ j , : ] ) ) − f0 )
88 s i s [ i , j ] = s i
89 s t i s [ i , j ] = s t i
90

91 r e t u r n s i s , s t i s

Listing 6.9: mpc open loop / sobol.py
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