

Estimating liquid level in
a tank, located on a ship in
stormy weather, by an
Extended Kalman Filter

Specialization Project

Trondheim, autumn 2022

TKP4580 - Chemical Engineering, Specialization Project autumn 2022

CANDIDATE (surname, first name):
Bampoye Abubakar
DATE Course PAGE/ATTACHMENT BIBL. NR: 28
20.12.22 TKP458 34 / 29
SUPERVISOR(S):
Supervisor Johannes Jäschke & Co-supervisor Halvor Aarnes Krog
TITLE:
Estimating liquid level in a tank, located on a ship in stormy weather, by an Extended
Kalman Filter
Abstract:
This specialization project aims to implement a nonlinear Kalman Filter to estimate
the values of unknown liquid volume in a dynamic system inside a tank. Given that
we have two coordinate systems, one is defined by gravity (water surface of the ocean).
The second is given by the boat. When there are waves, the boat rolls, and we get an
angle theta (θ), between these coordinate systems. If the tank is filled with liquid on
the boat, the liquid will follow the coordinate system defined by gravity, while the tank
and its measuring instruments follow the ship’s reference system. The angle theta (θ)
will therefore also affect the level measurements in the tank, and if this is not corrected,
we will measure the wrong liquid volume in the tank. We want to make this correction
using an Extended Kalman filter. The Extended Kalman filter gave reasonable RMS
values for different process disturbance Q = 1 gave RMS = 0.35, Q = 10 gave RMS =
0.016, and Q = 100 gave RMS = 0.025.

2

Contents

Contents

1 Introduction 5

2 Theoretical Background 7
2.1 PID control . 7

2.1.1 Time discrete PID controller . 7
2.1.2 Tuning of PID controllers . 9

2.2 Stochastic signals . 11
2.2.1 General statistics . 11
2.2.2 White noise . 13

2.3 The Kalman Filter . 13
2.3.1 Observability of discrete-time systems 14
2.3.2 The process model . 16
2.3.3 Meauserment model . 17
2.3.4 The steps of Kalman Filter algorithm 18
2.3.5 Kalman Filter tuning . 20

3 A mathematical model applied on a tank 21
3.0.1 Derivation of the mathematical model 21
3.0.2 Applying the mathematical model inside the KF algorithm 22

4 Results & Discussions 25

5 Conclusion 28

A Code listing 30

3

List of abbreviations

List of abbreviations

DCS distributed control system
EKF Extended Kalman Filter
KF Kalman Filter
MPC Model predictive controller
MV Manipulated values
PID Proportional-integral-derivative
PDF Probability distribution function
PV Process values
RMS Root mean square
SP Set-points

4

Introduction

1 Introduction

In process control, we aim to keep process values close to their desired set points for safety
reasons, reduce cost or increase profitability. A classic control challenge is to control the
liquid level in a tank close to the desired set point. A control algorithm, such as a PID
controller, must know the value of the process variable to keep it close to the desired set
point. For land-based tanks, the volume of the liquid in the tank is proportional to the
fluid height. A sensor that monitors the fluid height (dP), is proportional to the density
(ρ) of the liquid, gravitational constant (g), and the height (h) given as follows: dP = ρgh.
On land, the sensor provides reasonable control over the fluid volume in the tank. If the
tank is on a boat, this becomes more complicated. The boat will roll and be affected by
the waves, and thus, the liquid height h at the given location the sensor is placed will
change with the angle θ. This will affect the measured volume of liquid, but not the real
volume of liquid. But how can we solve this problem?

(a) Depiciton of the tank on a boat,
with a change in the angle θ

(b) Depiciton of the tank on land.

Figure 1: The Figure depicts our tank from different angles.

One can solve the problem by using a PID regulator, but the results will be oscillations
at the measured liquid level because of the waves. Since the process value (PV) deviates
from the set-point (SP), the PID regulator will use (Manipulated values) MV all the time,
and the valve will oscillate even in a steady state. This causes the valve to wear out.

The current solution to the problem is to use moving average measurements. The prob-
lem with this is that if we get a real disturbance which is not a wave, then we get a
measurement delay. We, therefore, need a better method for determining the volume of
liquid in the tank, which could be state estimation.

5

Introduction

State estimators use the framework of combining a process model with a measurement
model to predict the condition at the next time step[7]. The measurement from the
system is used to correct this prediction and thus achieves an “optimal state estimate”.
State estimation can be used to improve existing measurements by removing measuring
noise, to estimate unmeasured process values, or estimating unknown parameters and
disturbances in a process.

The Kalman filter is perhaps the most widely used state estimator[8]. One reason for
its popularity is because mathematically, the Kalman Filter is a set of equations that
provides an efficient computational (recursive) mean to estimate the state of a process[1].
The main idea is to minimize the mean of the squared error. The Kalman Filter is a
commonly used algorithm to estimate values of unknown state variables of a dynamic
system[5]. The Kalman Filter is composed of a process simulator, and a sensor simulator
which uses the process model, which it assumes is a true representation of the process, and
a sensor model to estimate the states. The difference between the actual and simulated
(estimated) measurements is used to correct the present estimate. That difference is called
the innovation variable or the innovation “process”. The correction is proportional to the
innovation variable. The proportional gain, which is a matrix of time-varying elements,
is called the Kalman Filter gain, Kk. The Kalman Filter uses process knowledge in terms
of models and measurements to calculate the state estimate.

Why do we seek to investigate if a physical process like the fluid volume inside a tank
can be maintained sufficiently close to a set point, and what do we obtain? One reason
for seeking a reasonably small error between the set-point and the control error might be
safety, such that we can guarantee security for humans and equipment[3]. Also, it may
be required to keep the liquid volume within a specific limit. Thus, the variable must be
controlled. Therefore by implementing an automatic control solution, we can accomplish
tedious and dangerous operations for the benefit of human operators. Also, automation
may reduce costs, thereby indirectly reducing product prices to the customer’s benefit.

This specialization project aims to implement a nonlinear Kalman Filter to estimate the
values of unknown liquid volume in a dynamic system inside a tank. It is divided into
five sections, the theoretical background in chapter 2, a mathematical model applied on
a tank 3, the results and discussions in chapter 4, and closed off by the conclusion in
chapter 5.

6

Theoretical Background

2 Theoretical Background

This chapter contains the theoretical framework required for this project. PID regulation
is described in sub-section 2.1. The remaining sub-sections are required for describing the
state estimator. Sub-section 2.2 is about Stochastic signals, and 2.3 is about The Kalman
Filter.

2.1 PID control

The PID - proportional-integral-derivative - controller function has become a standard
for technical and industrial applications[4]. The PID controller is implemented with a
discrete-time algorithm that calculates the control signal at a discrete point in time. A
control system of a computer-based PID is depicted in Figure 2.

Figure 2: The Figure shows a PID control system.

Source: The image is from the book “Modeling, Simulation and Control” by F. A.
Haugen.

2.1.1 Time discrete PID controller

We need the continuous-time PID controller as our basis to develop a discrete-time PID
algorithm[4]. Which is given by:

7

Theoretical Background

u = uman + Kpe︸︷︷︸
P−term,up

+ Kp

Ti

∫ t

0
edτ︸ ︷︷ ︸

I−term,ui

+ KpTde︸ ︷︷ ︸
D−term,ud

= uman + up + ui + ud

(1)

Where u is the control signal and is calculated by the regulator, umann is the nominal value
of the control variable and is the control signal available for adjustment by the operator
while the controller is in manual mode. Since uman is constant, and hence “passive” when
the controller is in automatic mode. Its contribution in automatic mode is to provide
kind of a reasonable initial value at the moment of switching from manual to automatic
mode. e is the control error given by Equation 2:

ek = ysp,k − ymf,k (2)

The second term is up, which is the proportional term and contributes with a term in the
total control signal, u, which is proportional to the control error, e. Which brings some
speed to the control. However, assuming uman is not “perfect” to give zero control error,
i.e., e = 0, the P term by itself can not ensure e = 0, either this is because with e = 0,
up = 0, which mean no contribution from the P term. In other words, the P controller
can ensure zero error in a steady state.

The third term is ui, which is the integral term calculated from when the regulator was
put into operation to the current time. It’s an important part of the PID controller
because it ensures zero steady-state control error, i.e., es = 0. That’s because as long as
e is different from zero, ui will change. In other words, e is an “improvement term”. Or, e
drives the control. This change continues until e has become zero, and then ui and u are
kept constant until some disturbance or setpoint changes causes e to become nonzero.

The last term is ud, which is the derivative term. It stabilizes the control system, which
otherwise can not be stabilized with a P or PI controller. It amplifies the random mea-
surement noise, causing large variations in the control signal. These variations will be
reduced with a lowpass filter acting on the process measurement.

The controller parameters in Equation 1 are:

• Proportional gain Kp

• Integral time Ti

• Derivative time gain Td

We obtain the PID algorithm by discretizing the terms from Equation 1.

8

Theoretical Background

The discretization of the P term results into:

up,k = Kpek (3)

The discretization of the I term results into:

ui,k = Kp

Ti

∫ tk

0
edτ

= Kp

Ti

(
Tse1 + ...+ Tsek−1 + Tsek

)
= KpTs

Ti

(
e1 + ...+ ek−1 + ek

)
= KpTs

Ti

(
e1 + ...+ ek−1 + ek

)
︸ ︷︷ ︸

ui,k−1

+KpTs
Ti

ek

= ui,k−1 + KpTs
Ti

ek

(4)

The discretization of the D term results into:

ud,k = KpTd
ek − ek−1

Ts
(5)

2.1.2 Tuning of PID controllers

In our model, we will tune the controller with the Skogestad tuning method[9]. It’s a
model-based tuning method where the controller parameters are expressed as functions
of the process model parameters. A block diagram of the scheme is illustrated in Figure
3.

The transfer function Hp(s) is a combined transfer function of the process, the sensor, and
the measurement filter, and it’s also referred to as the “process transfer function” although
it is a combined transfer function. The block diagram shows a disturbance acting on the
process, we are not going to use that in our tuning in this project. Still, it’s recommended
to test the tuning on a simulation to see how the control system compensates for a process
disturbance. The design principle of the Skogestads method is as follows. The transfer
function from the setpoint to the filtered process measurement is specified as a first-order
transfer function with delay:

T (s) = y(s)
ysp(s)

= 1
Tcs+ 1e

−τ (6)

Where Tc is the time constant of the control system, which the user must specify, and τ

9

Theoretical Background

Figure 3: The Figure shows a block diagram of the control system in the Skogestad
controller tuning method.

Source: The image is from the book “Modeling, Simulation and Control” by F. A.
Haugen.

is the process time delay that the process model gives. This model is also applicable for
processes without time delay. Another way of deriving the transfer function is from the
block diagram by using the feedback rule in Figure 3:

T (s) = Hc(s)Hp(s)
1 +Hc(s)Hp(s)

(7)

But Hc(s) is unknown in Equation 7, so by solving for Hc(s) result into:

Hc(s) = T (s)
(1− T (s))Hp(s)

(8)

Hc(s) becomes a PID controller or a PI controller for the assumed transfer by letting
Equation 6 equal to Equation 7, and applying some proper simplifications to approximate
the time delay term.

Our process is an integrating process, and the model of an integrator with time delay is
given by:

ẏ(t) = Kiu(t− τ) (9)

Where the corresponding transfer function is:

y(s)
u(s) = Hp(s) = Ki

s
e−τs (10)

10

Theoretical Background

The controller settings are as follows:

Kp = 1
Ki(Tc + τ)

Ti = 4(Tc + τ)
Td = 0

(11)

2.2 Stochastic signals

The Kalman filter uses the characteristics of assumed random process disturbances, and
random measurement noise[6]. To reflect the real-world behaviour of the system that we
are filtering, which will vary more or less randomly. Even measurement signals contain
random noise; the sensors are noisy, and we cannot rely on sensors to give us perfect
information. The process disturbances as well have some random components. Conse-
quently, control signals and controlled variables, i.e. process output variables, have some
random behaviour. The future value of a random signal can not be predicted precisely, i.e.
such signals are non-deterministic. Thus this subsection will give us an insight into how
random signals can be described by statistical measures, which are typically expectation
value (mean value), variance, and standard deviation.

2.2.1 General statistics

But how do we characterize a stochastic process? A stochastic process may be charac-
terized by its mean given by Equation 12, standard deviation given by Equation 16, or
variance given by Equation 15. The stochastic process can be observed via one or more
realizations of the process in the form of a sequence or time series of samples. Another
realization of the same stochastic process will undoubtedly show different sample values,
but the mean value and the variance will be almost the same; the longer the realization
sequence is, the more equal the mean values and the variance will be.

mx = 1
N

=
N−1∑
k=0

xk (12)

Where mx and xk can be expressed in vector form as follows:

xk =


x1,k
x2,k
...

xn,k

 (13)

11

Theoretical Background

mx =


mx,1
mx,2
...

xx,n

 =


1
N

= ∑N−1
k=0 x1,k

1
N

= ∑N−1
k=0 x2,k
...

1
N

= ∑N−1
k=0 xn,k

 (14)

σ2 = V ar(x) = E[xk −mx]2

= 1
N − 1

N−1∑
k=0

[xk −mx]2
(15)

σ =
√
V ar(x) (16)

In our case, our stochastic signal will vary with time. Therefore it can be useful to express
it by the auto-covariance, which is given by:

Rx(L) = E{[xk+L −mx][xk −mx]} (17)

Where L is the lag, and by observation, one can see that the argument of the auto-
covariance function is the lag L. If the mean is zero, we can express the auto-covariance
as follow in a higher dimension:

Rx(L) = E{[xk+L][x]T]}

= E

{[
x1,k+L
x2,k+L

]
[x1,kx2,k]

}

=
[
E[x1,k+L · x1,k] E[x1,k+L · x2,k]
E[x2,k+L · x1,k] E[x2,k+L · x2,k]

] (18)

The auto-covariance results in the covariance on the diagonal if L = 0:

Rx(0) =


E{[x2

1,k]}︸ ︷︷ ︸
=V ar(x1)

E[x1,k · x2,k]

E[x2,k·x1,k
] E{[x2,k]2︸ ︷︷ ︸

=V ar(x2)

}

 (19)

If we have two different signals, the cross-covariance is given by:

Rx,y(L) = E{[xk+L −mx][yk −my]}
= S

∑N−1−|L|
k=0 [xk+L −mx][yk −my], L = 0, 1, 2, ...

= S
∑N−1−|L|
k=0 [yL −my][xk −mx] = Ry,x(−L), L = −1,−2, ...

(20)

12

Theoretical Background

Where S is a scaling factor. If there is a correlation between the time it is coloured noise.

2.2.2 White noise

An essential type of stochastic signal is the so-called white noise signal or processes.
“White” is because the noise contains approximately equally of all frequency components,
analogously to white light, which contains all colours. The reason that it’s important is
that the random noise, which is always present in measurements, can be represented by
white noise. White noise has zero mean value, and there is no co-variance or relation
between sample values at different time-indexes; hence the auto-covariance is zero for all
lags L except for L = 0. Thus, the auto-covariance is the pulse function depicted in
Figure 4.

Figure 4: The Figure shows white noise, which has an auto-covariance function like a
pulse function.

Mathematically the auto-covariance function of white noise is given by:

Rx(L) = V ar(x)δ(L) = σ2(x)δ(L) = V δ(L) (21)

Where we introduce V as the short-hand symbol of the variance. δ(L) is the unit pulse
defined as follows.

δ(L) =
1 if L = 0

0 else
(22)

2.3 The Kalman Filter

This subsection provides us with the right tools to implement and design a Kalman
Filter(KF), and Figure 5 illustrates the principle behind the KF[5].

13

Theoretical Background

Figure 5: The Figure shows the principle of the Kalman Filter, represented by a block
diagram.

Source: The image is from the book “Modeling, Simulation and Control” by F. A.
Haugen.

2.3.1 Observability of discrete-time systems

A necessary condition for the KF to work correctly is that the system for which the states
are to be estimated is observable and can be checked numerically. It’s advised to check
for observability before applying the KF. The observability presented here applies only
to linear state space models, which can be derived by linearizing a nonlinear model. The
observability of discrete-time systems can be defined as follows:

xk+1 = Axk +Buk (23)

yk = Cxk +Duk (24)

The discrete-time system is observable if there is a finite number of time steps k so that
sequence u0, ..., uk−1 and the output sequence y0, ..., yk−1 is sufficient to determine the
initial state of the system, x0. But we need a criterion for the system to be observable.
Since the influence of input u on state x is known from the model, let us, for simplicity,

14

Theoretical Background

assume that uk = 0 Equation 23 and 24 result into:

xk+1 = Axk (25)

yk = Cxk (26)
By substituting Equation 25 inside 26 the result are as follows:

yk = CAx0
...

yn−1 = CAn−1x0

(27)

Which can be expressed as: 
y0
y1
...

yn−1


︸ ︷︷ ︸

Y

=


C
CA
...

CAn−1


︸ ︷︷ ︸

Mobs

x0 (28)

Let’s define the Mobs as our observability matrix:

Mobs =


C
CA
...

CAn−1

 (29)

Thus our system based on Equation 23 and 24 is observable if and only if the observability
matrix 29 has a rank n, and n is the order of the system model which is also equal to
the number of state variables. The rank can be checked by calculating the determinant
of Mobs. If the determinant is non-zero, the rank is full; hence, the system is observable.
If the determinant is zero, the system is non-observable. But what are the consequences
of a non-observable system other than that the KF may not work correctly? Some state
variables or linear combinations of state variables may not respond to the estimated
measurement; therefore, the innovation process cannot correct their estimates. Another
consequence may be that the value of the estimator may diverge.

15

Theoretical Background

2.3.2 The process model

Let us assume the following discrete-time state space model:

xk+1 = Axk +Buk︸ ︷︷ ︸
f(xk,uk)

+Gwk (30)

The model contains the following state variables given in Equation 31, and state inputs
given in Equation 32:

x =


x1
x2
...
xn

 (31)

u =


u1
u2
...
um

 (32)

The value of u is assumed to be known, including control variables and known distur-
bances. The system vector function is given by Equation 33, and random white distur-
bance is given by Equation 34:

f =


f1
f2
...
fn

 (33)

w =


w1
w2
...
wq

 (34)

With an auto-covariance Q, which we assume to be diagonal since each of the process
disturbances typically are assumed to act on their respective state independently, given
as:

Q =


Q11 0 0
0 . . . 0
0 0 Qnn

 (35)

The number of q of process disturbance is assumed to equal the number n of state variables.
The noise gain matrix G, which relates the noise of the state variables, is also assumed

16

Theoretical Background

to have the same dimension, which makes G square.

G =


G11 0 0
0 . . . 0
0 0 Gnn

 (36)

Commonly the element of G is assumed to be one, which makes G an identity matrix:

G =


1 0 0
0 . . . 0
0 0 1

 = In (37)

2.3.3 Meauserment model

The measurement model is given by:

yk = Cxk +Duk︸ ︷︷ ︸
g(xk,uk)

+vk (38)

The measurement vector y is given by Equation 39, and the measurement function g is
given by Equation 40:

y =


y1
y2
...
yr

 (39)

g =


g1
g2
...
gr

 (40)

Which contains r elements. The random measurement noise vector is given by v:

v =


v1
v2
...
vq

 (41)

17

Theoretical Background

With an auto-covariance R, which is typically assumed to be diagonal, given as:

R =


R11 0 0
0 . . . 0
0 0 Rnn

 (42)

Let’s define the estimation error vector to be given by:

ex,k = xest,k − xk (43)

Where xk is the assumed actual state vector, and xest is the state estimate. The estimate
of the KF is the minimal value of the expectation value of the sum of the estimation
errors. Which is the sum of squared errors:

E[eTx,kek] = E[e2
x1,k

+ . . .+ e2
xn,k

] (44)

Since this estimation technique assumes that the model is linear, it will only give an
approximate result for nonlinear models.

2.3.4 The steps of Kalman Filter algorithm

The first step is the initialization step, which is executed only once before the loop start.
Where the initial value xp,0 of the predicted state estimate xp is set equal to the initial
guess:

xp,0 = xinit (45)

We also need to initialize the auto-covariance matrix of the predicted state estimation
error:

Pp,k = E[(xk −mxp,k
)(x−mx,pk)T] (46)

Where the initial value is set to Pp,k = Pp,init, and is an educated guess as to how sure we
are of the initial guessing xp,0.

The second step is to calculate the Kalman Gain Kk, which is given by:

Kk = Pp,kC
T [CPp,kCT +R]−1 (47)

Here, C is the measurement gain matrix of the linearized model of the original nonlinear
model given by Equation 38 calculated at the most recent operating point, which is (xp,k,
uk):

C = ∂g

∂x

∣∣∣∣
op=(xx,p,uk)

(48)

18

Theoretical Background

The third step is the implementation of the estimation loop which is composed of first
reading the measurement, ym,k from the sensor and calculating the predicted measurement
from the predicted state according to the sensor model:

yp,k = g(xp,k) (49)

The reason for not including the measurement noise vk as in Equation 38 is because it’s
not known or not predictable since it’s assumed to be white noise. Thus we can compute
the innovation variable, which is step three, and is the difference between the accurate
measurement, ym,k and the accurate measurement given by Equation 49:

ek = ym,k − yp,k (50)

Step four is to calculate the corrected state estimate xc,k, also referred to as the posterior
estimate, because it is calculated after the present measurement is taken. It is also denoted
the measurement-updated. The computation is done by adding the corrective term Kkek
to the predicted state estimate xp,k:

xc,k = xp,k +Kkek (51)

Where Kk is the Kalman Gain given by Equation 47.

The fifth set Step is to calculate the auto-covariance of the measured corrected state
estimate error:

Pc,k = [I −KkC]Pp,k (52)

Step six is to calculate the predicted state estimate for the next time step, xp,k+1. This
is also called the prior estimate because it is calculated before the present measurement
is taken. It is also referred to as the time-updated estimate. The computation is done by
using the current state estimate and the known input uk in the process model:

xp,k+1 = f(xc,k, uk) (53)

Where Kk is the Kalman Gain given by Equation 47, and C is the measurement gain
given by Equation 48. In the first iteration of the estimation loop, Pp,k is known from the
initialization 46. In a subsequent iteration, Pp,k is known from its predicted value.

The seventh step is to calculate the predicted state estimate error in the next iteration,
and the auto-covariance of the state estimate error in the next iteration is defined as
follows:

Pp,k+1 = APc,kA
T +GQGT (54)

19

Theoretical Background

Where A is the transition matrix of a linearized model:

A = I + TsA = I + Ts
∂f

∂x

∣∣∣∣
op=(xc,k,uk)

(55)

The last step is the index-shift to prepare for the next iteration:

xp,k = xp,k+1

Pp.k = Pp,k+1
(56)

2.3.5 Kalman Filter tuning

The Rmatrix is typically from the datasheet of the instrument provider, and the dominant
factor in tuning the Kalman filter is the relationship between Q and R, which is important.
If Q � R, it means that the model is much more uncertain than the measurement, so
then KF relies more on the measurements than the model and vice versa. A large Q gives
great uncertainty in prior prediction, which can be observed by Equation 54, which is the
process disturbance auto-covariance. A large Q tells us the variations in the actual state
variables are relatively large, which will give a larger Kalman Gain Kk, giving a stronger
updating of the estimates. This results in more measurement noise being added to the
estimates because the measurement noise is a term in the innovation process e, which is
multiplied by Kk:

xc,k = xx,p +Kkek

= xp,k +Kk[g(xk) + vk − g(xp,k)]
(57)

The Q matrix can be selected by setting all the diagonal elements to one if we don’t have
any idea about the numerical values of the process, and hence Q is:

Q = Q0


1 0 0
0 . . . 0
0 0 1

 (58)

Where Q0 is the only tuning parameter, there are methods to tune Q systematically,
but in this project, we assume that Q is diagonal. We adjust the diagonal elements to
fine-tune the process.

20

Theoretical Background

3 A mathematical model applied on a tank

Our project aims to estimate the liquid volume in a tank located on a ship in stormy
weather by a nonlinear Kalman Filter. Figure 6a depict that when the ship has a tilting
movement, it results in an angle θ. This is a bit complicated to estimate, so we need to
break it down to answer this question. This breaking down process involves fundamental
activities: “We have a question, and we don’t know the answer, so we ask another question,
and the other question will be something that we judge to be easier to answer, and
something that will shed light to the first question.”. That’s the core aim of this chapter.
Therefore we are only looking at a tank that is on land, depicted in Figure 6b. Due to
this simplification, we estimate fluid height and inflow, not fluid volume.

3.0.1 Derivation of the mathematical model

We can derive a mathematical model based on the first principle of the tank given in
Figure 6b[2].

(a) Depiciton of the tank on a boat,
with a change in the angle θ.

(b) Depiciton of the tank on land.

Figure 6: The Figure depicts our tank from different angles.

The rate of change in mass per unit of time is equal to net mass outflow. Mathematically
it’s given as:

dm(t)
dt

=
∑

ωin(t)−
∑

ωout(t) +
∑

ωgenerated(t) (59)

21

Theoretical Background

Where m[kg] is the mass, and ω[kg/s] is the mass flow, t[sec] is the time argument. In
our mathematical model of the tank, we assume no reaction is appearing inside the tank;
thus ∑ωgenerated(t) = 0:

dm(t)
dt

=
∑

ωin(t)−
∑

ωout(t) +
���

���
���:0∑

ωgenerated(t)

dm(t)
dt

=
∑

ωin(t)−
∑

ωout(t)

m(t)
dt

= ρqin(t)− ρqout(t)

(60)

Which is a differential equation for m. We need some conditions to mimic the real world.
For instance, the mass can’t be negative, thus m ≥ 0. In our case, we are more interested
in how the volume V will vary, and the relation between V and m is given by:

m = ρV = Ah(t) (61)

By substituting Equation 61 inside 60 result into:

ρAh(t)
dt

= ρqin(t)− ρqout(t) (62)

By assuming the density ρ is the same everywhere, in the inlet and outlet of the tank,
and the cross-sectional area is constant, we can extract them outside the differential:

�ρA
h(t)
dt

= �ρqin(t)−�ρqout(t)

h(t)
dt

= ḣ(t) = 1
A

(qin(t)− qout(t))
(63)

3.0.2 Applying the mathematical model inside the KF algorithm

With conditions hmin ≤ h ≤ hmax, qout is the outflow demanded by the level controller.
Thus qout = u is our control signal:

ḣ(t) = q̇in(t)− u ≡ f1 (64)

Another assumption to simplify our model is by letting qin be almost constant, which
implies it changes slowly, and the results will be:

q̇in = 0 ≡ f2 (65)

22

Theoretical Background

The height h is measured hence:
h ≡ g (66)

Assuming white measurement noise vk with variance R11, the measurement equation result
into:

hm,k = hk + vk (67)

With the given measurement covariance matrix:

R = R11 = (σ)2 = 3.33 · 10−5 (68)

Which were computed by the script in the Appendix A.

The discretized model of Equation:

hp,k+1 = hp,k + Ts
A

(qin,c,k + uk) (69)

qin,p,k+1 = qin,c,k (70)
Here we have applied the Euler forward and added the white disturbance noise w1 and
w2, which are independent and uncorrelated process disturbances with assumed variances
Q11 and Q22. The process disturbance matrix is then:

Q =
[
Q11 0
0 Q22

]
=
[
1 0
0 Q22

]
(71)

Where Q22 is going to be our main tuning factor of the KF, we will change it by “trial-
and-error” to give a reasonably fast and smooth estimate of qin.

The innovation variable in the simulation loop will be:

ek = hm,k − hp,k (72)

where hm,k is the simulated measurement, and hp,k is the predicted measurement. The
Kalman gain from Equation 47 will have a measurement gain matrix as follows:

C =
[
1 0

]
(73)

Using the auto-covariance of measured corrected state estimate error from Equation 52
and the predicted state estimation error in the next iteration from Equation 54. The
result of the disturbance gain, the discrete-time transition matrix:

23

Theoretical Background

G =
[
1 0
0 1

]
(74)

A = I + TsA = I + Ts

[
∂f1
∂x1

= 0 ∂f1
∂x2

= 1
Aareas

∂f2
∂x1

= 0 ∂f2
∂x2

= 0

] ∣∣∣∣∣∣
xp,k,uk

=
[
1 Ts

Aareas

0 1

]
(75)

24

Results & Discussions

4 Results & Discussions

The PID controller and the Kalman Filter implementation are given in the Python script
from Appendix A. The result of implementing a PID controller is shown in Figure 7,
where we have applied a step change in the SP after 2000 seconds. We observe the PID
controller is decreasing the outflow to compensate for the increase in inflow, indicating
the PID controller is working.

Figure 7: Illustrates of implementing a PID controller-

Figure 8, 9 and 10 show the simulated responses and the estimation of qin = qin,est by
the Kalman filter, and we changed the tuning factor Q, which is the process disturbance
auto-covariance while keeping the disturbance variance unchanged. We observe that qin
is less noisy and slower for the case when Q = 1, which is depicted in Figure 8. But the
model doesn’t manage to predict the inflow accurately. From Table 1 we observe that the
RMS = 0.35, which is calculated by taking between the deviation of the inflow qin and
the estimated value qin,est.

When we change the tuning factor into Q = 10 depicted in Figure 9, more measurement
noise is being added to the estimate but also faster. This makes sense since a larger
Q tells us that the variance in the actual variables is relatively large. Thus it gives a
larger Kalman gain. We also observe that the model manages to predict the inflow more

25

Results & Discussions

Table 1: The different RMS values by changing the process disturbance
auto-covariance.

Process disturbance auto-covariance RMS
Q1 0.35
Q10 0.016
Q100 0.025

Figure 8: The Figure illustrates a simulated tank with PI level control and a Kalman
Filter with process disturbance Q22 = 1.

accurately. Therefore, the RMS value between the real and estimated inflow has decreased.
In Figure 10 we increased Q, even more, to observe if that resulted in a better prediction of
the inflow. But that’s not the case, even tho it manages to follow the same pattern as the
inflow, the measurement noise also increases. Thus the RMS value increased compared
to the simulation of Q = 10. The common thing for all the tuning is that we observe the
output gets a sinusoidal shape, which implies that the valve will be closed and open more
frequently, and as time passes, it will cause wear and tear on the valve.

26

Results & Discussions

Figure 9: The Figure illustrates a simulated tank with PI level control and a Kalman
Filter with process disturbance Q22 = 10.

Figure 10: The Figure illustrates a simulated tank with PI level control and a Kalman
Filter with process disturbance Q22 = 100.

27

Conclusion

5 Conclusion

The simulation results are reasonable, and the reason for that is because we used a linear
model. But in reality, we know that the valve equation that represents the out-stream is
nonlinear, and we simplified it by assuming it’s linear. This is something one should have
in mind, thus, a better filter is needed if we want to capture that aspect of the system.

One problem with the filter is that it assumes that the model is linear, and most physical
system is nonlinear. This can be solved by implementing other state estimators like
the Unscented Kalman filter, which is more accurate than the EKF but has a higher
computational load. Another problem with the filter is that sometimes the proper initial
value. Which is composed of two values the average value of xp,0 and the auto-covariance
Pp,k. This is needed to make the simulation converge, so knowledge of the system is
preferred to make a proper initial value. Normally we have an intuition of the initial
state of the tank. We may have insight if the tank is empty xp,0 = 0, or half empty
xp,0 = 50. But the biggest problem is to reflect the physical model that it’s representing,
if the model deviates too much from the actual system (process) the solution won’t reflect
that system’s evolution over time.

In this project, we assumed that the tank is on land and made the system linear. In the
future, we should assume it is on a boat and that boat is rolling side by side. This is going
to make the estimation problem significantly more difficult. Therefore, we also possibly
need a more accurate estimator as the UKF.

28

Conclusion

References

[1] G. B. Greg Welch. An Introduction to the Kalman Filter. Industrial & Engi-
neering Chemistry Research, 7 2006.

[2] F. A. Haugen. Matematisk modellering. In Dynamsike systemer, pages 13–46. FAG-
BOKFORLAGET, 2016.

[3] F. A. Haugen. Introduction to automatic control. In Modeling, Simulation and Control,
pages 22–49. FAGBOKFORLAGET, 2021.

[4] F. A. Haugen. PID Control. In Modeling, Simulation and Control, pages 252–276.
FAGBOKFORLAGET, 2021.

[5] F. A. Haugen. State estimation with Kalman Filter. In Modeling, Simulation and
Control, pages 561–587. FAGBOKFORLAGET, 2021.

[6] F. A. Haugen. Stochastic signals. In Modeling, Simulation and Control, pages 542–55.
FAGBOKFORLAGET, 2021.

[7] R. R. . L. Jr. The g-h Filter. In Kalman and Bayesian Filters in Python, pages 17–49.
5 2020.

[8] D. Simon. Matematisk modellering. In Optimal State Estimation. John Wiley & Sons,
Inc, 2016.

[9] S. Skogestad and C. Grimholt. The SIMC Method for Smooth PID Controller Tuning.
In PID Control in the Third Millennium, pages 147–175. Springer, 2012.

29

Code listing

A Code listing

Import ing the r e q u i r e d modules
#−−−
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import seaborn as sns
sns.set_theme(style="darkgrid")
plt.rc(' axes ' , labelsize=16)
plt.rc(' xtick ' , labelsize=16)
plt.rc(' ytick ' , labelsize=16)
plt.rc(' font ' , size=16)

#−−−

Def in ing a f u n c t i o n o f PI c o n t r o l l e r :
def pi_controller(y_sp_k, y_m_k, u_man, u_i_km1,

Kc_LC, Ti_LC, Ts,u_min, u_max,
u_i_min, u_i_max):

e_k = y_sp_k − y_m_k # Contro l e r ro r
u_p_k = Kc_LC∗e_k # P term

Anti windup by l i m i t i n g i n t e g r a l term :
u_i_k_tempor = u_i_km1 + (Kc_LC/Ti_LC)∗Ts∗e_k
u_i_k = np.clip(u_i_k_tempor , u_i_min, u_i_max)

u_k_tempor = u_man + u_p_k + u_i_k
u_k = np.clip(u_k_tempor , u_min, u_max)

return (u_k, u_i_k)

Def in ing a f u n c t i o n f o r t he PI tun ing :
def pi_tuning(Ki, Tc):

Kc = 1/(Ki∗Tc) # [(m3/ s)/m] C o n t r o l l e r ga in
Ti = 2∗Tc # [s] I n t e g r a t o r ga in

return (Kc, Ti)

Time s e t t i n g s :

30

Code listing

Ts = 10 # Sim time−s t e p [s]
t_start = 0.0 # [s]
t_stop = 10000 # [s]
N_sim = int((t_stop−t_start)/Ts) + 1

Def in ing arrays f o r p l o t t i n g :
t = np.zeros(N_sim)
h = np.zeros(N_sim)
h_meas = np.zeros(N_sim)
h_sp = np.zeros(N_sim)
h_est = np.zeros(N_sim)
u = np.zeros(N_sim)
q_in = np.zeros(N_sim)
q_in_est = np.zeros(N_sim)
wave = 0.5∗np.sin(np.linspace(−2∗np.pi, 2∗np.pi, N_sim)) + 1 # q_in i f t h e r e i s a wave

Model parameters :
A_area = 1000 # [m2]
h_measin = 0 # [m] Max l e v e l
h_measax = 4 # [m] Min l e v e l

Leve l meas no i s e param :
ampl_h_meas_noise = 0.01 # [m] Ampl o f u n i f random meas no i s e

C o n t r o l l e r parameters :
Tc = 1000 # [s] S p e c i f i e d c l o s e d l oop time cons tan t
Ki = −1/A_area # Process i n t e g r a t o r ga in
(Kc, Ti) = pi_tuning(Ki, Tc)
u_man = 1 # [m3/ s]
u_min = 0 # [m3/ s]
u_max = 8 # [m3/ s]
u_i_min = −8 # [m3/ s]
u_i_max = 8 # [m3/ s]

I n i t i a l i z a t i o n o f Kalman F i l t e r :
h_pred_k = 2.0 # [m] # I n i t i a l s t a t e
q_in_pred_k = 1.0 # [m3/ s]
n_x = 2 # Number o f s t a t e s

S e t t i n g s o f Kalman F i l t e r :
P_pred_k = np.diag([1.0∗∗2, 1.0∗∗2])
std_Q_22 = 10∗∗1 # Tuning f a c t o r
Q = np.diag([1.0∗∗2, std_Q_22∗∗2])
std_h_meas_noise = ampl_h_meas_noise/np.sqrt(3) # [m]
R = np.diag([std_h_meas_noise∗∗2])

31

Code listing

I n i t i l i z i n g the s t a t e s :
h_k = 2 # [m]
u_i_km1 = 0.0 # [m3/ s]

For−loop f o r s i m u l a t i o n :
for k in range(0, N_sim):

t_k = k∗Ts

S e l e c t i n g Inpu t s :
if (t_k < 4000):

h_sp_k = 2
q_in_k = wave[k]

elif (t_k >= 4000):
h_sp_k = 2
q_in_k = wave[k]

Adding un i f o rmly d i s t r i b u t e d meas no i s e :
h_meas_noise_k = np.random.uniform(−ampl_h_meas_noise ,

ampl_h_meas_noise , 1)[0]
h_meas_k = h_k + h_meas_noise_k

Leve l PI c o n t r o l l e r :
(u_k, u_i_k) = pi_controller(

h_sp_k, h_meas_k,
u_man, u_i_km1,
Kc, Ti, Ts,
u_min, u_max,
u_i_min, u_i_max)

Kalman F i l t e r f o r es t im h and q_in us ing meas o f h :

Matr ices in l i n e a r i z e d model :
A_cont = np.array([[0, 1/A_area], [0, 0]])
C_cont = np.array([[1, 0]])
A = A_disc = np.eye(n_x) + Ts∗A_cont
C = C_disc = C_cont

C a l c u l a t i n g the Kalman ga in :
K_k = ((P_pred_k @ C.T)

@ (np.linalg.inv(C @ P_pred_k @ (C.T) + R)))

C a l c u l a t i n g the innova t i on proce s s :

32

Code listing

e_innov_k = h_meas_k − h_pred_k

Meas−c o r r e c t e d e s t i m a t e s are used as a p p l i e d es t im :
h_corr_k = h_pred_k + K_k[0, 0]∗e_innov_k
q_in_corr_k = q_in_pred_k + K_k[1, 0]∗e_innov_k

Pred i c t ed e s t ima t e :
dh_corr_dt_k = (1/A_area)∗(q_in_corr_k − u_k)
dq_in_corr_dt_k = 0
h_pred_kp1 = h_corr_k + Ts∗dh_corr_dt_k
q_in_pred_kp1 = (q_in_corr_k + Ts∗dq_in_corr_dt_k)

Auto−covar iance o f e r ro r o f meas−c o r r e c t e d e s t ima t e :
P_corr_k = (np.eye(n_x) − K_k @ C) @ P_pred_k

Auto−covar iance o f e r ro r o f p r e d i c t e d e s t ima t e :
P_pred_kp1 = A @ P_corr_k @ (A.T) + Q

Process s i m u l a t i o n :
dh_dt_k = (1/A_area)∗(q_in_k − u_k)
h_kp1_tempor = h_k + dh_dt_k∗Ts
h_kp1 = np.clip(h_kp1_tempor , h_measin, h_measax)

Def in ing the arrays f o r p l o t t i n g :
t[k] = t_k
h_sp[k] = h_sp_k
h[k] = h_k
h_meas[k] = h_meas_k
h_est[k] = h_corr_k
u[k] = u_k
q_in[k] = q_in_k
q_in_est[k] = q_in_corr_k

Index−s h i f t t o prepare f o r the nex t i t e r a t i o n :
u_i_km1 = u_i_k
h_k = h_kp1
h_pred_k = h_pred_kp1
q_in_pred_k = q_in_pred_kp1
P_pred_k = P_pred_kp1

C a l c u l a t i n g the roo t mean squared e r ro r
print(f " " " The roo t mean squared e r ro r i s : {np . s q r t ((np . sum(q_in_est − q_in)
∗∗2)/ l en (q_in_est))} " " ")

P l o t t i n g :

33

Code listing

plt.close("all")
plt.figure(num=1, figsize=(12, 9))

print(h_meas)
plt.subplot(3, 1, 1)
plt.plot(t, h_sp, 'g ')
plt.plot(t, h_meas, 'b+ ')
plt.plot(t, h_est, 'r ')
plt.grid(' minor ')
plt.xlim(t_start, t_stop)
plt.ylabel('h [m] ')
plt.legend((' SP ' , ' Measurement ' , ' Estimated '))

plt.subplot(3, 1, 2)
plt.grid(' minor ')
plt.xlim(t_start, t_stop)
plt.ylabel('h[cm3/s] ')
plt.plot(t, q_in, 'b ')
plt.plot(t, q_in_est, 'r ')
plt.legend((' Inflow ' , ' Estimated '))

plt.subplot(3, 1, 3)
plt.grid(' minor ')
plt.xlim(t_start, t_stop)
plt.ylabel('[cm3/s] ')
plt.plot(t, u, 'm ')
plt.legend(('u = Outflow ' ,))
plt.xlabel('t [s] ')

plt.savefig(' KF.png ')
plt.show();

34

	Introduction
	Theoretical Background
	PID control
	Time discrete PID controller
	Tuning of PID controllers

	Stochastic signals
	General statistics
	White noise

	The Kalman Filter
	Observability of discrete-time systems
	The process model
	Meauserment model
	The steps of Kalman Filter algorithm
	Kalman Filter tuning

	A mathematical model applied on a tank
	Derivation of the mathematical model
	Applying the mathematical model inside the KF algorithm

	Results & Discussions
	Conclusion
	Code listing

