
TEP4550 - Energy and Process Engineering, Specialization Project
TKP4580 - Chemical Engineering, Specialization project

Optimization of flexible
renewable energy systems

using stochastic
programming

Petter Engblom Nordby

Mari Elise Rugland

Submission date: 16.12.2020
Supervisors: Avinash Subramanian, EPT

Truls Gundersen, EPT
Johannes Jaschke, IKP

Norwegian University of Science and Technology

Preface

Declaration of Compliance

I, Mari Elise Rugland, and I, Petter Engblom Nordby, hereby declare that this is an
independent work according to the exam regulations of the Norwegian University
of Science and Technology (NTNU).
Signature:

Place and Date: Trondheim - Gløshaugen, 16th of December 2020

Acknowledgements

The authors greatly acknowledge supervisors, Truls Gundersen and Johannes Jäschke,
for their guidance over the course of this specialization project. Additionally, we
would like to express our gratitude to our co-supervisor, Avinash Subramanian, for
valuable discussions, his rigorous feedback and useful suggestions. Our supervisors’
commitment to the project has been encouraging and a great motivator.

i

Abstract

In this project thesis, the problem of optimal design and operation of flexible re-
newable energy systems (RES) under uncertainty was addressed. The inherent
intermittent behavior of renewable energy sources and the associated energy con-
version models give rise to considerable computational challenges. A linear renew-
able energy system model was developed, and a two-stage stochastic programming
approach was used to optimize the design and operation of this system. The result-
ing two-stage MILP formulation was solved using the NGBD algorithm embedded
in the GOSSIP software. GOSSIP provides a C++ framework for the formula-
tion and efficient solution of two-stage stochastic programs. The software includes
links to decomposition algorithms that scale favorably with the number of sce-
narios. The resulting 1st stage variables correspond to decisions taken before the
realizations of uncertainty while 2nd stage variables correspond to decisions taken
after realization of uncertainty. Thus, the design decisions were 1st stage, while
the operational were 2nd stage. The following three case studies were modeled in
GOSSIP: A simple RES with one design day, a simple RES with four design days,
and a RES with one design day and short-term energy storage. The aim was to
minimize the overall cost of the RES, and in order to apply NGBD to solve the
problem, initial design decisions were discretized by employing binary variables.
Uncertainty was accounted for by generating scenarios based on sampling from a
normal distribution. Results from the three case studies show that accounting for
uncertainty reduces the overall operating cost by 3-15%. Future work will involve
using more realistic models which would result in nonconvex MINLP formulations.

i

Table of Contents

Table of Contents iii

List of Tables iv

List of Figures v

Nomenclature vi

1 Introduction 1
1.1 Work allocation . 1
1.2 Motivation . 1
1.3 Objective and Scope . 3
1.4 Structure of the report . 4

2 Optimization methodologies 5
2.1 Introduction to optimization . 5
2.2 Mixed-Integer Programming - MIP 7
2.3 Stochastic programming . 8

3 Methodology 11
3.1 GOSSIP software . 11
3.2 A worked out example: Farmer’s Problem 14

4 Renewable Energy System (RES) 19

5 Case studies 21
5.1 Case study 1: Simple model of uncertainty with 1 design day 21
5.2 Case study 2: Accounting for seasonal variability using 4 design days 26
5.3 Case study 3: Stochastic problem with dynamic model and energy

storage . 28

ii

6 Results 33
6.1 Case study 1: Simple model of uncertainty with 1 design day 34
6.2 Case study 2: Accounting for seasonal variability using 4 design days 37
6.3 Case study 3: Stochastic problem with dynamic model and energy

storage . 41

7 Discussion 44

8 Conclusions and future Work 50

A Calculations 54

B Scenarios for case study 1 and 2 56
B.1 Scenarios case study 1 and 2 . 56

C Scenario set for case study 3 59

D C++ code 61
D.1 Expected value problem . 61
D.2 Case study 1: Simple model of uncertainty with 1 design day 67
D.3 Case study 2: Accounting for seasonal variability using 4 design days 73
D.4 Case study 3: Stochastic problem with dynamic model and energy

storage . 80

iii

List of Tables

3.1 Data for Farmer’s Problem . 14
3.2 A simple scenario representation . 14
3.3 Results of Farmer’s Problem . 17
3.4 Results of Farmer’s Problem . 18

5.1 Variables with bounds, units and stage number. 23
5.2 Parameters describing the reference cost and minimum area require-

ment of the two technologies in Equation 5.7 for capital cost. 23
5.3 Efficiencies and other parameters used in the model. 25
5.4 Summary of uncertain variables with their mean value and associ-

ated standard deviation. 25
5.5 Modified mean values to simulate seasonal variations through 4 de-

sign days. 26
5.6 Capital and operating cost for energy storage [17] 30
5.7 List of discrete values for SES calculated from Equation (5.9). 30
5.8 Storage capacity bounds and efficiencies in the energy storage model. 32

6.1 Results of the expected value problem. 33
6.2 Results for the stochastic problem. 34
6.3 Results for the flexible design under seasonal variation. 37
6.4 Results for the nominal design under seasonal variation. 38
6.5 Results for case study 3. 41

B.1 Scenarios used in case study 1 and 2. 56

iv

List of Figures

2.1 Geometrical representation of a constrained optimization problem [9]. 6
2.2 Convex (a) and nonconvex (b) set [10]. 6
2.3 Convex (a) and nonconvex (b) function [10]. 7
2.4 Scenario tree for a two-stage stochastic program 9

3.1 A schematic of the different decomposition algorithms and the class
of stochastic programs they are applicable to. 12

4.1 Simplified flowsheet of the renewable energy system with power gen-
eration and user demand. No storage technologies included. The
energy balance is shown in Equation 5.10. 19

4.2 Simplified flowsheet of the renewable energy system with power gen-
eration, user demand, and battery as chosen storage technology. . . . 20

5.1 Scenario tree for a multi-stage stochastic program 28
5.2 Scenario tree for a two-stage stochastic program 29

6.1 The expected coverage of demand by renewable energy production
(top) and import (bottom) for the flexible and nominal design. . . . 35

6.2 The LCOE in $/MWh produced from renewables in the nominal and
flexible design. 36

6.3 The expected coverage of demand by renewable energy (top) and
electricity import (bottom) under seasonal variation for the nominal
and flexible design. 39

6.4 The LCOE in $/MWh produced from renewables in the seasonal
stochastic problem for the nominal and flexible design. 40

6.5 The expected coverage of demand by renewable energy production
(top) and import (bottom) for the nominal design, and flexible de-
sign with and without energy storage. 42

6.6 System flows and operation of battery 43

v

Nomenclature

Acronyms

BD Benders Decomposition
EEV Expectation of Expected Value Problem
GBD Generalized Benders Decomposition
GOSSIP Global Optimization of non-convex two-Stage Stochastic mixed-Integer Programs
IP Integer Programming
LCOE Levelized Cost of Energy
LP Linear Programming
MIP Mixed Integer Programming
MICP Mixed Integer Convex Programming
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
MVP Mean Value Problem
NGBD Nonconvex Generalized Bender Decomposition
P Programs or Programming (used interchangeably)
RES Renewable Energy Systems
RP Recourse Problem
SP Stochastic Problem
VSS Value of Stochastic Solution

vi

Chapter 1
Introduction

1.1 Work allocation

This project thesis was made through a collaboration between Petter Engblom
Nordby and Mari Elise Rugland. Mari Elise developed the model in case 1 and 2
whereas Petter developed the model in case 3. Other sections not explicitly men-
tioned here were written by both parties and are regarded as joint contributions.

1.2 Motivation

The global demand for energy has increased steadily since the industrialization. So
far in the 21st century, the world has seen a 2.2% annual rise in energy demand,
and historically, the surge in global energy intensity has been accounted for by
increased use of fossil fuels [1]. Consequently, greenhouse gas emissions related
to human activities are estimated to have increased the average global tempera-
ture by 1 ◦C compared to pre-industrial levels [2]. As the global population keeps
rising and developing nations are becoming industrialized, cheap, accessible and
environmentally neutral energy sources are becoming increasingly important. In
modeled pathways that limit global warming to 1.5 ◦C, renewable energy sources
are projected to account for 70-85% of the global energy mix [2].

Impelled by significant investments, technological progress and economies of scale
have led to a sharp cut in the levelized costs of renewable energy (LCOE) [3]. Elec-
tricity from solar photovoltaics (PV) has seen an 82% reduction in cost the past
decade, undercutting the marginal cost of existing coal-fired plants [4]. Cutting
the cost of projects is however not the only problem associated with renewable
energy systems. Renewable energy systems face operation challenges as a result of
significant uncertainties. These uncertainties include the inherent fluctuations in
renewable energy sources such as solar and wind, the varying user demand, and the

1

1.2 Motivation

volatile market spot price of electricity. These uncertainties reduce the availability
of the renewable energy system, and consequently the ability to meet energy de-
mand. One approach is to take these uncertainties into account from the design
stage by implementing a flexible design. Flexible renewable energy systems (RES)
can react swiftly to changes in operational circumstances, i.e. they have the ability
to adjust operating conditions in order to respond to uncertainty. The result of
this property makes flexible designs more robust under uncertainty.

Flexible design can be obtained by installing additional (redundant) capacity or
by installing multiple renewable energy technologies that exploit different weather
conditions. It should be noted that there is a trade-off between increased capital
expenses associated with redundancy and increased robustness to uncertainty. For
instance, without a flexible design, the cheaper RES may not be able to meet de-
mand peaks on cold winter days. On the other hand, installing a higher capacity
would increase investment costs, but allow the RES to meet demand on winter
days. In addition, there would also be the potential of redundant capacity in the
summer months.

Another approach to counteract the negative effects of uncertainty is through in-
stallation of energy storage. In fact, long- and short-term energy storage technolo-
gies are expected to further compensate for the power generation fluctuations and
seasonal variability. With the inclusion of storage technologies, it is believed that
substantial amounts of renewable energy sources can be integrated with the global
energy mix [5].

The design and operation of a flexible renewable energy system can be formulated
as an optimization problem. Utilizing multiple renewable energy sources and/or
storage technologies are two ways to increase flexibility, and have to be considered
at the design stage. Furthermore, the nature of renewable energy sources requires
long time horizons to account for seasonal variations as well as hourly resolution
from an operational modeling perspective. This drives up the number of decision
variables and creates a complex optimization problem. In addition, the optimal
choice of installed capacity of technologies, and the subsequent operation of the
RES is subject to uncertain parameters such as the market spot price of electric-
ity and a varying user demand. In this manner, future uncertainties complicate
the problem by affecting optimal system design, optimal system operation, and
thereby, project profitability.

In summary, optimization problems for the design and operation of flexible en-
ergy systems pose considerable computational complexity. A deterministic mixed-
integer linear programming approach has been proposed for multi-energy systems
due to the reasonable size of a deterministic program. Specifically, Gabrielli et
al. [6] proposed a deterministic MILP approach that allows hourly resolution and
account for seasonal changes. Nonetheless, as formerly discussed, a deterministic
approach is a gross simplification of RES behavior.

2

1.3 Objective and Scope

In a study by Mavromatidis et al. [7], uncertainty was included in the problem
formulation through a two-stage stochastic MILP. However, MILP formulations
can entail the risk of making sub-optimal decisions when modeling non-linearities
with linear relations. Consequently, a two-stage stochastic MINLP approach that
can be solved in reasonable time is currently assumed to be the optimal solution.

While MINLP can be challenging to solve, they allow for using both linear and
non-linear models to accurately predict system behavior and solve a wide range of
relevant problems. Two-stage stochastic programs have a specific structure that
can be exploited by decomposition-based approaches to allow efficient solutions.
The novel optimization software GOSSIP, developed by researchers at the Process
Systems Engineering Laboratory (PSEL) at MIT, exploits the structure of two-
stage stochastic MINLPs in order to reduce the solver time [8]. The development
of a two-stage MINLP in GOSSIP can therefore be a promising step in the direction
of optimization of flexible renewable energy systems.

1.3 Objective and Scope

The objective of this thesis is to develop a renewable energy system model and find
the optimal design and operation of this system under uncertainty, using the opti-
mization software GOSSIP. A two-stage stochastic programming approach is used
to model the flexible design problem, and an outline of the approach is presented.

The optimization of a simple renewable energy system is formulated as a MILP
problem and solved using GOSSIP. Firstly, a deterministic problem formulation
is studied for the purpose of validating the model while omitting energy storage
technologies. The problem is then developed into a two-stage stochastic program
through the introduction of probability distributions for selected model parameters.
This is further modified to simulate seasonal variations through the implementa-
tion of design days. In the final problem formulation, energy storage is added
to the model, completing the simple renewable energy system consisting of solar
PV, wind, battery and an end user. Summarized, the three case studies that are
investigated are, in increasing complexity:

• Case study 1: Design and operation of a RES with uncertainty modeled by
one design day.

• Case study 2: Design and operation of a RES with uncertainty and seasonal
variation modeled by four design days.

• Case study 3: Design and operation of a RES through a dynamic model to
account for uncertainty through energy storage.

3

1.4 Structure of the report

1.4 Structure of the report

In Chapter 2, a brief introduction to optimization and associated methodologies is
presented. Thereafter, a short introduction to mixed-integer programming (MIP)
formulations and stochastic programming is given in Sections 2.1, 2.2 and 2.3 re-
spectively. The applied methodology is presented in Section 3.1 followed by an
illustrative example problem in Section 3.2. In Chapter 4 the renewable energy
system(s) under study is presented, with a schematic overview of components and
internal dynamics. Chapter 5 present the three different case studies with their
corresponding equations and parameters. In Section 5.1 the stochastic and ex-
pected value problem (SP and EVP) is explained, in Section 5.2 seasonal variation
is included in the problem formulation, and in Section 5.3 the dynamic model for
energy storage is introduced. Results for the three case studies are presented in
chapter 6, followed by a discussion of numerical results and the performance of the
different solution methods and models in Chapter 7. Lastly, concluding remarks
and suggestion for future work is asserted in Chapter 8.

4

Chapter 2
Optimization methodologies

2.1 Introduction to optimization

An optimization problem is a search for an optimal solution expressed through an
objective function you want to i) Minimize or ii) Maximize. The function gives
a scalar value as output, but the value is determined by one or several variables
limited by constraints. The constraints can be equalities or inequalities, and the
optimization problem can be constrained or unconstrained.

Equation 2.1 is a formulation of a constrained optimization problem with the ob-
jective function, J , and the constraints, ci(x) and gi(x), where x is a vector of
decision variables. For x to be a feasible point, x must be in the set defined by X
and satisfy all equality (c(x)) and inequality (g(x)) constraints. If the optimiza-
tion problem is a convex problem, a local optimum is guaranteed to be a global
optimum. If either the objective function or the feasible set is nonconvex, then
a local optimum is not guaranteed to be a global optimum. Strategies involving
global information are then employed.

min
x∈X

J(x)

s.t. c(x) = 0
g(x) ≤ 0

(2.1)

5

2.1 Introduction to optimization

Figure 2.1: Geometrical representation of a constrained optimization problem [9].

A convex set is a set C where for every two points (x, y) in C, a line segment z, as
defined in Equation 2.2 must be in the set C. In other words, for C to be a convex
set, every interior point on the line segment z must also be in C [10]. A convex set
C is illustrated in Figure 2.2 a).

z = λx+ (1− λy), ∀λ ∈ [0, 1] (2.2)

If such a line segment z cannot be drawn, e.g. without crossing boundaries, the set
is by nature non-convex, as illustrated in Figure 2.2 b).

(a) (b)

Figure 2.2: Convex (a) and nonconvex (b) set [10].

Following this, a convex function f , is a function defined on a convex domain C
where for each two points x1, f(x1) and x2, f(x2) the line segment between x and
y lies entirely above the graph of the function f as illustrated in Figure 2.3 a). In
mathematical terms, a function f : X → R is a convex function if X is a convex
set and if:

f(λx1 + (1− λ)x2)) ≤ λf(x1) + (1− λ)f(x2), ∀λ ∈ [0, 1], ∀x1, x2 ∈ X (2.3)

6

2.2 Mixed-Integer Programming - MIP

(a) (b)

Figure 2.3: Convex (a) and nonconvex (b) function [10].

Furthermore, the optimization problem can have either or both discrete and con-
tinuous decision variables. Problems that contain both continuous and discrete
variables are defined as mixed-integer programs (MIP). In addition, the parame-
ters of the model can be either certain or uncertain. In a deterministic problem,
it is assumed that none of the parameters is subject to randomness. If a model is
subject to uncertainty, stochastic programming approaches are considered.

2.2 Mixed-Integer Programming - MIP

Mixed-Integer Programming (MIP) is frequently applied in industry for design and
planning of production systems and optimization of energy systems. While simple
energy systems can be described using a linear model, providing a realistic rep-
resentation of most systems requires the use of nonlinear (and thus nonconvex)
model equations. It is then considered a nonconvex mixed-integer non-linear pro-
gramming problem (MINLP).

A general mixed-integer linear programming problem (MILP) formulation is given
in equation 2.4,

min
x,y

cTx+ dTy

s.t. Ax+By ≤ b

x ∈ {0, 1}p

y ∈ Rn
+

(2.4)

where A is a m × n matrix, B is a m × p matrix, and b, c and d are m-,n- and
p-dimensional vectors [11]. x is a n-dimensional vector with integer variables and
y is a p-dimensional vector of binary variables.

7

2.3 Stochastic programming

A general MINLP formulation is given in 2.5.

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

h(x, y) = 0

x ∈ {0, 1}p

y ∈ Rn
+

(2.5)

x and y are discrete and continuous variables, respectively, and at least one of the
f(x, y), g(x, y) and h(x, y) functions contains non-linear terms with respect to
the decision variables [12].

2.3 Stochastic programming

Stochastic programming provides an approach to account for uncertainty related
to the parameters of a model. Contrary to deterministic approaches, stochas-
tic programs incorporate random variables into the problem formulation in order
to capture the uncertain nature of the given optimization problem. The goal of
stochastic programming is to reduce the risk of undertaking sub-optimal decisions.
The parametric uncertainty can be described by assuming either probability distri-
butions or patterns from historical data. Uncertainty makes the decision-making
process more complex as larger optimization problems are required. An approach
for handling optimization under uncertainty is through two-stage stochastic pro-
gramming with scenario generation.

The number of scenarios, S, is a function of the number of uncertain variables and
number of possible realizations of these variables. In the first stage of a stochastic
program, a set of immediate decisions have to be made prior to the realization
of the uncertain parameters. In the second stage, corrective actions are made to
compensate for the realizations of uncertainty. Stochastic programming involves
making design and operational decisions that minimize the sum of the objective
value of the first stage and the expected value of the second stage across all scenar-
ios. Finding the optimal solution of the second stage is called the recourse problem.
The first stage decision variables of a two-stage stochastic program are represented
by a vector x, while the second stage variables are represented by a vector y. A
general mathematical formulation of a two-stage stochastic program is shown in
equation 2.6,

min
x

f(x) + Eξ[Q(x, ξ)],

s.t. g(1)(x) ≤ 0

h(1)(x) = 0

x ∈X

(2.6)

8

2.3 Stochastic programming

where f(x) is some function of x, and ξ forms the vector of the uncertain param-

eters. The functions g(1) and h(1) are constraints on the design variables, and X
defines which values the variables can take. Eξ is the expected value of the function
Q(x,ξ), which is the optimal value of the recourse problem for each scenario, given
by equation 2.7.

min
y

q(y,x, ξ)

s.t. g(2)(ys,x, ξs) ≤ 0 ∀ s ∈ S

h(2)(ys,x, ξs) = 0 ∀ s ∈ S

ys ∈ Y

(2.7)

The functions g(2) and h(2) are operational constraints, and Y defines which values
the second stage variables can take. One approach to lower the complexity of the
optimization problem is to employ a scenario representation of the problem. In
this approach, the uncertain parameters are assumed to take on values from a
finite number of realizations, each with an associated probability. The sum of the
constructed scenarios s, each with its own probability ps and parameter values ξs
make up the recourse problem given in Equation 2.8. A typical scenario tree for a
two-stage stochastic program is illustrated in Figure 2.4.

Eξ[Q(x, ξ)] =

S∑
s=1

psQ(x, ξs) (2.8)

Figure 2.4: Scenario tree for a two-stage stochastic program

The single-level formulation of the stochastic program can then be formulated

9

2.3 Stochastic programming

by equation 2.9 by combining equation 2.6, 2.7 and 2.8.

max
x,ys

f (1)(x) +

S∑
s=1

psf
(2)(ys,x, ξs)

s.t. g(1)(x) ≤ 0

h(1)(x) = 0

x ∈X
g(2)(ys,x, ξs) ≤ 0 ∀ s ∈ S

h(2)(ys,x, ξs) = 0 ∀ s ∈ S

ys ∈ Y

(2.9)

10

Chapter 3
Methodology

3.1 GOSSIP software

GOSSIP is a software framework for modeling and solving two-stage stochastic
nonconvex MINLPs. It is embedded on a C++ platform and an overview of func-
tionalities and worked out examples for solving two-stage stochastic programs in
GOSSIP can be found in the documentation [13]. The GOSSIP software is, under
certain requirements, guaranteed to determine the global optimum of a non-convex
two-stage stochastic problem. However, GOSSIP can also be used to solve convex
two-stage stochastic programs (MICP) as well as large-scale MILP. Four different
solution methods are implemented in GOSSIP, but only the NGBD method is ap-
plied in this project.

Various decomposition approaches have been developed to handle different classes
of stochastic programming problems as illustrated in Figure 3.1. The earliest ap-
proach was termed ’Benders decomposition (BD)’ and was only applicable to the
class of two-stage stochastic MILPs. BD was then extended to give Generalized
Benders Decomposition (GBD) which could solve the class of two-stage stochas-
tic Mixed-Integer Convex Programs (MICPs). Finally, GBD was extended for the
class of two-stage nonconvex MINLPs with the Nonconvex Generalized Benders
Decomposition (NGBD) algorithm. We note that NGBD reduces to the GBD al-
gorithm for convex problems and to the BD algorithm for linear problems.

Next, a brief overview of the GBD and NGBD algorithm is presented. Complete
details are presented in [10]. GBD is a method for solving two-stage stochastic
MICPs. The GBD strategy involves constructing an equivalent dual representation
of the original problem with a large but finite number of constraints. A relaxation
of the dual representation is then constructed by only including a small subset of
the constraints. The solution of this relaxed problem yields the lower bound on the
solution to the original problem. Due to the strong duality for convex problems, the

11

3.1 GOSSIP software

solution to the dual problem itself yields the upper bound to the original problem.
These two steps are done in an iterative manner until a global solution is found [10].

The NGBD extension strategy involves convexifying the MINLP and then applying
GBD to give a lower bound to the problem. The upper bound is found by solv-
ing the MINLP using a local solver. This procedure is done in an iterative manner
shrinking the gap between the lower and upper bound until convergence to a global
optimum.

1

MICP

MINLP

MILP

NGBD

GBD

BD

Figure 3.1: A schematic of the different decomposition algorithms and the class of
stochastic programs they are applicable to.

More specifically, the NGBD algorithm decomposes two-stage stochastic problems
into smaller sub-problems, e.g. one for each scenario, and thus provides efficient
scaling of solution time with increasing number of scenarios considered. The afore-
mentioned methods make NGBD a strong tool for global optimization of MINLP
and other non-linear programming problems. However, the NGBD algorithm is
only guaranteed to converge for discrete 1st stage variables. Consequently, the
x-vector in Equation 2.6 and 2.7 can only contain variables from a discrete set of
integer values. A potential workaround (used in this project) is to discretize each
continuous 1st stage variable by assuming it can only take on a fixed number of
values, xj , within its interval bounds as defined in Equation 3.1.

xdiscretej = xLBD +
j − 1

n− 1
· (xUBD − xLBD), ∀ j ∈ {1,....,n} (3.1)

xdiscretej denotes the discretized value in the jth interval, n number of intervals,

and xLBD and xUBD the lower and upper bound of the interval, respectively. A

12

3.1 GOSSIP software

set of binary variables, xbinary, are implemented to ensure that x only take on one
of the fixed variables discretized above. This implies that the first stage variables
in a two-stage program, x, needs to be included through a sum of the product of
the binary variables and their corresponding fixed value, as shown in equation 3.2.
Including equation 3.3 in the program ensures that only one of the binary variables
are selected.

x =

n∑
j=0

xbinaryj · xdiscretej (3.2)

n∑
j=0

xbinaryj − 1 = 0 (3.3)

13

3.2 A worked out example: Farmer’s Problem

3.2 A worked out example: Farmer’s Problem

To illustrate the value of stochastic programming and how GOSSIP can be applied
to optimization problems, the stochastic Farmer’s Problem was solved. In the
problem, a farmer aims to maximize his expected profit by taking uncertainty into
account when deciding how much land to devote to each crop.

Physical formulation and input

In Table 3.1, the input data for the Farmer’s Problem problem is given. The farmer
has 500 acres of land available and can raise wheat, corn and sugar beets, however
with a minimum requirement for wheat and corn for own consumption. This min-
imum requirement can either be from crops raised on his land or bought from the
market. The market price is 40% higher than what the farmer can sell his crops
for. There is no minimum requirement for sugar beets, but there is an assumed
quota for sugar beet production. Any production above this quota can be sold,
however at a significantly lower price.

Prices are assumed to be known and constant, while the yield from each acre
of land is uncertain. The expected yield is known from historical data, whereas the
yearly yield depends on the weather conditions. To formulate a two-stage stochas-
tic program, probability distributions or the probability of all scenarios must be
known. For simplicity, the Farmer’s Problem was at first formulated with three
equally likely scenarios (i.e., uniform distribution), as shown in Table 3.2. There-
after, scenario generation from a normal distribution with the expected yield as
the mean and a standard deviation of 20% was investigated.

Table 3.1: Data for Farmer’s Problem

Unit Wheat Corn Sugar Beets
Planting Cost $/acre 150 230 260
Selling Price $/T 170 150 36 under 6000T

10 above 6000T
Purchase Price $/T 238 210 -

Minimum Requirement T 200 240 -
Mean Yield T/acre 2.5 3 20

Total Available Land: 500 acres

Table 3.2: A simple scenario representation

Scenario Unit Wheat Corn Sugar Beets Probability
Above Average Yield T/acre 3 3.6 24 1/3

Expected Yield T/acre 2.5 3 20 1/3
Below Average Yield T/acre 2 2.4 16 1/3

14

3.2 A worked out example: Farmer’s Problem

Mathematical formulation

The uncertainty implies that there is no single decision which is optimal in every
scenario. Instead, the farmer has two sets of decisions to make, where the first
decisions have to be made before he has access to full information. In the winter,
he has to decide how to allocate the land in order to maximise his expected profit
in the fall, regardless of the actual yield. Consequently, area allocations are the 1st

stage decision variables for the program, represented by the vector x. The vector
x will have one entry for each crop, resulting in three entries in total.

When the exact yield is revealed, the farmer can decide the amount of each crop to
sell, and potentially, how much he must buy to cover his own requirements. Thus,
the sale and purchase of each crop are categorized as 2nd stage decision variables.
These corrective actions for each scenario, s, are represented by the vectors ys and
ws, where ys is the amount of tonnes of each crop sold and ws is the amount of
tonnes of each crop purchased. As a result, the objective function of the optimiza-
tion problem consist of terms representing the costs related to both 1st and 2nd

stage decisions.

Objmin =

3∑
i=1

PlantingCosti · xi +

S∑
s=1

ps ·RPs (3.4)

The objective function in Equation 3.4 aims to minimize the sum of planting costs
for each crop, i, and the expected value of the recourse problem. The expected value
of the recourse problem is the net profit from purchases and sales for each scenario,
RPs, multiplied with the associated probability, ps. Equation 3.5 formulates the
profit function, where SellingPrices will have four entries as sugar beets can be
sold at both a favourable and unfavourable price. Purchasing prices only contains
the purchase prices for wheat and corn as there is no minimum requirement for
own consumption of sugar beets.

RPs =

2∑
j=1

PurchasingPricej · ws,j −
4∑

j=1

SellingPricej · ys,j (3.5)

Problem constraints are derived from the description of the physical problem and
are formulated in Equation 3.6, 3.8, 3.9 and 3.10. Firstly, the 1st stage decision
problem is constrained by equation 3.6 and 3.7, representing the sum of land de-
voted to crops constrained by land available.

3∑
i=1

xi ≤ AvailableLand (3.6)

xi ≥ 0 i ∈ {Wheat, Corn, SugarBeets} (3.7)

The constraints for the recourse problem and the 2nd stage decision variables is
defined for each scenario s. Equation 3.8 ensure that yields (yields,i), sales (ys,i)

15

3.2 A worked out example: Farmer’s Problem

and purchases (ws,i) of crops cover the minimum requirements. Equation 3.9 limit
the amount of sugar beets sold at a favorable price and Equation 3.10 ensure that
the amount of sugar beets sold does not exceed the amount of sugar beets produced.
Equation 3.11 ensures non-negative sales and purchases for all selling and purchase
prices in Prices, where the set Prices consists of wheat, corn and sugar beets at
the favourable, and unfavourable price.

yields,i · xi − ys,i + ws,i ≥MinReqi ∀ s∈ S, i ∈ {Wheat, Corn} (3.8)

ys,3 ≤ 6000 ∀ s ∈S (3.9)

ys,3 + ys,4 ≤ yields,3 ∀ s ∈ S (3.10)

ys,j , ws,j ≥ 0 ∀ s ∈S, j ∈ Prices (3.11)

Expected value problem and value of stochastic solution

Next, a few relevant concepts are introduced in order to evaluate the stochastic
program.

• The expected value problem (EVP) is an optimization problem in which
all the uncertain parameters are assumed to take on their expected values.
Thus, the EVP can be viewed as a deterministic problem with one scenario
and where all uncertain parameters are set to their mean value. The first
stage decision variables in this problem will therefore be selected to yield the
optimal value of the objective function for this scenario. The selection of the
first stage variables is referred to as the nominal design.

• The expectation of expected value problem (EEV) is then defined as the
expected value of the objective function for the nominal design subject to
uncertainty.

• The value of the stochastic solution (VSS) is the additional value obtained by
taking uncertainty into account when selecting the first stage variables. This
extra value is defined as the difference between the optimal objective value
of the stochastic program (SP) and the EEV, shown below in equation 3.12.

V SS = EEV − SP (3.12)

Results of Farmer’s problem

Table 3.3 show the results for the expected value and stochastic problem, where
the stochastic solution is obtained by running the model with the three scenarios
previously presented. The solution for the EVP is calculated from the average
yield scenario, thus the crop allocation is optimized for the mean values. The

16

3.2 A worked out example: Farmer’s Problem

Table 3.3: Results of Farmer’s Problem

Stochastic Problem Nominal design
Number of scenarios 3 3

Probability distribution Uniform Uniform
Land allocation (acres):

Wheat 170 120
Corn 80 80

Sugar Beets 250 300
Sales (tonnes):

Low yield Wheat 140 40
Corn -48 (purchase) -48 (purchase)

Sugar beets 4000 4800
Mean yield Wheat 225 100

Corn - -
Sugar beets 5000 6000

High yield Wheat 310 160
Corn 48 48

Sugar beets 6000 7200
Profit for each scenario($):

Low yield 48,820 55,120
Mean yield 109,350 118,600
High yield 167,000 148,000

Expected Profit ($) 108,390 107,240
VSS ($) 1150 -

two methods produce different results where the EVP generates the largest profit
for the average yield scenario, whereas the stochastic solution produce the largest
expected profit. The results show that the optimal solution when using expected
values will cause the sales of sugar beets to surpass the quota for the high yield sce-
nario, meaning that the farmer will have to sell his sugar beets at an unfavourable
price. The stochastic program concludes that it will be more beneficial to ensure
the sugar beet quota is not exceeded in any of the three scenarios. As a result,
area is reallocated and the farmer produces more wheat than in the EVP.

The value of the stochastic solution is the additional expected profit the farmer
obtains by taking uncertainty into account. Calculations show that the VSS of the
Farmers Problem is $1150, substantiating the value of incorporating uncertainty in
an optimization model.

The number of scenarios in the program can easily be increased by generating
scenarios from a normal distribution. The resulting land allocation and expected
profit are presented in Table 3.4. With a normal probability distribution, the crop
allocation differs from what it did with 3 scenarios. The value of the stochastic
solution is shown to have increased due to the increased number of scenarios.

17

3.2 A worked out example: Farmer’s Problem

Table 3.4: Results of Farmer’s Problem

Stochastic Problem Nominal Design
Number of scenarios 15 15

Probability distribution Normal Normal
Land allocation (acres):

Wheat 136 120
Corn 87 80

Sugar Beets 277 300
Expected Profit ($) 106,792 105,040

Value of stochastic solution ($) 1752 -

18

Chapter 4
Renewable Energy System (RES)

The system under study consists of two different renewable energy sources, namely
solar and wind, an electric grid on the supply side, and the electricity requirement
of a medium-sized industrial plant on the demand side. Solar panels (PV) and off-
shore wind turbines (WT) can be used for generating electricity for the renewable
energy system (RES). A schematic overview of the system is illustrated in Figure
4.1. If user demand is satisfied, excess electricity can be exported to the grid at
a constant feed-in tariff (FiT). On the other hand, if renewable energy production
cannot satisfy demand, electricity can be imported from the grid at cost OCgrid.

End user

Grid

Import

Production

Demand

Renewables

Export

Figure 4.1: Simplified flowsheet of the renewable energy system with power generation
and user demand. No storage technologies included. The energy balance is shown in
Equation 5.10.

19

Area available for installation of each technology as well as area required per unit
of technology is fixed. The area in m2 required per m2 of photo-voltaic panels is
set at a ratio of 1:1, whereas the area required for a wind turbine is a function of
rotor-blade diameter where the rotor-blade diameter dr in Equation 4.1 is set to
164 metres. [14].

Areq,WT (dr) = dr · drow · dcol (4.1)

drow and dcol is the distance between two turbines in a row and column, and set
to 5 and 7 times the rotor-blade diameter, respectively.

The objective is to design the RES optimally under uncertainty. The intermit-
tent nature of both wind speed and solar intensity as well as the volatile market
spot price for electricity introduces uncertainty into the system. Another compli-
cating factor is the variation in demand with peak hours and seasonal changes.

The study of the RES has been split into three cases which each attempts to account
for uncertainty and volatility through different approaches. The three case studies
also represent increasing levels of complexity. The first case handles uncertainty
by using one design day and is formulated in Section 5.1. In the second section
(5.2), seasonal variability is introduced through the implementation of four design
days, and in the last section (5.3), battery storage is included, thereby exploiting
peak production hours and potentially satisfying peak demand. For instance, if
production cannot satisfy demand, one can discharge the battery, or, conversely, if
production surpasses demand, charge the battery, increasing the reliability of the
system. The RES with storage technologies included is illustrated in Figure 4.2.

End user

Grid

Import

Production

Demand

Renewables

Export

Energy storage

Figure 4.2: Simplified flowsheet of the renewable energy system with power generation,
user demand, and battery as chosen storage technology.

20

Chapter 5
Case studies

In the following case studies, uncertainty is assumed to be linked with and limited
to the electric grid price, OCgrid, wind speed, W , solar intensity, I, and demand,
fdemand, whose mean values are presented in Table 5.3. To quantify the value of
the stochastic approaches in Sections 5.1, 5.2 and 5.3, the expected value problem
(EVP) is solved to obtain the expectation of expected value (EEV), and subse-
quently calculate the value of the stochastic solution (VSS).

In the expected value problem the program uses the expected values of the un-
certain parameters to determine the optimal solution. Consequently, only one
scenario is generated and used throughout the system’s lifetime. Thus, the ex-
pected value problem can be viewed to be a deterministic optimization approach
as no parameters are considered uncertain. Furthermore, because the program has
access to perfect information there is only one decision stage, meaning design and
operational decisions are made simultaneously. In the expected value problem all
variables listed in Table 5.1 are denoted as 1st stage variables.

5.1 Case study 1: Simple model of uncertainty
with 1 design day

The stochastic program accounts for uncertainty by scenario representations as
described in Section 2.3. Decision variables for the design (size) of the technologies
belong to the first stage, whereas operational decisions belong to the second stage.

Objective function

The objective is to minimize the overall cost of the RES as defined by Equation
5.1. This can be split into the capital costs, CAP, and the expected operational
costs over the different scenarios, where OPs stands for the operational costs in

21

5.1 Case study 1: Simple model of uncertainty with 1 design day

scenario s. The capital costs are determined in the 1st stage, and operational costs
are incurred in the 2nd stage.

Objmin = CAP (x) +
∑
s

ps ·OPs(y) ∀ s ∈ S (5.1)

Here x is a vector of binary decision variables in the 1st stage, ps is probability of
scenario s and y is a vector of decision variables in the 2nd stage. The capital cost
term can be written as,

CAP (x) = FCPV (xPV) + FCWT (xWT) (5.2)

where FCi is fixed cost for technology i, where the size of technology i is determined
in the first stage. Subscript PV indicate photovoltaic, WT wind turbine and t time
interval. The operational costs in the second term of Equation 5.1 must in each
scenario be summed up from t0 to tfinal. More specifically, it is the expected
operation cost over the entire project lifetime T and is formulated in Equation 5.3.

OPs(y) =

T∑
t=0

fgrids,t ·OCgrid,s −
T∑

t=0

fexports,t · FiT ∀ s ∈ S (5.3)

Energy flow fgrids,t is electricity imported from the grid and fexports,t is renewable
electricity exported to the grid, all denoted by scenario s and time t. OCgrid,s is
price of imported electricity in scenario s and FiT is the feed-in tariff for exported
electricity back to the grid.

Capital cost estimation

The total fixed cost of technology i consists of an investment cost incurred at the
start of project lifetime, Jc,i, and the annual maintenance costs Jm,i, denoted by
year yr.

FCi(xi) = Jc,i +

Y∑
yr=1

Jm,i ∀ i ∈ {PV,WT} (5.4)

As mentioned in Section 3.1 the 1st stage variables must be limited to sets of
discrete sizes to be guaranteed convergence of the NGBD solver. Consequently,
the investment cost, Jc,i is a function of the binary decision variable zi,j and a
discrete capacity dependent cost function, Ci,j where subscript j denote relative
size of technology i.

Jc,i = Ci,j · zi,j ∀ i ∈ {PV,WT} (5.5)

To ensure that only one size, Cj,i, is selected for each technology i, the variable
constraint formulated in Equation 5.6 is imposed.

d∑
j=0

zi,j = 1 ∀ i ∈ {PV,WT} (5.6)

22

5.1 Case study 1: Simple model of uncertainty with 1 design day

The cost function, Ci,j , is calculated from Equation (5.7) where Ci,0 is cost of
reference capacity, Si,0, and the constant sfi is the economy of scale factor listed
in Table 5.2.

Ci,j = Ci,0 · (
Si,j

Si,0
)
sfi

, ∀ i ∈ {PV,WT}, ∀ j ∈ {1,....,d} (5.7)

The maintenance cost, Jm,i is simply a fraction, ξ, of the annual investment cost,
Jc,i.

Jm,i = Jc,i · ξ ∀ i ∈ {PV,WT} (5.8)

The value Si,j is determined from the discontinuous function (5.9) with bounds
SUBD
i and SLBD

i listed in Table 5.1. The approximation was generated by Chen
et al. [15]. Area (m2) and number of wind turbines is used to indicate the size of
installed solar and wind capacity, respectively.

Si,j = SLBD
i +

j − 1

d− 1
· (SUBD

i − SLBD
i), ∀ i ∈ {PV,WT}, ∀ j ∈ {1,....,d} (5.9)

Where i denotes technology and j size interval of in total dn number of discrete
intervals.

Table 5.1: Variables with bounds, units and stage number.

Variable Lower Upper Unit Stage

SPV 0 1 200 000 m2 1

SWT 0 14 [-] 1

fgrids,t 0 fdemand
s,t MWh/day 2

fexports,t 0 ∞ 1 MWh/day 2

Table 5.2: Parameters describing the reference cost and minimum area requirement of
the two technologies in Equation 5.7 for capital cost.

Symbol C0 S0 A0 ξ sfi
Unit [$] [MWh/day] [m2] [-] [-]

Solar PV 27 000 1 180 0.1025 0.7

WT 49 840 000 192 94 136 0.1025 0.7

System constraints

The system constraints consist of an energy balance as well as a demand and two
capacity constraints. The energy balance for scenario s at time t is formulated in
Equation 5.10, where energy flow fhs,t (h ∈ {export,grid,demand}) is energy flow

23

5.1 Case study 1: Simple model of uncertainty with 1 design day

to or from sink/source h, and P i
s,t is power output from technology i in scenario s

at time t.

fdemand
s,t + fexports,t = PPV

s,t + PWT
s,t + fgrids,t ∀ s ∈ S, ∀ t ∈ [0,T] (5.10)

The power functions are formulated in Equation 5.16 and 5.15. The demand con-
straint is formulated in Equation 5.11.

PPV
s,t + PWT

s,t + fgrids,t ≥ fdemand
s,t ∀ s ∈ S, ∀ t ∈ [0,T] (5.11)

The individual capacity throughput constraints are formulated in Equation 5.13
and 5.12 where SPV and SWT are constrained by Equation 5.14.

PPV
s,t ≤ SPV ∀ s ∈ S, ∀ t ∈ [0,T] (5.12)

PWT
s,t ≤ SWT ∀ s ∈ S, ∀ t ∈ [0,T] (5.13)

Si =

d∑
j=0

Si · zi,j ∀ i ∈ {PV,WT} (5.14)

These constraints ensure that the production cannot surpass the capacity at any
time interval in any scenario.

Energy models

The power output, PPV s,t, from the solar panels is modelled after Equation 5.16,

PPV
s,t < ηPV (Is,t, θs,t) · Is,t ·APV (5.15)

where APV is installed solar PV area, Is,t is solar radiation per unit area, and, for
simplicity, the conversion efficiency ηPV is assumed constant [15].

The power output, PWT
s,t , from the wind turbines is modelled after Equation 5.16.

PWT
s,t ≤ ηWT · qs,t · Z (5.16)

The efficiency ηWT is also assumed constant, whereas qs,t is a function of wind
speed and parameters specific for the model [16]. Z is number of wind turbines

qs,t =


0, if Ws,t ≤Wmin

qd ·
W 3

s,t−W
3
min

W 3
d−W

3
min

, if Wmin ≤Ws,t < Wd

qd, if Wd ≤Ws,t < Wmax

0, if Ws,t ≥Wmax

(5.17)

Performance coefficients for the wind turbines can be found in Table 5.3. In the
deterministic case, the wind speed will be constant at the average value for the
south-west coast of Norway.

Power model efficiencies and other relevant parameters are summarized in Table
5.3. The uncertain variables with their associated mean value and standard devi-
ation are listed in Table 5.4. A normal distribution is assumed for the uncertain
variables.

24

5.1 Case study 1: Simple model of uncertainty with 1 design day

Table 5.3: Efficiencies and other parameters used in the model.

Symbol Value Unit

Wmin 3.5 m/s

Wmax 25 m/s

Wd 13 m/s

qd 8 MW

ηPV 0.15 -

ηWT 0.85 -

FiT 1.45 $/MWh

Table 5.4: Summary of uncertain variables with their mean value and associated stan-
dard deviation.

Variable Mean value Standard deviation Unit

W 7.5 1.05 m/s

I 1.5e−4 2.25e−5 MW/m2

fdemand
s,t 100 15 MWh

OCgrid,s 15 2.25 $/MWh

Summary of case 1

• The objective is to minimize the overall cost, the sum of capital and opera-
tional costs, formulated in Equation 5.1.

• The operational cost model is formulated in Equations 5.3.

• The capital cost model is formulated in Equations 5.4 to 5.9.

• The system energy balance is formulated in Equation 5.10.

• The primary energy conversion models are formulates in Equations 5.15, 5.16
and 5.17.

• The demand constraint is formulated in Equation 5.11.

• The capacity (linking) constraints are formulated in Equations 5.12 and 5.13.

25

5.2 Case study 2: Accounting for seasonal variability using 4 design days

5.2 Case study 2: Accounting for seasonal vari-
ability using 4 design days

Modelling seasonal variations through design days

Both solar radiation and wind are expected to change notably through the season,
thus a mean value with standard deviation does not necessarily replicate the ac-
tual weather conditions for an entire year. Consequently, implementation of design
days, as suggested in [6], is investigated. Seasonal variation is imposed by shifting
the mean wind speed and solar intensity. In this manner, the uncertainty for the
different seasons is represented by one common scenario tree, as shown previously
in Figure 2.4. Table 5.5 summarize the different seasonal factors for solar intensity
and wind speed.

Table 5.5: Modified mean values to simulate seasonal variations through 4 design days.

Season Solar intensity mean I Wind speed mean W

Spring I 1.3·W
Summer 1.2·I 0.8·W

Fall I W

Winter 0.8 ·I W

In case study 2, some of the model equations change. For instance, instead of
summing from 0 to T in Equation 5.3, you sum over seasonal days meaning first
winter days (tw), then spring (ts), summer (tsu) and lastly fall (tf). Thereafter
the function is scaled with the number of years, ny. The modified expression is
formulated in Equation 5.18. Conversely, the variable bounds in Table 5.1 with
corresponding discrete intervals is identical in case study 1 and 2 along with the
capital cost estimation in Equations 5.4 to 5.9.

OPs(y) = ny ·

[
tw∑
t=0

fgrids,t ·OCgrid,s −
tw∑
t=0

fexports,t · FiT +

ts∑
t=0

fgrids,t

·OCgrid,s −
ts∑
t=0

fexports,t · FiT +

tsu∑
t=0

fgrids,t ·OCgrid,s −
tsu∑
t=0

fexports,t

· FiT +

tf∑
t=0

fgrids,t ·OCgrid,s −
tf∑
t=0

fexports,t · FiT

]
∀ s ∈ S

(5.18)

26

5.2 Case study 2: Accounting for seasonal variability using 4 design days

Summary of case 2

• The objective is to minimize the overall cost, the sum of capital and opera-
tional costs, formulated in Equation 5.1

• The modified operational cost model is formulated in Equations 5.18.

• The capital cost model is formulated in Equations 5.4 to 5.9.

• The system energy balance is formulated in Equation 5.10.

• The primary energy conversion models are formulates in Equations 5.15, 5.16
and 5.17.

• The demand constraint is formulated in Equation 5.11.

• The capacity (linking) constraints are formulated in Equations 5.12 and 5.13.

27

5.3 Case study 3: Stochastic problem with dynamic model and energy storage

5.3 Case study 3: Stochastic problem with dy-
namic model and energy storage

With the introduction of energy storage technology, the energy balance and con-
straints are modified, and variables for charge, discharge and state-of-charge must
be defined. The corresponding parameters and constraints for the battery dynam-
ics must also be declared. Furthermore, energy and capital cost models as well
as the objective function are expanded to accommodate the storage functionality.
The battery is included such that on days with surplus production of power, energy
can be stored, and discharged to compensate for energy production deficit on later
days.

Scenario generation when modeling with timesteps

Keeping track of the state of charge of the battery requires a different approach
for scenario generation than in Section 5.1 and 5.2. Previously, sequential days
were entirely independent of each other, but with the inclusion of a battery, the
optimal operation is dependent on earlier states of the system. Consequently, the
decision-making process can be represented by a multi-stage stochastic program,
in which each stage represents a time step.

Figure 5.1: Scenario tree for a multi-stage stochastic program

As can be seen in Figure 5.1, the number of scenarios increase exponentially with
the number of time steps when modeling dynamic behavior. For instance, in a
stochastic optimization problem with 12 scenarios each day, the result is approxi-
mately 35 million (127) scenarios when simulating one week with daily resolution.
As noted in Section 3.1, GOSSIP requires an input on the form of a two-stage
stochastic program. Moreover, multi-stage stochastic programming is widely ac-

28

5.3 Case study 3: Stochastic problem with dynamic model and energy storage

knowledged to be computationally intractable [13]. Instead of the multi-stage for-
mulation shown in Figure 5.1, the two-stage multi-period formulation, with corre-
sponding scenario tree in Figure 5.2 is used. With this approach it is assumed that
the uncertain parameters can be aggregated over the entire period considered. In
other words, for a given scenario branch, all uncertain parameters for the entire
period are assumed to be known. As a result, all operating decisions can be made
optimally at the first time-step.

Figure 5.2: Scenario tree for a two-stage stochastic program

The scenarios are constructed for the period of 7 consecutive days, where the pa-
rameter realizations for each day is generated arbitrarily from the same mean values
and standard deviations given previously in Table 5.3. The associated probability
for each scenario is then given relative to the probability of any of the scenarios in
the scenario tree, given by equation 5.19.

ws =

7∏
t=1

pt,s

S∑
s=1

7∏
t=1

pt,s

(5.19)

Here ws is the weighted probability of each scenario and pt,s is the actual probability
of the parameter realization for each time-step.

Objective function

The objective function formulation in Equation 5.20 is the same as in case 1 and 2,
but the terms for capital and operating cost (Equation 5.21 and 5.22) are expanded
to include energy storage expenditures.

Objmin = CAP (x) +
∑
s

ps ·OPs(y) (5.20)

29

5.3 Case study 3: Stochastic problem with dynamic model and energy storage

CAP (x) = FCPV (xPV) + FCWT (xWT) + FCES(xES) (5.21)

FCES(xES) is fixed cost related to the energy storage, where xES is a first stage
decision variable determining capacity of storage technology installed. In Equation
5.22 the variables fgrids,t and fexports,t are now functions of charge and discharge of

the battery as well as the energy production from solar PV and wind (PPV
s,t and

PWT
s,t). Furthermore, the operational costs in Equation 5.22 are scaled with number

of weeks in a year nw (52) and the plant lifetime ny (30 years).

OPs(y) = ny · nw ·

[
7∑

t=0

fgrids,t ·OCgrid,s −
7∑

t=0

fexports · FiT

]
∀ s ∈ S (5.22)

Capital cost estimation

The capital cost for energy storage is calculated in the same manner as solar PV
and wind, and bound by the same constraints (Equation 5.6 and 5.14). The cost
calculation parameters for energy storage are summarized in Table 5.6.

Table 5.6: Capital and operating cost for energy storage [17]

Symbol C0 S0 A0 ξ sfi
Unit [$] [MWh/day] [m2] [-] [-]

Energy storage 50000 1 - - 0.6

Table 5.7: List of discrete values for SES calculated from Equation (5.9).

Capacity SES

Unit [MW]
1 0

2 18

3 36

4 54

5 72

6 90

7 108

8 126

9 144

10 162

11 180

12 200

30

5.3 Case study 3: Stochastic problem with dynamic model and energy storage

Constraints

The constraints in the system consist of an energy balance as well as demand and
capacity constraints. The energy balance for the overall system in scenario s at
time t is formulated in Equation 5.23.

fdemand
s,t +f charges,t = PPV

s,t +PWT
s,t +f import

s,t +
fdischarges,t

ηdischargeES

∀ s∈ S, ∀ t∈[0,T] (5.23)

Net energy exported to end user and grid (fexports,t), defined in Equation 5.22, is
formulated in Equation 5.24.

fexports,t = PPV
s,t + PWT

s,t +
fdischarges,t

ηdischargeES

∀ s ∈ S, ∀ t ∈ [0,T] (5.24)

In addition to the production capacity constraints in Equation 5.12 and 5.13,
charge, discharge and state of charge capacity constraints for the battery is for-
mulated in Equation 5.25, 5.26 and 5.27.

f charges,t ≤ SES − ESSoC
s,t ∀ s ∈ S, ∀ t ∈ [0,T] (5.25)

fdischarges,t ≤ ESSoC
s,t ∀ s ∈ S, ∀ t ∈ [0,T] (5.26)

ESSoC
s,t ≤ SES ∀ s ∈ S, ∀ t ∈ [0,T] (5.27)

ESSoC
s,t is the battery state of charge, which cannot surpass the maximum capacity

of the battery, SES . Equation 5.25 and 5.26 state that charge and discharge cannot
be higher than available capacity and stored capacity, respectively.

Battery model

In addition to the energy balance in Equation 5.23, the battery energy balance for
scenario s at time t is formulated in Equation 5.28. A dynamic model is required
because the state of charge for the battery (ESSoc

s,t) depend on previous states of
the system. This can bee seen from Equation 5.28 which contain terms from both
the current and previous time-step. Parameters associated with the battery model
are summarized in Table 5.8.

ESSoC
s,t − (ESSoC

s,t−1 · η
SelfDischarge
ES) = (f charges,t · ηchargeES)− (

fdischarges,t

ηdischargeES

) (5.28)

31

5.3 Case study 3: Stochastic problem with dynamic model and energy storage

Table 5.8: Storage capacity bounds and efficiencies in the energy storage model.

Symbol Value Unit

ESmin 0 MW

ESmax 200 MW

ηdischargeES 0.99 -

ηchargeES 0.99 -

ηefficiencyES 0.99 -

Summary of case 3

• The objective is to minimize the overall cost, the sum of capital and opera-
tional costs, formulated in Equation 5.20

• The modified operational cost model is formulated in Equation 5.18.

• The capital cost model is formulated in Equations 5.4 to 5.9. The specific
capital cost equation for the battery model is formulated in Equation 5.21.

• The system and battery energy balances are formulated in Equations 5.23
and 5.28

• The primary energy conversion models are formulated in Equations 5.15, 5.16
and 5.17.

• The overall demand constraint is formulated through the energy balance in
Equation 5.23.

• The capacity (linking) constraints are formulated in Equations 5.12, 5.13,
5.25, 5.26 and 5.27.

32

Chapter 6
Results

Results for the three case studies in Chapter 5 are presented in Sections 6.1, 6.2
and 6.3.

The result from running the expected value problem is presented in Table 6.1.
The optimal 1st stage variables for the expected value problem in Table 6.1, the
nominal design, is used to calculate the expectation of expected value (EEV) and
subsequently the value of stochastic solution (VSS) in Sections 6.1, 6.2 and 6.3.
The calculations of EEV and VSS is found in Appendix A.

Table 6.1: Results of the expected value problem.

Expected value problem
Number of scenarios 1
Design Decisions

Area of Solar PV (m2) 890,000
Number of Wind Turbines (-) 0

Maximum energy production (MWh/day
Solar PV 120.15

Wind 0
Expected energy production (MWh/day)

Solar PV 100.25
Wind 0

Expected energy supply (MWh/day)
Grid import 0

33

6.1 Case study 1: Simple model of uncertainty with 1 design day

6.1 Case study 1: Simple model of uncertainty
with 1 design day

The result from running the stochastic problem in Section 5.1 is summarized in
Table 6.2. The 81 scenarios are a result of setting the number of realizations of
each of the four uncertain parameters to 3. As for the cost calculations in Table
6.2, only a basic economic model was used: Depreciation of the capital costs as
well as discounting of future cash flows were not considered. These will be studied
in future work.

Table 6.2: Results for the stochastic problem.

Flexible design Nominal design
Number of scenarios 81 81
Design Decisions

Area of solar PV (m2) 1,070,000 890,000
Number of wind turbines 0 0

Maximum energy capacity (MWh/day)
Solar PV 144.45 120.15

Wind 0 0
Expected energy production (MWh/day)

Solar PV 120.38 100.13
Wind 0 0

Expected energy import (MWh/day)
Grid 1.00 5.31

Expected cost ($)
Total cost 9,560,000 10,037,000

Annual cost 319,000 335,000
Average cost per MWh produced 7.25 9.15

VSS ($)
Total VSS 482, 000 -

Security of clean energy supply

The expected % of demand covered by renewable energy for case 1 in Section 5.1 is
illustrated in the upper plot of Figure 6.1. The expected coverage from renewables
and import in Figure 6.1 were calculated from Equation A.4 in Appendix A.

34

6.1 Case study 1: Simple model of uncertainty with 1 design day

Figure 6.1: The expected coverage of demand by renewable energy production (top)
and import (bottom) for the flexible and nominal design.

Expected levelized cost of energy (LCOE)

The expected levelized cost of energy in $/MWh produced from renewables in the
flexible and nominal design is illustrated in Figure 6.4. The values were calculated
as explained in Equation A.3 in appendix A with a discount rate ri of 10%.

35

6.1 Case study 1: Simple model of uncertainty with 1 design day

Figure 6.2: The LCOE in $/MWh produced from renewables in the nominal and flexible
design.

36

6.2 Case study 2: Accounting for seasonal variability using 4 design days

6.2 Case study 2: Accounting for seasonal vari-
ability using 4 design days

The result from running the optimization problem in Section 5.2 with seasonal
variation is summarized in Table 6.3. The results from the nominal design1 is
summarized in Table 6.4. The 81 scenarios are a result of setting the number of
realizations of each of the four uncertain parameters to 3. As described in Section
5.2, there is still only one scenario tree, but the mean values are shifted to represent
the different seasons. The cost calculations in Table 6.3 were as mentioned in
Section 6.2 computed with a basic economic model.

Table 6.3: Results for the flexible design under seasonal variation.

Flexible design
Season Winter Spring Summer Fall

Number of scenarios 81 81 81 81
Design Decisions

Area of solar PV (m2) 1,110,000
Number of wind turbines 0

Maximum energy capacity (MWh/day)
Solar PV 119.88 149.85 179.82 149.85

Wind 0 0 0 0
Expected energy production (MWh/day)

Solar PV 99.90 137.90 162.86 137.90
Wind 0 0 0 0

Expected energy import (MWh/day)
Grid 6.21 0.52 0 0.52

Expected cost ($)
Total cost 9,290,000

Yearly cost 310,000
Average cost per MWh produced 6.80

VSS ($)
Total VSS 708,000

1Same nominal design as presented in case 1, Section 6.1

37

6.2 Case study 2: Accounting for seasonal variability using 4 design days

Table 6.4: Results for the nominal design under seasonal variation.

Nominal design
Season Winter Spring Summer Fall

Number of scenarios 81 81 81 81
Design Decisions

Area of solar PV (m2) 890,000
Number of wind turbines 0

Maximum energy capacity (MWh/day)
Solar PV 96.12 120.15 144.18 120.15

Wind 0 0 0 0
Expected energy production (MWh/day)

Solar PV 80.10 100.13 120.15 100.13
Wind 0 0 0 0

Expected energy import (MWh/day)
Grid 20.43 5.13 0.50 5.13

Expected cost ($)
Total cost 10,960,000

Yearly cost 365,000
Cost per MWh produced 9.70

38

6.2 Case study 2: Accounting for seasonal variability using 4 design days

Security of clean energy supply

The expected % of demand covered by renewable energy for case 2 in Section 5.2 is
illustrated in the upper plot in Figure 6.3. The expected coverage from renewables
and import in Figure 6.1 were calculated from Equation A.4 in Appendix A.

Figure 6.3: The expected coverage of demand by renewable energy (top) and electricity
import (bottom) under seasonal variation for the nominal and flexible design.

39

6.2 Case study 2: Accounting for seasonal variability using 4 design days

Expected levelized cost of energy (LCOE)

The expected LCOE in $/MWh produced from renewables in the flexible and
nominal design under seasonal variability is illustrated in Figure 6.4. The values
were calculated as explained in Equation A.3 in appendix A with a discount rate
ri of 10%.

Figure 6.4: The LCOE in $/MWh produced from renewables in the seasonal stochastic
problem for the nominal and flexible design.

40

6.3 Case study 3: Stochastic problem with dynamic model and energy storage

6.3 Case study 3: Stochastic problem with dy-
namic model and energy storage

The results from running the model in case 3, Section 5.3 are presented in Table
6.5. The results are based on selecting scenario samples over the course of 7 days,
which can be found in Appendix C. Design decisions, operational results, and the
objective values are shown for the nominal design, and the flexible design with and
without battery.

Table 6.5: Results for case study 3.

Design Nominal Flexible
w/o battery w/o battery w/battery

Number of scenarios 10 10 10
Number of days 7 7 7

Probability distribution Sampling Sampling Sampling
Design Decisions

Area of solar PV (m2) 890,000 890,000 890,000
Number of wind turbines (-) 0 0 0

Battery (MWh) - - 40
Expected energy production (MWh/day)

Solar PV 101.18 101.18 101.18
Wind 0 0 0

Expected energy import (MWh/day)
Grid (import) 9,97 9,97 4.95
Grid (export) 7.01 7.01 2.67
From battery - - 6.84

Expected state of charge (%) - - 36.37
Expected cost ($)

Total cost 11,300,000 11,300,000 10,974,000
Yearly cost 377,000 377,000 366,000

Value of Battery ($)
Total - - 326,000
Yearly - - 10,867

41

6.3 Case study 3: Stochastic problem with dynamic model and energy storage

Security of clean energy supply

The expected % of demand covered by renewable energy in case 3 for the nominal
design and flexible design with and without battery, is presented in the upper plot
of Figure 6.5. The lower plot shows the expected amount of energy required from
import. The values in Figure 6.5 were calculated from Equation A.4 in Appendix
A.

Figure 6.5: The expected coverage of demand by renewable energy production (top)
and import (bottom) for the nominal design, and flexible design with and without energy
storage.

42

6.3 Case study 3: Stochastic problem with dynamic model and energy storage

Battery operation

Two example scenarios from the scenario set in Appendix C have been chosen to
illustrate the operational pattern of the battery with respect to the rest of the
system. In Figure 6.6a and 6.6b the flows in the system and state of charge for the
battery is illustrated for example scenario 9 and 6 respectively.

(a) Scenario 9 (b) Scenario 6

Figure 6.6: System flows and operation of battery

43

Chapter 7
Discussion

Case 1 and 2

In case study 1 and 2, it is attempted to account for uncertainty by the inclusion of
all generated scenarios, but the opportunity for energy storage is not incorporated.

System design and performance

The results in Table 6.2, 6.3 and 6.4 show that compared to the nominal design,
a larger solar capacity is installed in the flexible solutions. This is in accordance
with what is expected as variation in demand, and the varying energy output per
m2 of the solar PV-panels under varying solar intensity is accounted for. Moreover,
the installed solar capacity is increased with the inclusion of seasonal variation in
the problem formulation. This is expected as seasonal variation in practice further
increases the volatility of solar intensity. A larger installed capacity makes up for
potentially lower output per m2 of solar panels. A result of this is the increased
security of clean energy supply illustrated in Figures 6.1 and 6.3, and consequently
the lowered LCOE illustrated in Figure 6.2 and 6.4.

Market conditions

There is a trade-off between the capital expenses associated with a larger plant,
and the economic penalty from importing electricity. Locating this trade-off opti-
mum is in part what yields the value of stochastic solution in Table 6.2 and 6.3.
The constant feed-in-tariff is a simplification of real market conditions as surplus
production often results in a decrease in electricity price. Thus, the constant feed-
in-tariff rewards surplus production. As a result, the risk of installing a slightly
too large energy plant is substantial. Adding a constraint to limit production at
favorable feed-in-tariff is expected to affect capacity installed, meaning the afore-
mentioned trade-off optimum is shifted towards a smaller plant. Similarly, there

44

is no seasonal variation in demand and market spot price. Normally, energy pro-
duction from solar PV is reduced during the winter months whereas user heating
demand increases. This is turn affects the market spot price for electricity as it is
heavily dependent on the supply and demand relationship between producer and
end-user. Including seasonal variation in market spot price and demand is expected
to aggravate the EEV, thus increasing the VSS of the seasonal model. In summary,
the optimal solution minimizes the expected total cost for the system under vary-
ing weather and market conditions. With the present simplifications, the main
trade-off is between increased capital cost and the economic penalty associated
with deficit production.

Modelling approach

In case 1 and 2 sequential days are modeled separately and scaled up in the objec-
tive function to simulate the plant lifetime. Thus, there is no correlation between
the weather and/or market conditions today and tomorrow, imposing a significant
simplification on the model behavior. Moreover, the scenario generation in the
seasonal model is simplified to consist of one scenario tree, however with 4 shifted
means, each representing one season. Together with the disjoint modeling of con-
secutive days, this simplification is believed to reduce the cogency of the resulting
solution.

Case 3

The battery was introduced to combat the volatile renewable energy production
and was thought to affect the optimal design decision. A change in modeling
approach was required as the state of charge of a battery depends on consecutive
days. To calculate the value of the stochastic solution (VSS), and the value of
adding a battery, the model was run for a given scenario set with the nominal
solution, as a stochastic problem, and as a stochastic problem with the possibility
of energy storage.

Value of energy storage

The results summarized in Table 6.5 show that even though the nominal design and
the stochastic problem (SP) yield the same results, the inclusion of the battery is
expected to add value to the energy system. Comparatively to the nominal design
and the stochastic solution without the battery, the expected cost of the system is
reduced without a change in the 1st stage decision variables.

The size of the installed battery in the optimal solution is relatively high with
a capacity of about 40% of average demand. This means that the system can offset
a fluctuating power supply for multiple different scenarios, covering both high sur-
plus and deficit, as well as sequential days of moderate surplus and deficit. In other
words, renewable energy is more evenly distributed through charge and discharge

45

of the battery on days with surplus and deficit, respectively. In this manner, the
expected amount of imported electricity to cover demand is substantially reduced.

As seen in Figure 6.5, the battery allows for a larger fraction of the renewable
power produced to be utilized to cover demand compared to the solution without
a battery. This adds value to the stochastic solution as the system’s intended pur-
pose is to cover demand solely with renewable power.

A possible explanation for the identical 1st stage decisions is that the expected
production is marginally larger than the expected demand for the stochastic prob-
lem without a battery, meaning that the program entails a risk of importing a
larger amount of energy if it would attempt to cut capital cost by installing less
solar PV panels.

Modelling approach

Figure 5.2 in Section 5.3 show how the introduction of time-dependence, and thus
the battery, affect the scenario generation. The explosion in the number of scenarios
was attempted to be dealt with by arbitrarily selecting a sample set of 10 scenarios
from the original tree. However, since the total number of scenarios generated is
81d, where d is the number of days, the risk of choosing an unrepresentative set of
scenarios when only choosing 10 different ones is considerable. Such an erroneous
decision could have affected the solution to the stochastic problem in Table 6.5.
Specifically, it is expected that this could explain why the nominal and flexible
design is identical. If a more representative set of scenarios had been selected, a
more valuable solution compared to the nominal design would be expected.

Operation of battery

In Figures 6.6a and 6.6b, two example scenarios were chosen to illustrate the op-
eration of the battery. As can be seen from the plots in Figure 6.6a and 6.6b, the
battery is charged whenever there are surplus production and available capacity,
and discharged when there is a production deficit. This illustrates how renewable
energy is stored at one point and consumed at a later point to reduce the amount
of imported energy. However, an effect of representing the actual multi-stage sce-
nario tree in Figure 5.2 by a two-stage scenario tree in Figure 2.4 becomes apparent.
From the plots in Figures 6.6a and 6.6b it can be seen that in certain time-steps the
program picks solutions that imports electricity from the grid despite zero deficit
between production and demand. By simplifying the multi-stage tree to a two-
stage tree, the uncertainty is only revealed once. In a multi-stage scenario tree,
the uncertainty of one stage is not revealed before the decisions in the previous
stage have been made. For the scenario approach used in the two-stage stochastic
program, decisions for different days can be made simultaneously. The battery op-
eration will therefore work as a wait-and-see program, meaning that the program
can wait and see what happens at the final time-step before making a decision in
the first time-step. In this way, the program can accurately predict the grid price,

46

the demand, and how much electricity it can produce in every single time-step.

Therefore, in addition to storing surplus energy, thus coping with fluctuating en-
ergy sources, the battery can be used to store purchased electricity from the grid
whenever it is profitable. For instance, if the grid import price today is lower than
the average, and the program knows that there will be a deficit and higher import
price on a future day, it makes sense to import the energy today, given available
storage capacity. This behavior can be seen in Figure 6.6a at day 2, day 4 and day
6, as well as the third day in Figure 6.6b, where the program finds it beneficial to
import and store energy in the battery despite charge and discharge losses. This
might also partly explain why the original design decisions are left unchanged de-
spite the installation of the battery. If the program can mitigate the negative effect
of importing electricity by lowering the effective cost of import, the solutions that
give a higher fraction of import electricity become less unfavorable. This is not
optimal as the future always brings uncertainty. Nonetheless, if one can assume
the weather forecasts to be relatively certain a week forward in time, this simplified
approach could prove to be valuable.

Further remarks

Technology selection

The results in Sections 6.1, 6.2 and 6.3 show that wind turbines are not installed
in any of the three cases. This could be a result of the higher capital cost per MW
installed of offshore wind (Table 5.2), and the fact that the installed solar capacity
can supply 100% of demand under nominal weather conditions. Thus, there is no
need for additional capacity from wind turbines. Furthermore, while the effective
capacity from solar PV is limited solely by the solar intensity, the wind turbines
are turned off if the wind speed surpasses Wmax (Table 5.3). This makes solar
PV more valuable under ”extreme” weather conditions. Lastly, the economies of
scale have an impact on the capital expenses, and the effect is less substantial if
two smaller and different technologies are installed compared to the installation of
one large solar PV plant. It is therefore in many cases beneficial to choose one
technology at a lower cost per MW installed instead of two technologies and obtain
higher flexibility with regards to weather conditions.

Financial policy

The program entails a significant risk of overestimating the economic value of re-
newable power generation from both solar PV and wind as the objective function
does not take the time value of money into account. In real life, the present value
of future revenue is considered to be less valued. The exclusion of this concept in
the problem formulation leads to a significant underestimation of the capital costs
associated with the renewable energy system. In effect, larger system capacities
appear more favorable than what is truly the case.

47

Applicability of renewables

The issue of hourly fluctuation is not addressed as the uncertain parameters are set
constant for the duration of an entire day. The renewable system’s ability to cover
daily fluctuations is therefore not evaluated. This simplification can result in an
erroneous estimate of amount of power produced and required, thereby posing the
risk of producing non-optimal decisions. The daily average approach is expected
to have affected both the value of renewable sources and the value of technologies
installed. Hourly fluctuations make renewable energy less applicable to cover a
constant demand. Lastly, the limited hours of sun compared to wind would affect
the applicability of solar PV with hourly changes (resolution).

Value of renewables

The simplified energy conversion models may have affected the valuation of the
renewable systems. Conversion of both wind and solar to electric power is mod-
eled with a linear relationship that does not change with time. Reduction in the
capacity and efficiency of the battery is also assumed to be negligible. In a real-life
system, degradation over time would have affected the components’ capability. In
addition to a decrease in battery capacity, the efficiency of the solar panels and
wind turbines would drop. Consequently, the program entails the risk of choosing
a too small system caused by an overestimation of the system’s ability to deliver
clean renewable energy in the later years.

Another way to look at the problem formulation with and without energy stor-
age is to view the concepts as two different approaches to dealing with uncertainty.
As shown in the results for case study 1 and 2 presented in Section 6.1 and Section
6.2, the program handles uncertainty, and adds value by increasing the amount of
power produced at all times, reducing the amount of imported electricity. While the
key logic there is to reduce the amount of imported power through larger produc-
tion capacity, the battery adds value by distributing generated power more evenly.
In general, it is expected that an energy storage system can benefit a stochastic
solution by allowing a reduction in installed capacity while retaining high security
of energy supply. In this thesis, an attempt was made to handle short-term uncer-
tainty and variation through the inclusion of day to day storage. However, seasonal
variation was not imposed on the system, and the effect on long-term variability
was therefore not tested. The solution to counteract seasonal variation in Section
6.2 was to install more solar panels, thus it is expected that there is a potential
value of long-term energy storage.

Linear approximation

Although the linear approximations impose the risk of sub-optimal results, they
ensure a convex optimization problem. This improves solver time and guarantees
that a local optimum is a global optimum. The inclusion of nonlinear degrada-
tion equations is expected to result in a significant increase in both modeling and

48

computational complexity as the optimization problem could become non-convex.
However, this increased complexity might prove to be crucial for the robust opti-
mization of flexible renewable energy systems.

49

Chapter 8
Conclusions and future Work

Conclusions

Through a two-stage stochastic MILP, the optimal design and operation of a flex-
ible renewable energy system were investigated. The result from the three case
studies gave valuable insight into the different aspects and problems associated
with the optimization of flexible renewable energy systems.

Firstly, the case study based on one design day illustrated how the stochastic
program coped with uncertainty by increasing the flexibility of the system through
increased capacity of power generation. Secondly, the inclusion of seasonal varia-
tion through four design days in case study two then showed how the stochastic
program further increased the installed capacity to cope with the increased volatil-
ity of the uncertain parameters. The main trade-off in the first two case studies was
shown to be between the economic perspective of design and operation, where the
stochastic solution added value by investing more upfront in order to avoid later
economic penalties from not meeting energy demand. Lastly, the dynamic model in
the third case study illustrated how energy storage can reduce the expected amount
of imported power, thereby increasing the flexibility of the renewable energy sys-
tem. With the installation of a battery, the renewable energy produced was more
evenly distributed over the course of a week, resulting in a smaller capacity of solar
PV installed compared to the first two cases.

Overall, total expenses were reduced and the % of demand covered by renew-
able energy increased for the flexible design compared to the nominal design. In
conclusion, the case studies showed that stochastic programming in optimization
of RES is a novel method to account for uncertainty. In addition, case study
three showed that the implementation of a battery decreased overall costs, thus
illustrating how uncertainty can be counteracted through the inclusion of energy
storage. All three cases were modeled and solved using GOSSIP, demonstrating
the software’s applicability to optimization problems in flexible renewable energy

50

systems.

Future work

In this thesis, energy conversion was modeled by linear approximations. This means
that degradation effects and non-linear relationships between model variables were
neglected and omitted from the program. A logical next step would be to use a
more rigorous approach to the energy modeling in the system to achieve a more
realistic model. For instance, account for the drop in efficiency for both solar PV
panels and wind turbines over time.

Furthermore, to cope with the exponential increase of scenarios in the dynamic
model in case 3, scenarios were generated by random sampling from a discrete nor-
mal distribution. This is a simplification of the situation, thus future work for the
dynamic model should include methods for finding representative scenario sets.

Another area of improvement involves looking at ways to increase the resolution of
the model. In this work, uncertainty was simplified by using daily average values
for each of the uncertain parameters, meaning the model was limited to capture
variations from one day to the next. A possible improvement is to incorporate
hourly resolutions to more accurately model the volatile behavior of the major un-
certainties associated with a renewable energy system.

51

Bibliography

[1] R. West and B. Fattouh. The Energy Transition and Oil Companies’ hard
choices. Tech. rep. The Oxford Instiute for Energy Studies, 2019.

[2] IPCC. Global Warming of 1.5C. An IPCC Special Report on the impacts of
global warming of 1.5C above pre-industrial levels and related global green-
house gas emission pathways, in the context of strengthening the global re-
sponse to the threat of climate change, sustainable development, and efforts
to eradicate poverty. Tech. rep. Intergovernmental Panel on Climate Change,
2018.

[3] Rina Zeller, Agustin Delgado, Gerard Reid, and Kirsten Panerali. “Wind
and solar PV will keep taking the lead”. In: Global Future Council on Energy
Technologies August 202 (2020), p. 5.

[4] IRENA. Renewable Power Generation Costs in 2019. Tech. rep. International
Renewable Energy Agency, 2020.

[5] Omar J. Guerra, Jiazi Zhang, Joshua Eichman, Paul Denholm, Jennifer
Kurtz, and Bri-Mathias Hodge. “The value of seasonal energy storage tech-
nologies for the integration of wind and solar power”. In: Energy Environ.
Sci. 13 (7 2020), pp. 1909–1922. doi: 10.1039/D0EE00771D.

[6] Paolo Gabrielli, Florian Fürer, Georgios Mavromatidis, and Marco Mazzotti.
“Robust and optimal design of multi-energy systems with seasonal storage
through uncertainty analysis”. In: Applied Energy 238 (Mar. 2019), pp. 1192–
1210. doi: 10.1016/j.apenergy.2019.01.064.

[7] Georgios Mavromatidis, Kristina Orehounig, and Jan Carmeliet. “Design of
distributed energy systems under uncertainty: A two-stage stochastic pro-
gramming approach”. In: Applied Energy 222 (2018), pp. 932–950. issn:
0306-2619. doi: https : / / doi . org / 10 . 1016 / j . apenergy . 2018 . 04 .

019. url: http : / / www . sciencedirect . com / science / article / pii /

S0306261918305580.

52

https://doi.org/10.1039/D0EE00771D
https://doi.org/10.1016/j.apenergy.2019.01.064
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.04.019
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.04.019
http://www.sciencedirect.com/science/article/pii/S0306261918305580
http://www.sciencedirect.com/science/article/pii/S0306261918305580

BIBLIOGRAPHY

[8] R. Kannan. “Algorithms, analysis and software for the global optimization
of two-stage stochastic programs”. PhD thesis. Massachusetts Institute of
Technology, 2018.

[9] Stephen M Robinson. Numerical Optimization. 2006. isbn: 9780387303031.
doi: 10.1007/978-0-387-40065-5.

[10] Paul I. Barton. “Mixed-Integer and Nonconvex Optimization”. In: Notes
(2007).

[11] NTNU. url: https://www.itk.ntnu.no/_media/emner/fordypning/

ttk16/introductiontomip2015.pdf.

[12] Eduardo Camponogara. 2016. url: https://www.itk.ntnu.no/_media/
emner/fordypning/l17-minlp-intro.pd.

[13] P. I. Barton R. Kannan. “GOSSIP documentation”. In: (2018).

[14] IRENA. Wind power spatial planning techniques. Tech. rep. IRENA, 2014.

[15] Y. Chen, X. Li, T. A. Adams II, and P. I. Barton. “Decomposition strategy for
the global optimization of flexible energy polygeneration systems”. In: AIChe
58 (2012), pp. 3080–3095. doi: https://doi.org/10.1002/aic.13708.

[16] Oersted. Our offshore wind capabilitites. Oct. 2020.

[17] NREL. Tech. rep. National Renewable Energy Laboratory, 2018. url: https:
//www.nrel.gov/docs/fy19osti/72399.pdf.

53

https://doi.org/10.1007/978-0-387-40065-5
https://www.itk.ntnu.no/_media/emner/fordypning/ttk16/introductiontomip2015.pdf
https://www.itk.ntnu.no/_media/emner/fordypning/ttk16/introductiontomip2015.pdf
https://www.itk.ntnu.no/_media/emner/fordypning/l17-minlp-intro.pd
https://www.itk.ntnu.no/_media/emner/fordypning/l17-minlp-intro.pd
https://doi.org/https://doi.org/10.1002/aic.13708
https://www.nrel.gov/docs/fy19osti/72399.pdf
https://www.nrel.gov/docs/fy19osti/72399.pdf

Appendix A
Calculations

Expected values

Expectation values are calculated from equation A.1 where xn is the value of in-
terest in scenario n and ρxn is the associated probability of the occurrence of value
xn.

E(x) =

N∑
n

xn · ρxn (A.1)

LCOE - Net present value

The LCOE is calculated as the net present value (NPV) of the project divided by
MWh produced in project lifetime. The general equation for calculation of NPV
is formulated in Equation A.2.

NPV =

N∑
n

CFn

(1 + ri)
n − I0 ∀ n ∈ {1.....N} (A.2)

n denotes year in project lifetime, CFn cash flow in year n, ri the discount rate
and I0 the initial investment in year zero. The formula for the LCOE is formulated
in Equation A.3,

LCOE =
NPV

nMWh
(A.3)

where nMWh is number of MWh produced from the renewable sources.

Security of clean energy supply

The general expression for calculation of security of clean energy supply (SCES) in
Section 5.1, 5.2 and 5.3 is formulated in Equation A.4.

SCES =

S∑
s

fexports

fdemand
s

· ρs (A.4)

54

fexports and fdemand
s are the previously defined flows, each denoted by scenario s,

and ρs is probability of scenario s. The subscript t for time interval is omitted here
for the purpose of generating a general expression for all case studies.

55

Appendix B
Scenarios for case study 1 and 2

B.1 Scenarios case study 1 and 2

The generated scenarios with associated probabilities are listed in Table B.1.

Table B.1: Scenarios used in case study 1 and 2.

Scenario Probability Solar intensity Wind speed Grid import price Demand

- - MW/m2 m/s $/MWh MWh/day
1 0,000634 0,00012 6 12 80
2 0,002726 0,00015 6 12 80
3 0,000634 0,00018 6 12 80
4 0,002726 0,00012 7,5 12 80
5 0,011732 0,00015 7,5 12 80
6 0,002726 0,00018 7,5 12 80
7 0,000634 0,00012 9 12 80
8 0,002726 0,00015 9 12 80
9 0,000634 0,00018 9 12 80
10 0,002726 0,00012 6 15 80
11 0,011732 0,00015 6 15 80
12 0,002726 0,00018 6 15 80
13 0,011732 0,00012 7,5 15 80
14 0,050481 0,00015 7,5 15 80
15 0,011732 0,00018 7,5 15 80
16 0,002726 0,00012 9 15 80
17 0,011732 0,00015 9 15 80
18 0,002726 0,00018 9 15 80
19 0,000634 0,00012 6 18 80

56

B.1 Scenarios case study 1 and 2

20 0,002726 0,00015 6 18 80
21 0,000634 0,00018 6 18 80
22 0,002726 0,00012 7,5 18 80
23 0,011732 0,00015 7,5 18 80
24 0,002726 0,00018 7,5 18 80
25 0,000634 0,00012 9 18 80
26 0,002726 0,00015 9 18 80
27 0,000634 0,00018 9 18 80
28 0,002726 0,00012 6 12 100
29 0,011732 0,00015 6 12 100
30 0,002726 0,00018 6 12 100
31 0,011732 0,00012 7,5 12 100
32 0,050481 0,00015 7,5 12 100
33 0,011732 0,00018 7,5 12 100
34 0,002726 0,00012 9 12 100
35 0,011732 0,00015 9 12 100
36 0,002726 0,00018 9 12 100
37 0,011732 0,00012 6 15 100
38 0,050481 0,00015 6 15 100
39 0,011732 0,00018 6 15 100
40 0,050481 0,00012 7,5 15 100
41 0,217217 0,00015 7,5 15 100
42 0,050481 0,00018 7,5 15 100
43 0,011732 0,00012 9 15 100
44 0,050481 0,00015 9 15 100
45 0,011732 0,00018 9 15 100
46 0,002726 0,00012 6 18 100
47 0,011732 0,00015 6 18 100
48 0,002726 0,00018 6 18 100
49 0,011732 0,00012 7,5 18 100
50 0,050481 0,00015 7,5 18 100
51 0,011732 0,00018 7,5 18 100
52 0,002726 0,00012 9 18 100
53 0,011732 0,00015 9 18 100
54 0,002726 0,00018 9 18 100
55 0,000634 0,00012 6 12 120
56 0,002726 0,00015 6 12 120
57 0,000634 0,00018 6 12 120
58 0,002726 0,00012 7,5 12 120
59 0,011732 0,00015 7,5 12 120
60 0,002726 0,00018 7,5 12 120
61 0,000634 0,00012 9 12 120
62 0,002726 0,00015 9 12 120
63 0,000634 0,00018 9 12 120
64 0,002726 0,00012 6 15 120

57

B.1 Scenarios case study 1 and 2

65 0,011732 0,00015 6 15 120
66 0,002726 0,00018 6 15 120
67 0,011732 0,00012 7,5 15 120
68 0,050481 0,00015 7,5 15 120
69 0,011732 0,00018 7,5 15 120
70 0,002726 0,00012 9 15 120
71 0,011732 0,00015 9 15 120
72 0,002726 0,00018 9 15 120
73 0,000634 0,00012 6 18 120
74 0,002726 0,00015 6 18 120
75 0,000634 0,00018 6 18 120
76 0,002726 0,00012 7,5 18 120
77 0,011732 0,00015 7,5 18 120
78 0,002726 0,00018 7,5 18 120
79 0,000634 0,00012 9 18 120
80 0,002726 0,00015 9 18 120
81 0,000634 0,00018 9 18 120

58

Appendix C

59

Scenario set for case study 3
S

ce
n

ar
io

1
2

3
4

5
6

7
8

9
1
0

0
P

ro
b

0.
05

6
0.

24
0

0.
00

0
0.

24
0

0.
0
5
6

0
.0

5
6

0
.2

4
0

0
.0

0
1

0
.0

5
6

0
.0

5
6

I
·1

0
3

t1
0
.1

2
0.

18
0
.1

5
0.

15
0
.1

8
0
.1

2
0
.1

8
0
.1

8
0
.1

5
0
.1

2
I
·1

0
3

t2
0
.1

2
0.

12
0
.1

5
0.

15
0
.1

8
0
.1

5
0
.1

5
0
.1

2
0
.1

8
0
.1

5
I
·1

0
3

t3
0
.1

2
0.

18
0
.1

8
0.

12
0
.1

8
0
.1

2
0
.1

8
0
.1

8
0
.1

2
0
.1

5
I
·1

0
3

t4
0
.1

5
0.

18
0
.1

2
0.

18
0
.1

5
0
.1

8
0
.1

5
0
.1

2
0
.1

2
0
.1

8
I
·1

0
3

t5
0
.1

8
0.

18
0
.1

8
0.

12
0
.1

5
0
.1

2
0
.1

2
0
.1

2
0
.1

2
0
.1

8
I
·1

0
3

t6
0
.1

5
0.

12
0
.1

2
0.

15
0
.1

2
0
.1

5
0
.1

2
0
.1

2
0
.1

5
0
.1

8
I
·1

0
3

t7
0
.1

5
0.

18
0
.1

8
0.

15
0
.1

8
0
.1

2
0
.1

5
0
.1

5
0
.1

2
0
.1

8
W

t1
6

7
.5

9
7.

5
6

6
9

6
7
.5

9
W

t2
7
.5

7.
5

9
6

6
7
.5

7
.5

6
9

7
.5

W
t3

6
9

9
9

7
.5

7
.5

7
.5

9
9

6
W

t4
6

7
.5

9
7.

5
7
.5

9
6

9
9

7
.5

W
t5

9
9

7
.5

9
7.

5
9

7
.5

9
6

9
W

t6
7
.5

9
7.

5
6

7
.5

7
.5

9
6

9
7
.5

W
t7

7
.5

7.
5

7
.5

6
6

7
.5

6
6

7
.5

6
O

C
gr

id
t1

12
18

18
12

18
1
8

1
5

1
8

1
5

1
5

O
C

gr
id

t2
18

15
18

18
18

1
2

1
5

1
8

1
2

1
5

O
C

gr
id

t3
15

12
18

12
15

1
5

1
8

1
8

1
2

1
5

O
C

gr
id

t4
18

18
18

18
12

1
2

1
2

1
5

1
5

1
5

O
C

gr
id

t5
12

15
12

15
15

1
8

1
2

1
8

1
2

1
8

O
C

gr
id

t6
15

15
15

15
12

1
5

1
5

1
5

1
2

1
8

O
C

gr
id

t7
15

18
18

15
12

1
8

1
2

1
5

1
8

1
2

f
d

em
t1

1
00

1
00

80
10

0
10

0
1
2
0

1
2
0

1
2
0

1
0
0

1
2
0

f
d

em
t2

1
20

1
20

12
0

80
10

0
1
0
0

1
0
0

1
2
0

1
0
0

8
0

f
d

em
t3

1
20

1
20

12
0

10
0

12
0

1
2
0

8
0

8
0

1
0
0

1
2
0

f
d

em
t4

8
0

1
00

12
0

12
0

12
0

1
0
0

8
0

1
0
0

1
2
0

8
0

f
d

em
t5

1
20

1
00

80
80

12
0

1
2
0

1
0
0

1
0
0

1
2
0

8
0

f
d

em
t6

8
0

1
20

12
0

12
0

80
8
0

8
0

8
0

8
0

1
2
0

f
d

em
t7

8
0

1
00

80
12

0
12

0
1
2
0

1
2
0

1
0
0

1
0
0

1
0
0

f
d

em
t6

8
0

1
20

12
0

12
0

80
8
0

8
0

8
0

8
0

1
2
0

f
d

em
t7

8
0

1
00

80
12

0
12

0
1
2
0

1
2
0

1
0
0

1
0
0

1
0
0

60

Appendix D
C++ code

D.1 Expected value problem

1 #include <iostream >

2 #include <string >

3 #include <vector >

4 #include "definitions.hpp"

5 #include "CompGraph.hpp"

6 #include "GenerateScenarios.hpp"

7

8 #include "inputmodel.hpp"

9

10 using namespace std;

11

12 int inputmodel(vector <double > &weights)

13 {

14 cout <<"This is the deterministic PV_wind_model: "<<endl;

15

16

17 // Defining input parameters

18 int techTypes =2;

19 // Nominal power model params

20 double Inom =0.00015; //[MW/ M] solar radiance intensity

21 double Wnom =7.5; //[m/s] wind speed

22

23 //Wind power model params

24 double Wmin =3.5; // [m/s]

25 double Wmax =25;

26 double Wd=13;

27 double qd=8; //[MW] for one wind turbine

28

29 // Efficiencies

30 double etaPV =0.15; //[-]

31 double etaWT =0.85;

32

33 //Grid parameters

34 double FiT =1.45; //feed -in tariff [$/MWh]

61

D.1 Expected value problem

35 double OCgridNom =15; //price imported el from grid [$/MWh]

36 double demandNom =100; //MWh/day

37

38 // Technology cost parameteres ={PV,WT}

39 vector <double > C0 ={27000 ,49840000}; //$

40 vector <int > Smax ={1200000 ,15}; //Area PV and number of wind turbines

;

41 vector <int > S0={180 ,1}; // Reference value for cost function

42 vector <double > xi ={0.05 ,0.05}; // Maintenance cost (factor)

43 vector <double > sfi ={0.7 ,0.7}; //Cost scaling factor

44

45 bool automaticallyGenerateScenarios=true;

46

47 int NumScen =0; // number of scenarios

48 int NumUncert =4; // solar intensity , wind speed , cost of el-import ,

demand

49 int NumDays =1; // number of days

50 int NumDiscrete =15; // number of discrete intervals

51

52 // Convert binary 1st stage decision vars to discrete 2nd stage vars

53 vector <vector <double >> S(techTypes ,vector <double >(NumDiscrete)); //[

m] and [-] units of wind turbines

54 cout <<"The discrete size values are:"<<’\n’;

55 for(int i=0;i<techTypes ;++i)

56 {

57 cout <<"Technology "<<i+1<<’\n’;

58 for(int n=0;n<NumDiscrete ;++n)

59 {

60 S[i][n]=(n*Smax[i])/(NumDiscrete -1); // S_lower =0 and ommited

here

61 cout <<S[i][n] << ’\n’; // printing to check values

62 }

63 }

64 // Calculate capital cost for given discrete size value

65 vector <vector <double >> C(techTypes ,vector <double >(NumDiscrete));//[$

]

66 cout <<"The corresponding capital costs are:"<<’\n’;

67 for(int i=0;i<techTypes ;++i)

68 {

69 for(int n=0;n<NumDiscrete ;++n)

70 {

71 C[i][n]=(1+xi[i])*C0[i]*pow(S[i][n]/S0[i],sfi[i]);

72 cout <<C[i][n]<<’\n’;// printing to check values

73 }

74 }

75

76 vector <vector <vector <double >>> StochParams(NumUncert);// Vector to

contain uncertain vars realizations

77

78 if (automaticallyGenerateScenarios)

79 {

80 int numUncertainParams=NumUncert;

81 vector <double > UncertainParamsMean(numUncertainParams);

82 vector <double > UncertainParamsDev(numUncertainParams);

83 vector <int > numParamRealisations(numUncertainParams);

84

85 for(int d=0;d<NumDays ;++d)

62

D.1 Expected value problem

86 {

87

88 UncertainParamsMean [0]= Inom; // solar intensity

89 UncertainParamsMean [1]= Wnom; //wind speed

90 UncertainParamsMean [2]= OCgridNom; // import price

91 UncertainParamsMean [3]= demandNom; // demand

92

93 UncertainParamsDev [0]=0;

94 UncertainParamsDev [1]=0;

95 UncertainParamsDev [2]=0;

96 UncertainParamsDev [3]=0;

97

98 numParamRealisations [0]=1;

99 numParamRealisations [1]=1;

100 numParamRealisations [2]=1;

101 numParamRealisations [3]=1;

102

103 vector <double > uncertainParamRealizations;

104

105 NumScen=decomposition :: generateScenarios(decomposition ::NORMAL ,

106 numUncertainParams ,

107 numParamRealisations ,

108 UncertainParamsMean ,

109 UncertainParamsDev ,

110 weights ,

111 uncertainParamRealizations);

112 for(int i=0;i<NumUncert ;++i)

113 {

114 StochParams[i]. resize(NumDays);

115 for(int d=0; d<NumDays ;++d)

116 {

117 StochParams[i][d]. resize(NumScen);

118 }

119 }

120

121 for(int d=0;d<NumDays ;++d)

122 {

123 for(int s=0; s<NumScen ;++s)

124 {

125 StochParams [0][d][s]= uncertainParamRealizations[s]; //solar

intensity [-]

126 StochParams [1][d][s]= uncertainParamRealizations[NumScen+s];

//wind speed [m/s]

127 StochParams [2][d][s]= uncertainParamRealizations[NumScen *2+s

]; //cost EL-import [$/MWh]

128 StochParams [3][d][s]= uncertainParamRealizations[NumScen *3+s

]; // demand [MWh/day]

129 cout <<StochParams [0][d][s]<<" -------"<<StochParams [1][d][s

]<<" -------"<<StochParams [2][d][s]<<" -------"<<StochParams [3][d

][s]<<’\n’;

130 }

131 }

132 }

133 }

134 else

135 {

136 // generate by hand?

63

D.1 Expected value problem

137 }

138 //1st stage variables

139 vector <vector <Variables >> z(techTypes ,vector <Variables >(NumDiscrete)

); // Binary variable ,

140 //on/off for size interval z to

capacity size S and capcost C

141 int varcount = -1;

142 int concount =-1;

143 char clabel [30];

144

145 for(int i=0;i<techTypes ;++i)

146 {

147 for(int n=0;n<NumDiscrete ;++n)

148

149 {

150 sprintf(clabel ,"z[%d][%d]", i+1,n+1);

151 z[i][n]. setIndependentVariable(++varcount ,

152 compgraph ::BINARY ,

153 I(0,1),

154 0.,

155 -1, //first stage variable , does not belong to

specific scenario

156 clabel);

157 }

158 }

159

160 //2nd stage variables

161 //Set export and import of electricity , 2nd stage variables

162 vector <vector <Variables >> f_import(NumDays ,vector <Variables >(NumScen

)); //[MWh/day]

163 vector <vector <Variables >> fPV_export(NumDays ,vector <Variables >(

NumScen)); //[MWh/day]

164 vector <vector <Variables >> fWT_export(NumDays ,vector <Variables >(

NumScen));//[MWh/day]

165

166 for(int d=0;d<NumDays ;++d)

167 {

168 for(int s=0;s<NumScen ;++s)

169 {

170 sprintf(clabel ,"f_import [%d][%d]", d+1, s+1);

171 f_import[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

172 sprintf(clabel ,"fPV_export [%d][%d]", d+1, s+1);

173 fPV_export[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

174 sprintf(clabel ,"fWT_export [%d][%d]", d+1, s+1);

175 fWT_export[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

176 }

177 }

178 // Constraint involving 1st stage variables , make sure only one size

intercal zi is chosen per technology

179 vector <Constraints > zLim(techTypes);

180

181 for(int i=0;i<techTypes ;++i)

182 {

183 zLim[i]=-1;

64

D.1 Expected value problem

184 for(int n=0;n<NumDiscrete ;++n)

185 {

186 zLim[i]+=z[i][n];

187 }

188 zLim[i]. setDependentVariable (++ concount ,compgraph ::EQUALITY ,false

,-1);

189 }

190

191 // Adding throughoutput capacity constraints

192 vector <vector <Constraints >> PVprod(NumDays ,vector <Constraints >(

NumScen)); //[MWh/day]

193 vector <vector <Constraints >> WTprod(NumDays ,vector <Constraints >(

NumScen));//[MWh/day]

194 // Demand constraint , make sure imported el <= demand

195 vector <vector <Constraints >> demand(NumDays ,vector <Constraints >(

NumScen));//[MWh/day]

196

197 for(int d=0;d<NumDays ;++d)

198 {

199 for(int s=0;s<NumScen ;++s)

200 {

201 PVprod[d][s]=0;

202 WTprod[d][s]=0;

203 for(int n=0;n<NumDiscrete ;++n)

204 {

205 PVprod[d][s]+= etaPV*StochParams [0][d][s]*S[0][n]*z[0][n]*5;

206 if(StochParams [1][d][s]>Wmin && StochParams [1][d][s]<Wd)

207 {

208 WTprod[d][s]+= etaWT*qd*((pow(StochParams [1][d][s],3)-pow(

Wmin ,3))/(pow(Wd ,3))-pow(Wmin ,3))*S[1][n]*z[1][n]*24;

209 }

210 else if(StochParams [1][d][s]>=Wd && StochParams [1][d][s]<=Wmax

)

211 {

212 WTprod[d][s]+=qd*etaWT*S[1][n]*z[1][n]*24;

213 }

214 else //if(StochParams [1][d][s]<Wmin || StochParams [1][d][s]>

Wmax)

215 {

216 WTprod[d][s]+=0;

217 }

218 }

219 WTprod[d][s]-= fWT_export[d][s];

220 WTprod[d][s]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,true ,s+1);

221 PVprod[d][s]-= fPV_export[d][s];

222 PVprod[d][s]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,true ,s+1);

223

224 demand[d][s]= StochParams [3][d][s]-fPV_export[d][s]-fWT_export[d

][s]-f_import[d][s];

225 demand[d][s]. setDependentVariable (++ concount ,compgraph ::LEQ ,true

,s+1);

226 }

227 }

228

229 // Declaring objective function , one for each scenario s

65

D.1 Expected value problem

230 vector <Objective > obj(NumScen);//[$]

231

232 for(int s=0;s<NumScen ;++s)

233 {

234 obj[s]=0;

235 for(int i=0;i<techTypes ;++i)

236 { // Adding CAPEX for technologi i

237 for(int n=0;n<NumDiscrete ;++n)

238 {

239 obj[s]+=C[i][n]*z[i][n]*(1+xi[i]); //[$]

240 }

241

242 for(int d=0;d<NumDays ;++d)

243 {

244 obj[s]+= f_import[d][s]* StochParams [2][d][s]*365*30; //[$]

245 obj[s]-=(fPV_export[d][s]+ fWT_export[d][s])*FiT *365*30; //[$]

246 }

247 }

248 obj[s]. setDependentVariable (++ concount ,compgraph ::OBJ ,true ,s+1);

249 }

250 return NumScen;

251

252 }

66

D.2 Case study 1: Simple model of uncertainty with 1 design day

D.2 Case study 1: Simple model of uncertainty
with 1 design day

1 #include <iostream >

2 #include <string >

3 #include <vector >

4 #include "definitions.hpp"

5 #include "CompGraph.hpp"

6 #include "GenerateScenarios.hpp"

7

8 #include "inputmodel.hpp"

9

10 using namespace std;

11

12 int inputmodel(vector <double > &weights)

13 {

14 cout <<"This is the stochastic PV_wind_model without design days ,

just random variation around expected values: "<<endl;

15

16 bool automaticallyGenerateScenarios=true;

17 bool findEEVP = false;

18

19 // Defining input parameters

20 int techTypes =2;

21 // Nominal power model params

22 double Inom =0.00015; //[MW/ M] solar radiance intensity

23 double Wnom =7.5; //[m/s] wind speed

24

25 //Wind power model params

26 double Wmin =3.5; // [m/s]

27 double Wmax =25;

28 double Wd=13;

29 double qd=8; //[MW] for one wind turbine

30

31 // Efficiencies

32 double etaPV =0.15; //[-]

33 double etaWT =0.85;

34

35 //Grid parameters

36 double FiT =1.45; //feed -in tariff [$/MWh]

37 double OCgridNom =15; //price imported el from grid [$/MWh]

38 double demandNom =100; //MWh/day

39

40 // Technology cost parameteres ={PV,WT}

41 vector <double > C0 ={27000 ,49840000}; //$

42 vector <int > Smax ={1200000 ,14}; //Area PV and number of wind turbines

;

43 vector <int > S0={180 ,1}; // Reference value for cost function

44 vector <double > xi ={0.05 ,0.05}; // Maintenance cost (factor)

45 vector <double > sfi ={0.7 ,0.7}; //Cost scaling factor

46

47 int NumScen =0; // number of scenarios

48 int NumUncert =4; // solar intensity , wind speed , cost of el-import ,

demand

49 int NumDays =1; // number of days

50 int NumDiscrete =15; // number of discrete intervals

67

D.2 Case study 1: Simple model of uncertainty with 1 design day

51

52 // Convert binary 1st stage decision vars to discrete 2nd stage vars

53 vector <vector <double >> S(techTypes ,vector <double >(NumDiscrete)); //[

m] and [-] units of wind turbines

54 cout <<"The discrete size values are:"<<’\n’;

55 for(int i=0;i<techTypes ;++i)

56 {

57 cout <<"Technology "<<i+1<<’\n’;

58 for(int n=0;n<NumDiscrete ;++n)

59 {

60 S[i][n]=(n*Smax[i])/(NumDiscrete -1); // S_lower =0 and ommited

here

61 cout <<S[i][n] << ’\n’; // printing to check values

62 }

63 }

64 // Calculate capital cost for given discrete size value

65 vector <vector <double >> C(techTypes ,vector <double >(NumDiscrete));//[$

]

66 for(int i=0;i<techTypes ;++i)

67 { cout <<"Cost technology " << i <<’\n’;

68 for(int n=0;n<NumDiscrete ;++n)

69 {

70 C[i][n]=(1+xi[i])*C0[i]*pow(S[i][n]/S0[i],sfi[i]);

71 cout <<C[i][n]<<’\n’;// printing to check values

72 }

73 }

74 vector <vector <vector <double >>> StochParams(NumUncert);// Vector to

contain uncertain vars realizations

75

76 if (automaticallyGenerateScenarios)

77 {

78 int numUncertainParams=NumUncert;

79 vector <double > UncertainParamsMean(numUncertainParams);

80 vector <double > UncertainParamsDev(numUncertainParams);

81 vector <int > numParamRealisations(numUncertainParams);

82

83 UncertainParamsMean [0]= Inom; // solar intensity

84 UncertainParamsMean [1]= Wnom; //wind speed

85 UncertainParamsMean [2]= OCgridNom; // import price

86 UncertainParamsMean [3]= demandNom; // demand

87

88 UncertainParamsDev [0]=0.15* Inom;

89 UncertainParamsDev [1]=0.15* Wnom;

90 UncertainParamsDev [2]=0.15* OCgridNom;

91 UncertainParamsDev [3]=0.15* demandNom;

92

93 numParamRealisations [0]=6;

94 numParamRealisations [1]=6;

95 numParamRealisations [2]=6;

96 numParamRealisations [3]=6;

97

98

99 vector <double > uncertainParamRealisations;

100

101 NumScen=decomposition :: generateScenarios(decomposition ::NORMAL ,

102 numUncertainParams ,

103 numParamRealisations ,

68

D.2 Case study 1: Simple model of uncertainty with 1 design day

104 UncertainParamsMean ,

105 UncertainParamsDev ,

106 weights ,

107 uncertainParamRealisations);

108

109 for(int n=0;n<(NumUncert);++n)

110 {

111 StochParams[n]. resize(NumDays);

112 for(int d=0; d<NumDays ;++d)

113 {

114 StochParams[n][d]. resize(NumScen);

115 }

116 }

117 ofstream outfile("Scenarios.txt");

118 outfile << "Scenario;Probability;solarIntensity;WindSpeed;

GridPrice;Demand \n";

119 for(int d=0;d<NumDays ;++d)

120 {

121 cout <<"Day: "<< d<<endl;

122 for(int s=0; s<NumScen ;++s)

123 {

124 StochParams [0][d][s]= uncertainParamRealisations[s]; //solar

intensity [-]

125 StochParams [1][d][s]= uncertainParamRealisations[NumScen+s];

//wind speed [m/s]

126 StochParams [2][d][s]= uncertainParamRealisations[NumScen *2+s

]; //grid import price

127 StochParams [3][d][s]= uncertainParamRealisations[NumScen *3+s

]; // demand

128 cout <<StochParams [0][d][s]<<" -------"<<StochParams [1][d][s

]<<" -------"<<StochParams [2][d][s]<<" -------"<<StochParams [3][d

][s]<<’\n’;

129

130 outfile << s+1<<";"<<weights[s]<<";"<<StochParams [0][d][s]<<

";"<<StochParams [1][d][s]<<";"<<StochParams [2][d][s]<< ";"<<

StochParams [3][d][s]<<’\n’;

131 }

132 }

133 outfile.close ();

134 }

135

136 else

137 {

138 // generate by hand?

139 }

140 //1st stage variables

141 vector <vector <Variables >> z(techTypes ,vector <Variables >(NumDiscrete)

); // Binary variable ,

142 //on/off for size interval z to

capacity size S and capcost C

143 int varcount = -1;

144 int concount =-1;

145 char clabel [30];

146

147 for(int i=0;i<techTypes ;++i)

148 {

149 for(int n=0;n<NumDiscrete ;++n)

69

D.2 Case study 1: Simple model of uncertainty with 1 design day

150

151 {

152 sprintf(clabel ,"z[%d][%d]", i+1,n+1);

153 z[i][n]. setIndependentVariable(++varcount ,

154 compgraph ::BINARY ,

155 I(0,1),

156 0.,

157 -1, //first stage variable , does not belong to

specific scenario

158 clabel);

159 }

160 }

161

162 //2nd stage variables

163 //Set export and import of electricity , 2nd stage variables

164 vector <vector <Variables >> f_import(NumDays ,vector <Variables >(NumScen

)); //[MWh/day]

165 vector <vector <Variables >> f_PVexport(NumDays ,vector <Variables >(

NumScen)); //[MWh/day]

166 vector <vector <Variables >> f_WTexport(NumDays ,vector <Variables >(

NumScen));//[MWh/day]

167

168 for(int d=0;d<NumDays ;++d)

169 {

170 for(int s=0;s<NumScen ;++s)

171 {

172 sprintf(clabel ,"f_import [%d][%d]", d+1, s+1);

173 f_import[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

174 sprintf(clabel ,"f_PVexport [%d][%d]", d+1, s+1);

175 f_PVexport[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

176 sprintf(clabel ,"f_WTexport [%d][%d]", d+1, s+1);

177 f_WTexport[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

178 }

179 }

180 // Constraint involving 1st stage variables , make sure only one size

intercal zi is chosen per technology

181 vector <Constraints > zLim(techTypes);

182

183 for(int i=0;i<techTypes ;++i)

184 {

185 zLim[i]=-1;

186 for(int n=0;n<NumDiscrete ;++n)

187 {

188 zLim[i]+=z[i][n];

189 }

190 zLim[i]. setDependentVariable (++ concount ,compgraph ::EQUALITY ,false

,-1);

191 }

192

193 // Adding throughoutput capacity constraints

194 vector <vector <Constraints >> PVprod(NumDays ,vector <Constraints >(

NumScen)); //[MWh/day]

195 vector <vector <Constraints >> WTprod(NumDays ,vector <Constraints >(

NumScen));//[MWh/day]

70

D.2 Case study 1: Simple model of uncertainty with 1 design day

196 // Demand constraint , make sure imported el <= demand

197 vector <vector <Constraints >> demand(NumDays ,vector <Constraints >(

NumScen));//[MWh/day]

198

199 for(int d=0;d<NumDays ;++d)

200 {

201 for(int s=0;s<NumScen ;++s)

202 {

203 PVprod[d][s]=0;

204 WTprod[d][s]=0;

205 for(int n=0;n<NumDiscrete ;++n)

206 {

207 PVprod[d][s]+= etaPV*StochParams [0][d][s]*S[0][n]*z[0][n]*5; //

approx 5 hours of sun each day

208 if(StochParams [1][d][s]>Wmin && StochParams [1][d][s]<Wd)

209 {

210 WTprod[d][s]+= etaWT*qd*((pow(StochParams [1][d][s],3)-pow(

Wmin ,3))/(pow(Wd ,3))-pow(Wmin ,3))*S[1][n]*z[1][n]*24; //24 hours

of wind each day

211 }

212 else if(StochParams [1][d][s]>=Wd && StochParams [1][d][s]<=Wmax

)

213 {

214 WTprod[d][s]+=qd*etaWT*S[1][n]*z[1][n]*24; //24 hours of

wind each day

215 }

216 else //if(StochParams [1][d][s]<Wmin || StochParams [1][d][s]>

Wmax)

217 {

218 WTprod[d][s]+=0;

219 }

220 }

221 WTprod[d][s]-= f_WTexport[d][s];

222 WTprod[d][s]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,true ,s+1);

223 PVprod[d][s]-= f_PVexport[d][s];

224 PVprod[d][s]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,true ,s+1);

225

226 demand[d][s]= StochParams [3][d][s]-f_PVexport[d][s]-f_WTexport[d

][s]-f_import[d][s];

227 demand[d][s]. setDependentVariable (++ concount ,compgraph ::LEQ ,true

,s+1);

228 }

229 }

230 //

---//

231 //EEVP

232

233 if (findEEVP){

234 vector <Constraints >xEVP(techTypes);

235 xEVP [0]= S[0][9]; xEVP [1]= 0;

236 for (int i=0;i<techTypes;i++){

237 for (int j=0;j<NumDiscrete;j++){

238 xEVP[i] += z[i][j]*S[i][j];

239 }

71

D.2 Case study 1: Simple model of uncertainty with 1 design day

240 xEVP[i]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,false ,-1);

241

242 }

243 }

244 //

---//

245 // Declaring objective function , one for each scenario s

246 vector <Objective > obj(NumScen);//[$]

247

248 for(int s=0;s<NumScen ;++s)

249 {

250 obj[s]=0;

251 for(int i=0;i<techTypes ;++i)

252 { // Adding CAPEX for technologi i

253 for(int n=0;n<NumDiscrete ;++n)

254 {

255 obj[s]+=C[i][n]*z[i][n]*(1+xi[i]); //[$]

256 }

257 // Adding opex pre dy

258 for(int d=0;d<NumDays ;++d)

259 {

260 obj[s]+= f_import[d][s]* StochParams [2][d][s]*365*30; //[$]

261 obj[s]-=(f_PVexport[d][s]+ f_WTexport[d][s])*FiT *365*30; //[$]

262 }

263 }

264 obj[s]. setDependentVariable (++ concount ,compgraph ::OBJ ,true ,s+1);

265 }

266 return NumScen;

267 }

72

D.3 Case study 2: Accounting for seasonal variability using 4 design days

D.3 Case study 2: Accounting for seasonal vari-
ability using 4 design days

1 #include <iostream >

2 #include <string >

3 #include <vector >

4 #include "definitions.hpp"

5 #include "CompGraph.hpp"

6 #include "GenerateScenarios.hpp"

7

8 #include "inputmodel.hpp"

9

10 using namespace std;

11

12 int inputmodel(vector <double > &weights)

13 {

14 cout <<"This is the stochastic PV_wind_model with Design Days

implemented: "<<endl;

15 int techTypes =2;

16 //Set to true if you want seasonal weather changes for wind speed

and solar intensity

17 bool seasonalVariability=true;

18 bool automaticallyGenerateScenarios=true;

19 bool findEEVP = false;

20

21 // Defining input parameters

22 // Nominal power model params

23 double Inom =0.00015; //MW/ m solar radiance intensity

24 double Wnom =7.5; //[m/s] wind speed

25

26 //Wind power model params

27 double Wmin =3.5; // [m/s]

28 double Wmax =25; // [m/s]

29 double Wd=13; // [m/s]

30 double qd=8; //[MW] for one wind turbine

31

32 // Seasonal variability params

33 double minSun =0; double medSun =0; double maxSun =0; double minWind =0;

double medWind =0; double maxWind =0;

34

35 // Efficiencies

36 double etaPV =0.15; //[-]

37 double etaWT =0.85;

38

39 //Grid parameters

40 double FiT =1.5; //feed -in tariff [$/MWh]

41 double OCgridNom =15;// price imported el from grid [$/MWh]

42 double demandNom =100; //MWh/day

43

44 // Technology cost parameteres ={PV,WT}

45 vector <double > C0 ={27000 ,49840000}; //$

46 vector <int > Smax ={1200000 ,14}; //Area PV and number of wind turbines

;

47 vector <int > S0={180 ,1}; // Reference value for cost function

48 vector <double > xi ={0.05 ,0.05}; // Maintenance cost (factor)

49 vector <double > sfi ={0.7 ,0.7}; //Cost scaling factor

73

D.3 Case study 2: Accounting for seasonal variability using 4 design days

50

51 int NumScen =0; // number of scenarios

52 int NumUncert =4; // solar intensity , wind speed , cost of el-import ,

demand

53 int NumDesignDays =1; // number of design days , one for each season:

spring , summer , fall , winter

54 int designDayCount =90; // Number of days for each design day

55 int NumDiscrete =15; // number of discrete intervals

56

57 if(seasonalVariability)

58 {

59 NumDesignDays =4;

60

61 minSun = -0.2* Inom;

62 medSun = 0*Inom;

63 maxSun = 0.2* Inom;

64 minWind = -0.2* Wnom;

65 medWind = 0*Wnom;

66 maxWind = 0.3* Wnom;

67 }

68

69 struct season

70 {

71 double sun;

72 double wind;

73 int count;

74 };

75

76 struct season spring ={medSun ,maxWind ,designDayCount }; // SPRING -

medium sun , much wind

77 struct season summer ={maxSun ,minWind ,designDayCount };// SUMMER - much

sun , medium wind

78 struct season fall={medSun ,medWind ,designDayCount }; //FALL - medium

sun , much wind

79 struct season winter ={minSun ,medWind ,designDayCount };// WINTER -

little sun , medium wind

80

81 vector <struct season > AllSeasons ={winter ,spring ,summer ,fall};

82

83 // Convert binary 1st stage decision vars to discrete 2nd stage vars

84 vector <vector <double >> S(techTypes ,vector <double >(NumDiscrete)); //[

m] and [-] units of wind turbines

85 cout <<"The discrete size values are:"<<’\n’;

86 for(int i=0;i<techTypes ;++i)

87 {

88 cout <<"Technology "<<i+1<<’\n’;

89 for(int n=0;n<NumDiscrete ;++n)

90 {

91 S[i][n]=(n*Smax[i])/(NumDiscrete -1); // S_lower =0 and ommited

here

92 cout <<S[i][n] << ’\n’; // printing to check values

93 }

94 }

95 // Calculate capital cost for given discrete size value

96 vector <vector <double >> C(techTypes ,vector <double >(NumDiscrete));//[$

]

97 for(int i=0;i<techTypes ;++i)

74

D.3 Case study 2: Accounting for seasonal variability using 4 design days

98 { cout <<"Cost technology " << i <<’\n’;

99 for(int n=0;n<NumDiscrete ;++n)

100 {

101 C[i][n]=(1+xi[i])*C0[i]*pow(S[i][n]/S0[i],sfi[i]);//r*pow (1+r,

LifeTime)/(pow(1+r,LifeTime) -1);

102 cout <<C[i][n]<<’\n’;// printing to check values

103 }

104 }

105

106 vector <vector <vector <double >>> StochParams(NumUncert);// Vector to

contain uncertain vars realizations

107

108 if (automaticallyGenerateScenarios)

109 {

110 int numUncertainParams=NumUncert;

111 vector <double > UncertainParamsMean(numUncertainParams);

112 vector <double > UncertainParamsDev(numUncertainParams);

113 vector <int > numParamRealisations(numUncertainParams);

114

115 UncertainParamsMean [0]= Inom; // solar intensity

116 UncertainParamsMean [1]= Wnom; //wind speed

117 UncertainParamsMean [2]= OCgridNom; // import price

118 UncertainParamsMean [3]= demandNom; // demand

119

120 UncertainParamsDev [0]= Inom *0.15;

121 UncertainParamsDev [1]= Wnom *0.15;

122 UncertainParamsDev [2]= OCgridNom *0.15;

123 UncertainParamsDev [3]= demandNom *0.15;

124

125 numParamRealisations [0]=3;

126 numParamRealisations [1]=3;

127 numParamRealisations [2]=3;

128 numParamRealisations [3]=3;

129

130

131 vector <double > uncertainParamRealisations;

132

133 NumScen=decomposition :: generateScenarios(decomposition ::NORMAL ,

134 numUncertainParams ,

135 numParamRealisations ,

136 UncertainParamsMean ,

137 UncertainParamsDev ,

138 weights ,

139 uncertainParamRealisations);

140

141 for(int n=0;n<(NumUncert);++n)

142 {

143 StochParams[n]. resize(NumDesignDays);

144 for(int d=0; d<NumDesignDays ;++d)

145 {

146 StochParams[n][d]. resize(NumScen);

147 }

148 }

149 for(int d=0;d<NumDesignDays ;++d)

150 {

151 cout <<"Design day: "<< d+1<<endl;

152 for(int s=0; s<NumScen ;++s)

75

D.3 Case study 2: Accounting for seasonal variability using 4 design days

153 {

154 StochParams [0][d][s]= uncertainParamRealisations[s]+

AllSeasons[d].sun; // solar intensity [-]

155 StochParams [1][d][s]= uncertainParamRealisations[NumScen+s]+

AllSeasons[d].wind; //wind speed [m/s]

156 StochParams [2][d][s]= uncertainParamRealisations[NumScen *2+s

]; //grid import price

157 StochParams [3][d][s]= uncertainParamRealisations[NumScen *3+s

]; // demand

158 cout <<StochParams [0][d][s]<<" -------:"<<StochParams [1][d][s

]<<" -------:"<<StochParams [2][d][s]<<" -------:"<<StochParams [3][

d][s]<<’\n’;

159 }

160 }

161 }

162

163 else

164 {

165 // generate by hand?

166 }

167 //1st stage variables

168 vector <vector <Variables >> z(techTypes ,vector <Variables >(NumDiscrete)

); // Binary variable ,

169 //on/off for size interval z to

capacity size S and capcost C

170 int varcount = -1;

171 int concount =-1;

172 char clabel [30];

173

174 for(int i=0;i<techTypes ;++i)

175 {

176 for(int n=0;n<NumDiscrete ;++n)

177

178 {

179 sprintf(clabel ,"z[%d][%d]", i+1,n+1);

180 z[i][n]. setIndependentVariable(++varcount ,

181 compgraph ::BINARY ,

182 I(0,1),

183 0.,

184 -1, //first stage variable , does not belong to

specific scenario

185 clabel);

186 }

187 }

188

189 //2nd stage variables

190 //Set export and import of electricity , 2nd stage variables

191 vector <vector <Variables >> f_import(NumDesignDays ,vector <Variables >(

NumScen)); //[MWh/day]

192 vector <vector <Variables >> f_PVexport(NumDesignDays ,vector <Variables

>(NumScen)); //[MWh/day]

193 vector <vector <Variables >> f_WTexport(NumDesignDays ,vector <Variables

>(NumScen));//[MWh/day]

194

195 for(int d=0;d<NumDesignDays ;++d)

196 {

197 for(int s=0;s<NumScen ;++s)

76

D.3 Case study 2: Accounting for seasonal variability using 4 design days

198 {

199 sprintf(clabel ,"f_import [%d][%d]", d+1, s+1);

200 f_import[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

201 sprintf(clabel ,"f_PVexport [%d][%d]", d+1, s+1);

202 f_PVexport[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

203 sprintf(clabel ,"f_WTexport [%d][%d]", d+1, s+1);

204 f_WTexport[d][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,1000) ,0.,s+1,clabel);

205 }

206 }

207 // Constraint involving 1st stage variables , make sure only one size

intercal zi is chosen per technology

208 vector <Constraints > zLim(techTypes);

209

210 for(int i=0;i<techTypes ;++i)

211 {

212 zLim[i]=-1;

213 for(int n=0;n<NumDiscrete ;++n)

214 {

215 zLim[i]+=z[i][n];

216 }

217 zLim[i]. setDependentVariable (++ concount ,compgraph ::EQUALITY ,false

,-1);

218 }

219

220 // Adding throughoutput capacity constraints

221 vector <vector <Constraints >> PVprod(NumDesignDays ,vector <Constraints

>(NumScen)); //[MWh/day]

222 vector <vector <Constraints >> WTprod(NumDesignDays ,vector <Constraints

>(NumScen));//[MWh/day]

223 // Demand constraint , make sure imported el <= demand

224 vector <vector <Constraints >> demand(NumDesignDays ,vector <Constraints

>(NumScen));//[MWh/day]

225

226 for(int d=0;d<NumDesignDays ;++d)

227 {

228 for(int s=0;s<NumScen ;++s)

229 {

230 PVprod[d][s]=0;

231 WTprod[d][s]=0;

232 for(int n=0;n<NumDiscrete ;++n)

233 {

234 PVprod[d][s]+= etaPV*StochParams [0][d][s]*S[0][n]*z[0][n]*5;

235 // WTprod[d][s]+= etaWT*qd*((pow(StochParams [1][d][s],3)-pow(

Wmin ,3))/(pow(Wd ,3)-pow(Wmin ,3)))*S[1][n]*z[1][n]*24*3600;

236 // WTprod[d][s]+= etaWT*qd*((StochParams [1][d][s]-Wmin)/(Wd -Wmin

))*S[1][n]*z[1][n]*24*3600;

237 if(StochParams [1][d][s]>Wmin && StochParams [1][d][s]<=Wd)

238 {

239 WTprod[d][s]+= etaWT*qd*((pow(StochParams [1][d][s],3)-pow(

Wmin ,3))/(pow(Wd ,3)-pow(Wmin ,3)))*S[1][n]*z[1][n]*24;

240 }

241 else if(StochParams [1][d][s]>Wd && StochParams [1][d][s]<=Wmax)

242 {

243 WTprod[d][s]+= etaWT*qd*S[1][n]*z[1][n]*24;

77

D.3 Case study 2: Accounting for seasonal variability using 4 design days

244 }

245 else //if(StochParams [1][d][s]<Wmin || StochParams [1][d][s]>

Wmax)

246 {

247 WTprod[d][s]+=0;

248 }

249 }

250 PVprod[d][s]-= f_PVexport[d][s];

251 PVprod[d][s]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,true ,s+1);

252 WTprod[d][s]-= f_WTexport[d][s];

253 WTprod[d][s]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,true ,s+1);

254

255 demand[d][s]= StochParams [3][d][s]-f_PVexport[d][s]-f_WTexport[d

][s]-f_import[d][s];

256 demand[d][s]. setDependentVariable (++ concount ,compgraph ::LEQ ,true

,s+1);

257 }

258 }

259

260 //

---//

261 //EEVP

262 if (findEEVP){

263 vector <Constraints >xEVP(techTypes);

264 xEVP [0]= S[0][10]; xEVP [1]= 0;

265 for (int i=0;i<techTypes;i++){

266 for (int j=0;j<501;j++){

267 xEVP[i] += z[i][j]*S[i][j];

268 }

269 xEVP[i]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,false ,-1);

270

271 }

272 }

273 //

---//

274 // Declaring objective function , one for each scenario s

275 vector <Objective > obj(NumScen);//[$]

276

277 for(int s=0;s<NumScen ;++s)

278 {

279 obj[s]=0;

280 for(int i=0;i<techTypes ;++i)

281 { // Adding CAPEX for technologi i

282 for(int n=0;n<NumDiscrete ;++n)

283 {

284 obj[s]+=C[i][n]*z[i][n]; //[$]

285 }

286 // Adding opex pre dy

287 for(int d=0;d<NumDesignDays ;++d)

288 {

289 obj[s]+= AllSeasons[d]. count*f_import[d][s]* StochParams [2][d][s

]*30; //[$]

78

D.3 Case study 2: Accounting for seasonal variability using 4 design days

290 obj[s]-= AllSeasons[d]. count*(f_PVexport[d][s]+ f_WTexport[d][s

])*FiT *30; //[$]

291 }

292 }

293 obj[s]. setDependentVariable (++ concount ,compgraph ::OBJ ,true ,s+1);

294 }

295 return NumScen;

296 }

79

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

D.4 Case study 3: Stochastic problem with dy-
namic model and energy storage

1 #include <iostream >

2 #include <string >

3 #include <vector >

4 #include <fstream >

5 #include <sstream >

6 #include "definitions.hpp"

7 #include "CompGraph.hpp"

8 #include "GenerateScenarios.hpp"

9

10 #include "inputmodel.hpp"

11

12 using namespace std;

13

14 int inputmodel(vector <double > &weights)

15 {

16 // Controls

17 //bool meanvalueproblem = false;

18 bool findEEVP = false; bool battery = true;

19 bool importFile = true; bool printFile = true; string filepath = "

ScenarioSet3.txt";

20

21 //

---//

22 // Defining Model Parameters

23 int techTypes =2; //Power generation methods: Solar and

Wind

24 int numDiscrete = 15; // number of discrete intervals

25

26 //Solar power parameters

27 double PV_eff = 0.15; // Efficiency [-]

28 int solarHours = 5; // Solar hours per day [h]

29

30 //Wind power parameters

31 double Wmin = 3.5; // Minimum wind speed [m/s]

32 double Wmax = 25; // Maximal wind speed [m/s]

33 double Wd = 13; //

34 double qd = 8; // Power gen per wind turbine [MW/

turbine]

35 double WT_eff = 0.85; // Efficiency

36 int windHours = 24; // Windy hours per day [h]

37

38 //Grid and end user parameters

39 double FiT = 1.45; // Feed -in-Tariff [$/MWh]

40 double elPrice = 1.45; // Price recieved from covering

demand

41

42 // Energy Storage Parameters; https :// www.nrel.gov/docs/fy19osti

/73222. pdf

43 double batteryCost = 100000; // $/MWh (Optimistic estimate , 100$/

kwh)

44 // double batteryCost = 0; // $/MWh (Optimistic estimate , 100$/kwh)

45 // Lifetime?

80

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

46 //Fixed and variable maintenance costs?

47 double ES_max = 200; // Capacity of Energy storage

48 double ES_eff_storage = 0.99; // Representing eergy storage self

discharge losses

49 double ES_eff_ch = 0.99; // Energy storage charging losses

50 double ES_eff_dis = 0.99; // Energy storage discharging losses

51

52 //Cost Parameters

53 vector <double > C0 = {27000 ,49840000}; // Cost of first

installation [$]

54 vector <int > Smax = {1200000 ,14}; // Max area PV and max number

of wind turbines;

55 vector <int > S0 = {180 ,1}; // Reference value for cost

function

56 vector <double > xi = {0.05 ,0.05}; // Maintenance cost factor

57 vector <double > sfi = {0.7 ,0.7}; // Cost scaling factor

58 int lifetime = 30; // Assumed lifetime [years]

59 double r = 0.1; // Annuity factor

60

61 //

---//

62 // Scenario Generation

63 int numScen; // Number of scenarios

64 int numUncertainParams; // solar int , wind speed , cost of el-

import , demand

65 int numDays; // Number of timesteps/days

66 vector <vector <vector <double >>>stochParams (1);

67 /*if(meanvalueproblem)

68 //MVP {

69 numScen =1; numUncertainParams =4; numDays =4;

70 stochParams.resize(numUncertainParams);

71 vector <vector <double >>p1 =

{{0.001} ,{0.0015} ,{0.002} ,{0.0015}}; // solar

72 vector <vector <double >>p2 = {{11.25} ,{15} ,{2.5} ,{11.25}};

// wind

73 vector <vector <double >>p3 = {{5} ,{4} ,{3} ,{4}}; //

price

74 vector <vector <double >>p4 = {{600} ,{400} ,{400} ,{600}};

// demand

75 stochParams = {p1,p2 ,p3,p4}; // Parameters

76 weights.push_back (1); // Determinstic -> 1 scenario , 100%

probability

77 }

78 else*/ if (importFile) // stochastic

79 {

80 // Initializing indices

81 int p = 0; int t = 0; int s = 0;

82 string cell; string line;

83

84 // Counters for col and row in txt file

85 int row =0; int col =0;//

86

87 // Opening file

88 ifstream file;

89 file.open(filepath);

90 if (!file.is_open ()){

81

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

91 cout <<"Error opening file"<<endl;

92 return -1;

93 }else{

94 cout <<"CSV input file opened successfully"<<endl;

95

96 }

97 if (printFile){

98 cout << "Printing file.. " << endl;

99 }

100 //File operations

101 while (getline(file ,line)){

102 if (printFile){

103 cout <<line <<endl;

104 }

105 if (row <= 3) {

106 if (row == 1) {

107 stringstream ss(line);

108 while (getline(ss , cell , ’\t’)) {

109 if (col == 0) { numUncertainParams = stoi(cell

); }

110 if (col == 1) { numDays = stoi(cell); }

111 if (col == 2) { numScen = stoi(cell); }

112 col ++;

113 }

114 stochParams.resize(numUncertainParams);

115 for (int p=0;p<numUncertainParams;p++)

116 {

117 stochParams[p]. resize(numDays);

118 for (int t=0;t<numDays;t++)

119 {

120 stochParams[p][t]. resize(numScen);

121 }

122 }

123 weights.resize(numScen);

124 }

125 row ++;

126 continue;

127 }

128 p = 0; t = 0; col = 0;

129 stringstream ss(line);

130 while (getline(ss,cell ,’\t’)){

131 if(col !=0){

132 stochParams[p][t][s]=stod(cell);

133 t++;

134 if(t%numDays ==0){

135 p++;

136 t=0;

137 }

138 }else{

139 weights[s]=stod(cell);

140 }

141 col ++;

142 }

143 s++;

144 }

145 file.close();

146

82

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

147 }

148

149 // Printing Values of scenarios

150 for(int s=0; s<numScen ;++s)

151 {

152 cout <<"Scenario: "<<s+1 <<" \t probability:"<< weights[s]<<

endl;

153 for(int t=0;t<numDays;t++)

154 {

155 cout <<"Time step: "<< t+1<<"\t";

156 cout <<stochParams [0][t][s]<<"\t "<<stochParams [1][t][s]<<"\t "

<<stochParams [2][t][s]<< "\t "<<stochParams [3][t][s]<<endl;

157 }

158 }

159 cout <<"

--

"<<endl;

160

161 //

---//

162 // Creation of a discrete set of variables for 1st stage decision

variables

163

164

165 //Power Generation

166 vector <vector <double >> z_d(techTypes ,vector <double >(numDiscrete));

//[m] and [-] units of wind turbines

167 cout <<"The discrete size values are:"<<’\n’;

168 for(int i=0;i<techTypes ;++i)

169 {

170 cout <<"Technology "<<i+1<<’\n’;

171 for(int n=0;n<numDiscrete ;++n)

172 {

173 z_d[i][n] = (n*Smax[i])/(numDiscrete -1); // S_lower =0 and

ommited here

174 cout <<z_d[i][n] << ’\n’; // printing to check values

175 }

176 }

177

178 // Energy Storage

179 vector <double >ES_d(numDiscrete);

180 if(battery){

181 cout <<"Battery"<<endl;

182 for (int n=0;n<numDiscrete;n++){

183 ES_d[n] = (n*ES_max)/(numDiscrete -1);

184 cout << ES_d[n]<<endl;

185 }

186 }

187 // Capital cost related to the discrete sets of variables.

188 //Power generation

189 vector <vector <double >> C(techTypes ,vector <double >(numDiscrete));//

[$]

190 for(int i=0;i<techTypes ;++i)

191 { cout <<"Capital cost of technology " << i <<’\n’;

192 for(int n=0;n<numDiscrete ;++n)

193 {

83

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

194 C[i][n] = (1+xi[i])*C0[i]*pow(z_d[i][n]/S0[i],sfi[i]);//

r*pow (1+r,LifeTime)/(pow (1+r,LifeTime) -1);

195 cout <<C[i][n]<<’\n’; // printing to check

values

196 }

197 }

198

199 // Energy storage

200 vector <double >C_ES(numDiscrete);

201 if(battery){

202 cout << "Capital Cost of Battery "<<endl;

203 for (int n=0;n<numDiscrete;n++){

204 C_ES[n] = batteryCost*pow(ES_d[n]/1 ,0.6);

205 cout <<C_ES[n]<<endl;

206 }

207 }

208 cout <<"

--

"<<endl;

209

210 //

---//

211 // 1st Stage Variables; continuous variables as a discrete set using

binary variables

212 // Initializng Variables

213 int varcount = -1;

214 int concount = -1;

215 char clabel [30];

216

217 // Power generation

218 vector <vector <Variables >> z_b(techTypes ,vector <Variables >(

numDiscrete));

219 for(int i=0;i<techTypes ;++i)

220 {

221 for(int n=0;n<numDiscrete ;++n)

222 {

223 sprintf(clabel ,"z_b[%d][%d]", i+1,n+1);

224 z_b[i][n]. setIndependentVariable (++ varcount ,compgraph ::

BINARY ,I(0,1) ,0.,-1, clabel);

225 }

226 }

227

228 // Energy Storage

229 vector <Variables >ES_b(numDiscrete);

230 if(battery){

231 for (int n=0;n<numDiscrete;n++){

232 sprintf(clabel , "ES_b[%d]",n+1);

233 ES_b[n]. setIndependentVariable (++ varcount ,compgraph ::BINARY ,I

(0,1) ,0.,-1,clabel);

234 }

235 }

236

237

238 //

---//

84

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

239 // 2nd Stage Variables: Variables needed for energy balances

240 // Power generation flows

241 vector <vector <Variables >> f_PV(numDays ,vector <Variables >(numScen))

; //[MWh/day]

242 vector <vector <Variables >> f_WT(numDays ,vector <Variables >(numScen))

; //[MWh/day]

243 // Export and import flows

244 vector <vector <Variables >> f_surplus(numDays ,vector <Variables >(

numScen)); //[MWh/day]

245 vector <vector <Variables >> f_deficit(numDays ,vector <Variables >(

numScen)); //[MWh/day]

246 // Energy storage: Mean daily charge and discharge flows

247 vector <vector <Variables >>f_charge(numDays ,vector <Variables >(

numScen)); //[MWh/day]

248 vector <vector <Variables >>f_discharge(numDays ,vector <Variables >(

numScen)); //[MWh/day]

249 // Energy storage: State of charge

250 vector <vector <Variables >>SoC(numDays ,vector <Variables >(numScen));

//[MWh]

251

252 for(int t=0;t<numDays ;++t)

253 {

254 for(int s=0;s<numScen ;++s)

255 {

256 sprintf(clabel ,"f_PV[%d][%d]", t+1, s+1);

257 f_PV[t][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,10000) ,0.,s+1,clabel);

258 sprintf(clabel ,"f_WT[%d][%d]", t+1, s+1);

259 f_WT[t][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,10000) ,0.,s+1,clabel);

260 sprintf(clabel ,"f_surplus [%d][%d]", t+1, s+1);

261 f_surplus[t][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,10000) ,0.,s+1,clabel);

262 sprintf(clabel ,"f_deficit [%d][%d]", t+1, s+1);

263 f_deficit[t][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,10000) ,0.,s+1,clabel);

264 if(battery){

265 sprintf(clabel ,"f_charge [%d][%d]", t+1, s+1);

266 f_charge[t][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,10000) ,0.,s+1,clabel);

267 sprintf(clabel ,"f_discharge [%d][%d]", t+1, s+1);

268 f_discharge[t][s]. setIndependentVariable (++ varcount ,

compgraph ::CONTINUOUS ,I(0 ,10000) ,0.,s+1,clabel);

269 sprintf(clabel ,"State of charge [%d][%d]", t+1, s+1);

270 SoC[t][s]. setIndependentVariable (++ varcount ,compgraph ::

CONTINUOUS ,I(0 ,10000) ,0.,s+1,clabel);

271 }

272 }

273 }

274

275 //

---//

276 // Constraints necessary for binary variables: Only one positive per

set of discrete variables

277

278 // Power Generation

85

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

279 vector <Constraints > zLim(techTypes);

280

281 for(int i=0;i<techTypes ;++i)

282 {

283 zLim[i]=-1;

284 for(int n=0;n<numDiscrete ;++n)

285 {

286 zLim[i] += z_b[i][n];

287 }

288 zLim[i]. setDependentVariable (++ concount ,compgraph ::EQUALITY ,

false ,-1);

289 }

290

291 // Energy Storage

292 Constraints ES_lim;

293 if(battery)

294 {

295 ES_lim = -1;

296 for (int n=0;n<numDiscrete;n++){

297 ES_lim += ES_b[n];

298 }

299 ES_lim.setDependentVariable (++ concount ,compgraph ::EQUALITY ,false

,-1);

300 }

301 //

---//

302 //EEVP

303 if (findEEVP){

304 vector <Constraints >xEVP(techTypes);

305 xEVP [0]= z_d [0][5]; xEVP [1]= 0;

306 for (int i=0;i<techTypes;i++){

307 for (int j=0;j<501;j++){

308 xEVP[i] += z_b[i][j]*z_d[i][j];

309 }

310 xEVP[i]. setDependentVariable (++ concount ,compgraph ::EQUALITY

,false ,-1);

311

312 }

313 }

314 //

---//

315 // Model Constraints

316 // Constraints related to installation capacities

317 // Power generation by PV

318 vector <vector <Constraints >> PVprod(numDays ,vector <Constraints >(

numScen)); //[MWh/day]

319

320 for(int t=0;t<numDays;t++)

321 {

322 for(int s=0;s<numScen ;++s)

323 {

324 PVprod[t][s]=0;

325 for(int n=0;n<numDiscrete ;++n)

326 {

327 PVprod[t][s] += PV_eff*stochParams [0][t][s]*z_d [0][n]*z_b

86

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

[0][n]* solarHours;

328 }

329 PVprod[t][s] -= f_PV[t][s];

330 PVprod[t][s]. setDependentVariable (++ concount ,compgraph ::

EQUALITY ,true ,s+1);

331 }

332 }

333

334 // Power generation by Wind

335 vector <vector <Constraints >> WTprod(numDays ,vector <Constraints >(

numScen)); //[MWh/day]

336

337 for(int t=0;t<numDays;t++)

338 {

339 for(int s=0;s<numScen ;++s)

340 {

341 WTprod[t][s]=0;

342 for(int n=0;n<numDiscrete ;++n)

343 {

344 if(stochParams [1][t][s]>Wmin && stochParams [1][t][s]<Wd)

345 {

346 WTprod[t][s] += WT_eff*qd*(pow(stochParams [1][t][s],3)-

pow(Wmin ,3))/(pow(Wd ,3)-pow(Wmin ,3))*z_d [1][n]*z_b [1][n]* windHours

;

347 }

348 if(stochParams [1][t][s]>=Wd && stochParams [1][t][s]<=Wmax)

349 {

350 WTprod[t][s] += qd*WT_eff*z_d [1][n]*z_b [1][n]* windHours

;

351 }

352 else //if(stochParams [1][t][s]<Wmin || stochParams [1][t][s

]>Wmax)

353 {

354 WTprod[t][s] += 0;

355 }

356 }

357

358 WTprod[t][s] -= f_WT[t][s];

359 WTprod[t][s]. setDependentVariable (++ concount ,compgraph ::

EQUALITY ,true ,s+1);

360 }

361 }

362

363 // Battery State of Charge , charging and discharging

364 vector <vector <Constraints >> ES_SoC(numDays ,vector <Constraints >(

numScen));

365 vector <vector <Constraints >> ES_charging(numDays ,vector <

Constraints >(numScen));

366 vector <vector <Constraints >> ES_discharging(numDays ,vector <

Constraints >(numScen));

367 vector <vector <Constraints >> ES_charging2(numDays ,vector <

Constraints >(numScen));

368 vector <vector <Constraints >> ES_discharging2(numDays ,vector <

Constraints >(numScen));

369

370 if(battery){

371 for(int t=0;t<numDays;t++)

87

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

372 {

373 for(int s=0;s<numScen;s++)

374 {

375 ES_SoC[t][s] = 0;

376 ES_charging[t][s] = 0;

377 ES_discharging[t][s] = 0;

378 ES_charging2[t][s] = 0;

379 ES_discharging2[t][s] = 0;

380 for(int n=0;n<numDiscrete;n++){

381 ES_SoC[t][s] -= ES_b[n]*ES_d[n];

382 ES_charging[t][s] -= ES_b[n]*ES_d[n];

383 }

384 if(t!=0){

385 ES_charging[t][s] += SoC[t-1][s];

386 ES_discharging[t][s] -= SoC[t-1][s];

387 }

388 ES_SoC[t][s] += SoC[t][s];

389 ES_charging[t][s] += f_charge[t][s]* ES_eff_ch;

390 ES_discharging[t][s] += f_discharge[t][s]/ ES_eff_dis;

391 ES_charging2[t][s] -= f_surplus[t][s];

392 ES_discharging2[t][s] -= f_deficit[t][s];

393 ES_charging2[t][s] += f_charge[t][s];

394 ES_discharging2[t][s] += f_discharge[t][s];

395

396 ES_SoC[t][s]. setDependentVariable (++ concount ,compgraph ::

LEQ ,true ,s+1);

397 ES_charging[t][s]. setDependentVariable (++ concount ,

compgraph ::LEQ ,true ,s+1);

398 ES_discharging[t][s]. setDependentVariable (++ concount ,

compgraph ::LEQ ,true ,s+1);

399 ES_charging2[t][s]. setDependentVariable (++ concount ,

compgraph ::LEQ ,true ,s+1);

400 ES_discharging2[t][s]. setDependentVariable (++ concount ,

compgraph ::LEQ ,true ,s+1);

401 }

402 }

403 }

404

405 // Energy balance to satisfy demand

406 vector <vector <Constraints >> energyBalance(numDays ,vector <

Constraints >(numScen)); //[MWh/day]

407

408 for(int t=0;t<numDays ;++t)

409 {

410 for(int s=0;s<numScen ;++s)

411 {

412 energyBalance[t][s] = 0;

413 energyBalance[t][s] += stochParams [3][t][s];

414 energyBalance[t][s] -= f_PV[t][s];

415 energyBalance[t][s] -= f_WT[t][s];

416 energyBalance[t][s] -= f_deficit[t][s];

417 energyBalance[t][s] += f_surplus[t][s];

418 energyBalance[t][s]. setDependentVariable (++ concount ,compgraph

::EQUALITY ,true ,s+1);

419 }

420 }

421

88

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

422 // Energy balance for Battery

423 vector <vector <Constraints >> energyBalance_Battery(numDays ,vector <

Constraints >(numScen));

424

425 if(battery){

426 for(int t=0;t<numDays ;++t)

427 {

428 for(int s=0;s<numScen ;++s)

429 {

430 energyBalance_Battery[t][s] = 0;

431 energyBalance_Battery[t][s] += SoC[t][s];

432 if(t!=0)

433 {

434 energyBalance_Battery[t][s] -= SoC[t-1][s]*

ES_eff_storage;

435 }

436 energyBalance_Battery[t][s] -= f_charge[t][s]* ES_eff_ch;

437 energyBalance_Battery[t][s] += f_discharge[t][s]*(1/

ES_eff_dis);

438 energyBalance_Battery[t][s]. setDependentVariable (++ concount ,

compgraph ::EQUALITY ,true ,s+1);

439 }

440 }

441 }

442

443 //

---//

444 // Objective function

445 vector <Objective > obj(numScen);//[$]

446

447 for(int s=0;s<numScen ;++s)

448 {

449 obj[s]=0;

450 for(int i=0;i<techTypes ;++i)

451 {

452 for(int n=0;n<numDiscrete ;++n)

453 {

454 obj[s] += C[i][n]*z_b[i][n]; // CapEx[$]

455 }

456 }

457 if(battery){

458 for (int n=0;n<numDiscrete;n++)

459 {

460 obj[s] += C_ES[n]*ES_b[n];

461 }

462 }

463 for(int t=0;t<numDays ;++t)

464 {

465 obj[s]-=(stochParams [3][t][s])*elPrice *52*30; //

OpEx: Earnings for covering demand[$]

466 if(battery){

467 obj[s]+=(f_deficit[t][s]-f_discharge[t][s])*stochParams [2][t

][s]*52*30; // OpEx: Cost for energy deficit[$]

468 obj[s]-=(f_surplus[t][s]-f_charge[t][s])*elPrice *52*30; //

OpEx: Earnings for energy surplus[$]

469 }else{

89

D.4 Case study 3: Stochastic problem with dynamic model and energy storage

470 obj[s]+= f_deficit[t][s]* stochParams [2][t][s]*52*30; //

OpEx: Cost for energy deficit[$]

471 obj[s]-= f_surplus[t][s]* elPrice *52*30;

472 }

473 } // f_import=f_deficit -F_discharge f_export =f_surplus -

f_charge

474 obj[s]. setDependentVariable (++ concount ,compgraph ::OBJ ,true ,s+1);

475 }

476

477 return numScen;

478

479 }

90

	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Work allocation
	Motivation
	Objective and Scope
	Structure of the report

	Optimization methodologies
	Introduction to optimization
	Mixed-Integer Programming - MIP
	Stochastic programming

	Methodology
	GOSSIP software
	A worked out example: Farmer's Problem

	Renewable Energy System (RES)
	Case studies
	Case study 1: Simple model of uncertainty with 1 design day
	Case study 2: Accounting for seasonal variability using 4 design days
	Case study 3: Stochastic problem with dynamic model and energy storage

	Results
	Case study 1: Simple model of uncertainty with 1 design day
	Case study 2: Accounting for seasonal variability using 4 design days
	Case study 3: Stochastic problem with dynamic model and energy storage

	Discussion
	Conclusions and future Work
	Calculations
	Scenarios for case study 1 and 2
	Scenarios case study 1 and 2

	Scenario set for case study 3
	C++ code
	Expected value problem
	Case study 1: Simple model of uncertainty with 1 design day
	Case study 2: Accounting for seasonal variability using 4 design days
	Case study 3: Stochastic problem with dynamic model and energy storage

