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1 Introduction

Motivation: Why is this work important?

Working with complex cases needs to have powerful tools! Considering the huge
models for industrial problems or even an experimental model which has complexity,
one can think of implementing Model Predictive Controller(MPC'). The model based
controllers needs a very good model to be able to perform an acceptable performance
for control. These controllers solve a dynamic optimization problem to control
the plant. But sometimes increasing the number of variables in the optimization
problem results in failing the solvers to solve the problem or might cause failure
because of using a inappropriate method. Introducing Julia programming language
as a smooth and fast high level language made some people to think about doing
scientific computation problems with julia. The provided features by julia make the
producing a software for MPC easier. Features like multiple dispatch or creating
packages.

This work is important because it will base a background for a bigger projects in
julia such that different features can be added to the package once it is created even
for a very basic problem. This project considers creating a package for MPC which
is able to work with different models and situations.

Abstract

Creating a package in julia for controlling with MPC is
considered. To build the package, first a bioreactor has
been taken as case study to write the MPC code based
on that. Afterwards the scripts were transformed to take
the function form and the package was created. An in-
troduction for installing the package was presented and
different commands were introduced for user to use the
package. In the end the package was tested with differ-
ent situations which was successful. Finally the package
is published on GitHub as PkgMPC' and is available to
public.



https://github.com/Amirrezz94/PkgMPC.jl/

2 An introduction to MPC and Orthogonal Collocation

The work is considered as creating a package in julia to control with MPC. So
before starting the work an introduction to MPC will be presented to make sure that
everything is covered. Also, There will be an introduction to Orthogonal Collocation
method as the main method which is used in MPC code. Note that both of these
two topics are highly extensive and it cannot be a full lecture on them which is out
of scope of this report. In the end a brief introduction of the case study which was
used for setting up the MPC will be given.

2.1 Model Predictive Controller (MPC)

2.1.1 How does it work?

As it can be guessed by the name, the Model Predictive Controller (MPC) uses a
model to predict future in order to make decision for manipulated variables. Also it
should be noted that for having a reliable MPC, one needs not a perfect, but a very
good model such that the outputs can be extracted somehow from the input.

Found by solving a
PAST FUTURE z dynamic optimization problem
or

Pat

A schematic of MPC Prediction Horizon
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Figure 1: Two figures for the prediction horizon and the procedure of MPC working

Source: Professor Jaschke’s Slides in TKP4555,as Nonlinear MPC module

As it can be seen from the 1, the MPC sees the past for model and predicting future
bu solving a dynamic optimization problem. The MPC does that by changing the
available input(s) to the plant. If it was a perfect model, MPC could solve the
optimization problem only once and find the best input trajectory, but it is not.
So, it would not be wise if we optimize the plant for the whole time once, instead
there is a idea called prediction horizon which resolve that problem. The idea is to
break simulation period by picking the first NFE parts pf simulation and solve the
optimization problem with them. Once the optimal input vector is obtained, one
can use the first element of it as the input to the plant and then it just needs to
shift the window one time forward in time (finite element) and repeat these steps
until the simulation horizon finished.

2.1.2 What Does It Control?

Considering all of these concepts, one might ask ”So beside all of these theories,
What does a MPC control?”.The answer is quite obvious: It controls the objective




function! The objective function can be chosen from a range of option which makes
different types of MPCs such as set point tracker MPC or Economic MPC which
controls the costs directly. An example of a set point tracker is shown in2. It also
has a term called Input Usage Penalty which is used to prevent MPC to have big
jumps in input usage in order to have a more robust MPC. THis might happen
when input needs to be changed considerably and heer is the place that one should
prevent MPC to make too big changes in input.
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Figure 2: An example of the objective function for MPC, the sum function are for State tracking,
input setpoint tracking and input usage penalty respectfully

Source: Professor Jaschke’s Slides in TKP4555,as Nonlinear MPC module

The regularization terms made for MPC make the answer of MPC unique and help
MPC to find the answer while it is stable. The parameters Q, R; and Ry are called
tuning parameters. The order of magnitude that they have defines the priorities for
MPC in satisfying the objective function. For example if Q is considerably greater
than R;, it means that tracking the set points is much more important for MPC
than the other two terms, but it does not mean that MPC will forget those terms.
There will be a vast area of information about MPC which are expanding everyday!
But considering the purpose of this project, it will be enough until now but it is
advised to read them by readers themselves.

2.2 Orthogonal Collocation on Finite Elements

As it was mentioned earlier, the MPC should solve a dynamic optimization problem
which means that there are some differential equations in the problem which need
to be translated in a way that the solver can handle. So there should be a method
for translating those equation for solver. There are a range of different methods for
that such as Single Shooting, Multiple Shooting or Orthogonal Collocation.

As a brief introduction to Orthogonal collocation, one can keep the fact in mind that
in shooting based methods there is an integrator which integrates the differential
equations and feed them into optimizer. But it can be also done by optimizer itself.
The idea of letting the optimizer do the integration also is the philosophy behind
Orthogonal Collocation method.(The concept is taken from Biegler 2010)




2.2.1 Philosophy

As it was mentioned in previous part, in the collocation method the optimizer also
handle the integration of differential equations beside optimizing. This is done by
approximating the solution by a polynomial of order K. Considering the differential
equation as what is shown below:

Z = f(2Z) (1)
One can approximate the solution by:
1
Z(t)~ A+ Bt+Ct* + th3 (2)

Which will create some other points between ¢, and ¢y based on the order of poly-
nomial. It can be shown graphically as what is shown in Figure 3.
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Figure 3: The arrangement of collocation points to approximate the solution by e set of polynomials

Source: Professor Biegler’s slides in TKP4555 Nonlinear MPC module

Neglecting the proof, one can show that using this method would result in having
the solution in the form that Equation 3 shows.

A Zy 0
Zs Zo Zs

— M |~ 3
Z3 Zy + Z3 (3)

Where M is a matrix of constants which depends on the chosen Lagrangian poly-
nomial like Radau, Legendre or so on. Once one have the matrix M, it would be
possible to "translate” the differential equations into an acceptable form for optim-
izer. Note that this method will make the size of optimization problem considerably




greater than the one in shooting methods for example. In other words one can trade
non-linearity with the optimization problem size by using collocation method.

As the other numerical methods, the orthogonal collocation method will have a big
error if it is applied on a long period, say from the beginning to the end of simulation
horizon. Instead, one can consider applying this method on finite elements which
improve the accuracy very much. There is always the option of having more finite
element than collocation method or having more collocation points with less finite
elements where the first idea seems to be more popular in academia.

2.3 Case Study: A Biochemical Reactor

It would be beneficial if one starts writing the code aiming for solving a problem. In
that way one can write and test the written code with the case as toy problem and
generalized the code afterwards. The case study for this project is a simple model
of a bioreactor which has one input and one output and has two components named
21 and x5. A schematic of the reactor is shown in Figure 4.
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Figure 4: The bio reactor schematic with the input and output

Source: Kuure-Kinsey et al. 2005

The model for the reactor can be summarized what is shown below:

ﬂmawa
monod — - . 4
Hmonod = 77— (4)
dx
d_tl = —Dzy + pxy = (u— D)xy (5)
dx T
o = Dleay —w2) = 57 (6)

and the control problem can be shown as:
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Figure 5: The setpoint tracking MPC problem

Source: Professor Jaschke’s Slides in TKP4555,as Nonlinear MPC module

Considering the model and the MPC problem, one can comprehend that there is a
dynamic optimization problem which needs to be solved. For the rest of the report
there is going to be the explanation of developing a package in julia which is able
to solve this problem.
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3 Calculation Procedure

3.1 Package Structure

The package is constructed with three main modules with two other complementary
files where the parameters are loaded and sent to the main files. The main modules
are Main.jl, NMPC.jl and Plant.jl in the following parts, each of them will be
illustrated in case of the code arrangement and how they are connected.

3.2 Main.jl

This file contains information about simulation of the process, plotting and exporting
data outside of the program. Starting main.jl, all the parameters which are needed
for simulation procedure is loaded from the Parameters.jl which contains all the
parameters. The command include(F'ile.jl) loads the files that will be used in rest
of the program. This can be done in julia like what is shown below.

include("Plant.j1l")
include ("NMPC. j1")
include("Parameters.jl")

using Plots

## Defining Stmulation Parameters

sim_par = Simulation_Data()

TO_sim = sim_par[:TO_sim]
Tf_sim = sim_par[:Tf_sim]
dt_sim = sim_par[:dt_sim]

Tf_MPC = sim_par[:Tf_MPC]
dt_MPC = sim_par[:dt_MPC]
NCP = sim_par[:NCP]

NFE_sim = sim_par[:NFE_sim]
NFE_MPC = sim_par[:NFE_MPC]

uk = sim_par[:uk]
Xsp = sim_par[:xsp]
xk = sim_par[:xk]
U_Plot = [1;
X1_Plot = [1;
X2_Plot = []1;

# push the starting point into the final vectors
push! (U_Plot, uk[1])
push! (X1_Plot, xk[1])
push! (X2_Plot, xk[2])

After initializing the parameters, it is possible to turn some features on/off like
displaying the final figure, save that as a file or exporting the results in .CSV format.

## Options for plotting, saving the figure and Eporting the data
Plotting = true;




3 Fig_Save = true;
4 Export_Vars = true;

Now the simulation part can begin to start, This part is nothing than a for loop
which first simulates the optimization of the plant in order to set the optimal input
also then feeding the optimal input to the plant to achieve the new states. At the
end of each iteration, the achieved date will be pushed into some vectors for the
plotting part. The loop for simulating the process is shown below:

1 ## Simulation of the plant

2 println("Start Simulation!")

3 for k in 1:NFE_sim

4 global xk, uk, dt_sim

Xsp_MPC = xp[k:k - 1 + NFE_MPC]

o

6 uk = Solve_MPC(xk, uk, Xsp_MPC,NFE_MPC, NCP)
7 xk = Plant(xk, uk, dt_sim);

8 push! (U_Plot, uk[1])

9 push! (X1_Plot, xk[1])

10 push! (X2_Plot, xk[2])

11 end

2 println("The objective function is satisfied successfully!")

o

After running the for loop successfully, the results of optimization are available and
can be used to be plotted or saved as a file for further usage. This is done like what
is shown below.

For Plotting

1 ## Plotting with the option to show/not show the figure. Also different backends can be
— choose!

2

3 t_plot = collect(TO_sim:dt_sim:Tf_sim)

4pll = plot( t_plot, [X1_Plot[nIter] for nIter in 1:NFE_sim+1],label="x1")
5 pll = plot!(t_plot, [X2_Plot[nIter] for nIter in 1:NFE_sim+1],label="x2")
6 pll = plot!(t_plot, xsp[1:NFE_sim + 1], label="y_sp",
— linetype=:steppost, linestyle=:dash)
7 pl2 = plot(t_plot[i:end], [U_Plot[nIter] for nIter in 1:NFE_sim+1], label="u",

— linetype=:steppost)
s figl = plot(pll, pl2, layout=(2, 1));
o #Checking the choosed Options for plotting

10 if Fig_Save == true

11 savefig(figl,"MPC_Results.eps")
12 end

13

14 if Plotting == true

15 plotlyjsQ

16 #qr ()

17 println("Start Plotting!")
18 display(figl)

19 println("Finish Plotting!")
20 end

For exporting data




1 ## Ezporting Data

2 if Export_Vars == true

3 println("Start Exporting Data!")

4 using CSV

5 using DataFrames

6 df = DataFrame(Name = ["x1","x2","U","SetPoint","Time"],

7 Value = [X1_Plot, X2_Plot2, U_Plot, xXsp[1:NFE_sim+1], t_plot]
s )

9 CSV.write("MPC_Results.csv", df)

10 println("Finish Exporting Data!")

11 end

In the following parts,two other files which have been used in main.jl are explained.

3.3 NMPC.jl

Starting the simulation, the input to the plant might not be the optimal value re-
garding the starting point for the states. So it is better to start the simulation
with MPC to control even the first input to the plant. As it was explained be-
fore the method used for translating the dynamic optimization into the form that
the the optimizer can read is using the orthogonal collocation on finite elements.
The general procedure of work in NMPC.jl is to start with loading the required
parameters from Parameters.jl after that setting the constraints and the bounds
for optimization variables. Stating the objective function and applying the ortho-
gonal collocation as a constraint, optimization for the whole problem is done by the
command optimize!(Model). In the end the results can be extracted from the IPopt
outputs.

In each iteration of the simulation, the MPC takes NFE_MPC (e.g. 8) parts of the
simulation finite elements as prediction horizon with the same length of set point
vector to calculate optimal trajectory for the plant. In the end, the first element of
MPC optimal trajectory is used as the output of MPC function to feed the plant
with. This function uses Orthogonal Collocation method to solve the differential
equation of each finite elements such as all of the equations for all NFE_MPC' ele-
ments are written as constraints ans create a system of equations which can be solved
by optimizer. Now the explanation of each part of the NMPC'jl will be illustrated.
A line-by-line description of the NMPC'jl is written for the rest of this part.

Starting the code, one should define what is going to be used as packages for calcu-
lation. This is done by putting using command in julia. For the optimization the
packages Ipopt and JuMP are used to define the dynamic optimization problem and
other requirements for that such as constraints or bounds and so on. Also the code
uses the data from CollMat.jl function which provides the M matrix for orthogonal
collocation. This function will be illustrated later in subsection 3.5

1 using Ipopt, JuMP
2 include("CollMat.j1l")

Then the function Solve_MPC' is introduced to set the optimizer up by taking 5




inputs which are the states X0, the input to the plant U0, a vector a setpoint, the
number of finite elements (prediction horizon) and the number of collocation points
NCP. After that the model is defined using [Popt feature and some of the required
parameters for starting the work are loaded from Parameters.jl. Also the matrix M
is built with given NCP and using CollMat.jl. Until this part can be done like what
is shown below.

1 function Solve_MPC(x0, uO, x_sp, NFE, NCP)
2

3ml = Model (Ipopt.Optimizer)

4 Nx = size(x0, 1);
s Nu = size(u0, 1);
6 dx0 = O*copy(x0)
790 = 0;

8 dq0 = 0;

9

10 model_par = Model_par ()

11 sf = model_par[:x2_f]
12 km = model_par[:km]
13 ki = model_par[:k1]
14 Y = model_par[:Y]
15 pmax = model_par[:pmax]

16
17 M = Collocation_Matrix (NCP)

Now it is required to define the variables for optimization and their bound and
starting points (if needed). In this part the variables are created for the whole
prediction horizon not only for one element and using a for loop for building the
problem like what is used in MATLAB when the problem is solved by CasADi.
This makes the optimizer much faster than the same problem solved by MATLAB
because once a big system of variable is created, all of the constraint and other
equations can be defined and the optimizer need to solve the problem for only one
time instead of solving it for NFE times. The way which constraints and other
equations are defined is illustrated below:

1 ##Defining the variables for the whole NFE_MPC horizon
2 @variable(ml, x[1:Nx, 1:NFE, 1:NCP+1]);

3 @variable(mi, dx[1:Nx, 1:NFE, 1:NCP]);

4 @variable(ml, ql 1, 1:NFE, 1:NCP])

5 @variable(ml, dql 1, 1:NFE, 1:NCPJ])

6 @variable(m1, u[1:Nu, 1:NFE])

7 ##Setting up the bounds for wvartables (in case of need)
g for nx in 1:Nx, nu in 1:Nu, nfe in 1:NFE, ncp in 1:NCP

9 set_lower_bound(x[nx, nfe, ncpl, 0)

10 set_upper_bound(x[1 , nfe, ncpl, 4.5)
11 #set_lower_bound(dz[nz, nfe, ncpl, 0)
12 #set_upper_bound(dz[nz, nfe, ncpl, 999)
13 set_lower_bound(u[nu, nfe]l, 0)

14 set_upper_bound (u[nu, nfe], 1)

15 end

o

6 ##Setting up the starting points for variables
17 for nx in 1:Nx, nu in 1:Nu, nfe in 1:NFE, ncp in 1:NCP

18 set_start_value(x[nx, nfe, ncpl, x0[nx])
19 set_start_value(dx[nx, nfe, ncp],dx0[nx])
20 set_start_value(ul[nu, nfe], u0 [nu])

10
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set_start_value(q[1l, nfe, ncpl, q0)
set_start_value(dq[l, nfe, ncpl, dq0)
end
##Rename some of the wariables to write the equations easier
@NLexpressions(ml, begin

x1[nfe in 1:NFE, ncp in 1:NCP], x[1, nfe, ncp]
x2[nfe in 1:NFE, ncp in 1:NCP], x[2, nfe, ncp]
D[nfe in 1:NFE], ul[l, nfe]

end)

##Constraints defining region!

#Here 1s where you should defining the model UDEs in each line
@NLconstraints(ml, begin

Constr_0DEl[nfe in 1:NFE, ncp in 1:NCP], dx[1, nfe, ncp] == (((umax * x2[nfe, ncpl) /
— (km + x2[nfe, ncp] + k1 * x2[nfe, ncp]“2)) - D[nfe]l) * xi[nfe, ncpl;
Constr_0DE2[nfe in 1:NFE, ncp in 1:NCP], dx[2, nfe, ncp] == (sf - x2[nfe, ncp]l) *

— D[nfe] - (((umax * x2[nfe, ncpl) / (km + x2[nfe, ncp] + k1 * x2[nfe, ncpl "2))/Y) *
— x1[nfe, ncpl;

#For more ODEs:

#Constr_ODEi[nfe in 1:NFE, ncp in 1:NCP], dxz[i, nfe, ncp] = Equation!

end)

#Defining the Quadrature Equations
@NLconstraints(ml, begin

Constr_dqO[nfe = 1 , ncp in 1:NCP], dql[1, nfe, ncp] == (x1l[nfe,ncp] -
— x_sp[nfe])"2 + 0.5%(D[nfe] - uO[1] )72
Constr_dq[nfe in 2:NFE, ncp in 1:NCP], dql[l, nfe, ncp] == (x1[nfe,ncp] -

— x_splnfe]l)"2 + 0.5%(D[nfe] - D[nfe-1])"2
end)

#Constraints on input usage (To avoid big jumps on input usage)
@NLconstraints(ml, begin
#Defining Inequality Constraints in each line

Constr_Ineql[nfe in 1:1 1, -0.08 <= D[nfe]l - uO[1] <= 0.08
Constr_Ineq2[nfe in 2:NFE-3], -0.08 <= D[nfe] - D[nfe-1] <= 0.08
Constr_Ineq3[nfe in NFE-2:NFE ], D[nfe]l - D[nfe-1] == 0.0

end)

Where the three numbers in the notations for variables define the number of variable,
number of finite element and number of collocation points. For instance, the variable
X; in the first finite element can be illustrated as what is shown in the figure below:

11
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Figure 6: Notation of different variables which are created from X; with 4 collocation points in
the first finite element

Now the only things needed are to apply orthogonal collocation and state the ob-
jective function. In order to apply collocation equation as constraint for optimizer,
one can follow this procedure:

As it can be seen in ”variable defining” part, there are NCP+1 points for each
finite element. The reason is that following this idea, it would be possible to write
the collocation equations for each finite element and then fix the continuity with
saying that the last point in (F.N.); is equal to the first point in (F.N.)i;;. The only
exceptional finite element are the first element which is compared with the starting
point (X0). For example with 3 collocation points, one can write these equations
for the points in thew second finite elements:

T1a2 = T191 + M1, :] * dx[1,2,]

T123 = T191 + M[2,:] * dx[1,2,] (7)
T1o4 = X191 + M[3,:] x dz[1, 2, ]

T121 = 114

and this would be the same for all finite elements and variables that need to be
translated by orthogonal collocation which are the states and quadrature(s). The
julia version of 7 for all finite elements results in what is written in NMPC.jl:

1 #Collocation Equations for states and quadratures as Constraints
2 @NLconstraints(ml, begin

3 Coll_Eq_Diff[nx in 1:Nx, nfe = 1:NFE, ncp in 1:NCP], x[nx, nfe, ncpt+l] ==
— x[nx, nfe, 1] + sum(M[ncp, i] * dx[nx, nfe, i] for i in 1:NCP)

4 Cont_Eq_First[nx in 1:Nx], x[nx, 1, 1] == x0[nx]

5 Cont_Eq_rest[nx in 1:Nx, nfe = 2:NFE], x[nx, nfe, 1] == x[nx,
< nfe-1, end]

6 Coll_Eq_QuadO[ nfe = 1, ncp in 1:NCP], ql1, nfe, ncp]l == q0 +
— sum(M[ncp, i] * dq[l, nfe, i] for i in 1:NCP)

7 Coll_Eq_Quadl[ nfe in 2:NFE, ncp in 1:NCP], ql1, nfe, ncpl == ql1,

— nfe-1, NCP] + sum(M[ncp, i] * dql[l, nfe, i] for i in 1:NCP)
8 end)
o ##And finally Defining the Objective Function!
10 @NLobjective(ml, Min, sum( (x1[nfe,NCP] - x_sp[nfe])"2 for nfe in 1:NFE ) + 0.05%(D[1]
« - u0[1])"2 + sum( 0.05*(D[nfe] - D[nfe-1])"2 for nfe in 2:NFE) )

12



Now, one can simply optimize the whole problem using the command optimize!(m1).
The results from optimization can be extracted and transformed to an acceptable
Julia form. In the end the first item of the optimal input vector will be the output
of the NMPC function.

1 ## Calling the optimizer to optimize the whole prediction horizon
2 optimize! (m1)

3 JuMP.termination_status(ml)

4 JuMP.solve_time(ml: :Model)

s ## Extarcting the results and reshape them into julia form

6

7 star_x = JuMP.value. (x[:, :, NCP])

g8 star_x = cat(x0, star_x, dims = 2)

9 star_u = JuMP.value. (u)

10 star_x1 = JuMP.value.(x1[:, NCP])

11 star_x2 = JuMP.value. (x2[:, NCP])

12 star_x1 = cat(x0[1], star_x1, dims = 1)

13 star_x2 = cat(x0[2], star_x2, dims 1)

14 star_D = JuMP.value. (D)

15 star_MPC = star_ul[:,1]

16 ##The output of the Function!

17 #Export the first input among NFE_MPC inputs as the output to be fed into the plant
18 return star_MPC

19

20 end

3.4 Plant.jl

Having obtained the optimal input for the plant, one should design another function
which plays the role on behalf of the real plant to be able to take the input and
generate new states. This can be done by implementing an ODE solver to solve the
sets of differential equations to calculate the new states. The package Differential -
quation.jl is used to solve the ODEs. The Plant.jl file uses the data coming from
Parameters.jl and put them as parameters for ODEs. The function Plant takes 3
inputs which are the states, Optimal input to the plant and dt for integration. It has
also another function inside itself to generate the differential equations. Generating
the equations, one can substitute the inputs as initial values for equations and define
the time of integration. Finally a solver such as Tsit5() can solve the problem and
the result (new states) can be exported as the output of the function. This is done
in julia like what is shown below:

1 include("Parameters.j1")
2 using DifferentialEquations

3
4 function Plant(xkold,ukold,dt)

5 function Sgen(dx,x,p,t)

6 model_par = Model_par()

7 x2_f = model_par[:x2_f]
8 km = model_par[:km]

) k1 = model_par[:k1]
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10 Y = model_par[:Y]

11 pmax = model_par[:pumax]

12 p = (umax * x[2]) / (km + x[2] + k1 * x[2]72);
13 D = x[3];

14 dx[1] = (u - D) * x[1];

15 dx[2] = (x2_f - x[2]) * D - (u/Y) * x[1];

16 end

17 x0 = [xkold[1],xkold[2]]

18 DO = [ukold[1]]

19 U0 = vcat(x0,D0)

20 tspan = (0.0, dt)

21 prob = ODEProblem(Sgen,U0,tspan)

22 sol = DifferentialEquations.solve(prob, Tsit5())
23 xf = sol.ulend] [1:2];

24 return xf

25 end

3.5 Supplementary files

There are also two other Supplementary files named Parameters.jl and CollMat.jl
which are providing the data for required parameters and the M matrix which is used
in collocation equations. These files are listed in appendices E and F respectively.
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4 How to use the package

For making a package-form out of the code, one should do some transformation on
the scripts and change them into functions which can take some date and generate
the results. For example the main.jl was only a script which was able to solve the
problem by running the script by user, but that needs to be in a function form in
julia. There were 3 main file and 2 other supplementary files which are broken into
some function each of which doing an specific part of the program such as solving
the optimization problem, plotting and so on. All the functions will be explained
later in 4.2.

4.1 Install the Package

The package which is called PkgMPC' is available on GitHub (Address) and can be
downloaded by everyone who has julia installed on their computers. PkgMPC is
not registered yet which mean one should put the address of the GitHub repository
instead of putting the name the package. For installing the package, one can follow
this procedure in julia REPL:

| add "https://github.com/Amirrezz94 /PkgMPC.jl”

This will install the package and all dependencies which are required such as Ipopt,
JuMP, Plots and so on. It is recommended to have these packages installed before
using PkgMPC:

e Reexport

e Differential Equations

o JuMP

e Ipopt

e Plots

e PlotlyJS

e CSV

e DataFrames

After installation, one can check the status by typing what is shown below in julia
REPL:

Jst PkgMPC

which should give the result like this:

1 (@vl.4) pkg> st PkgMPC
2 Status ~7/.julia/environments/v1.4/Project.toml”
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3 [aa087d6f] PkgMPC v0.1.0 #master (https://qithub.com/Amirrezz94/PkgMPC. j1)
4

5 (Gv1.4) pkg>

Also for updating the package, one can use:
Jup PkgMPC

Now the PkgMPC is installed on julia and ready to action!

4.2 Available Commands

As it was mentioned in previous parts, the scripts has been changed and updated to
be in a Function form in julia so each function can be one of the commands in the
package. There are plenty of commands in PkgMPC which can be used to solve the
optimization problem, plot the result and so on. Now a brief introduction for each
command is considered.

4.2.1 Model_Par

This is a function which sets the required parameters for the ODEs and creates a
dictionary as output which can be sent to ODE solver or other places if needed. For
instance, in the bio-reactor case study, one can use these information to create the
dictionary:

1 julia> using PkgMPC

2

3 julia> Data_Plant = Model_Par(4.0, 0.12, 0.4545, 0.4, 0.4)
1 Dict{Symbol,Float64} with 5 entries:

5 :umax => 0.4

6 km =>0.12

7 Y => 0.4

s :x2_f => 4.0

o k1 => 0.4545
10

11 julia>

4.2.2 Simulation_Data

This function is almost the same function with previous one but it sets the inform-
ation which are needed for setting up the optimization problem or the plant. The
inputs for this function are the length of simulation horizon (Tfsim), the the length
of prediction horizon of MPC (TfMPC), number of collocation points which can be
selected from 1 to 5 (Necp), starting point for states and starting point for input(s).
It can be summerized as :

Output_Dict = Simulation_Data(Tfsim, TfMPC, Ncp, states, inputs)
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One can use these information to create the dictionary:

julia> using PkgMPC

julia> Data_MPC = Simulation_Data(60.0, 8.0, 3, [1.0; 1.0], 0.35)
Dict{Symbol,Any} with 11 entries:
‘Xsp => [1.5032 1.5032 ... 0.0 0.0]
:dt_MPC => 1
:uk => 0.35
- xk => [1.0, 1.0]
:NFE_MPC => 8
:dt_sim => 1
:Tf_sim => 60.0
:NCP => 3
:TO_sim => 0.0
:Tf_MPC => 8.0
:NFE_sim => 60
julia>

4.2.3 Simulate_Plant

This is the main function of the main package where the MPC starts to work on
the created plant considering the information which are stored in two mentioned
dictionary. The general form of this function can be summerised as:

Simulate_Plant(Data-MPC, Data_Plant)

where Data_ MPC and Data_Plant are two dictionaries obtained from 4.2.2 and 4.2.1
respectively. Once it is executed, the data will be sent to specific places in Package
which results in executing the for loop mentioned here with specified information
and controlling the plant with MPC to satisfy the objective function (which can be
set point tracking). The function provides some messages to let user know in which
stage the optimizer is such as the Ipopt output messages, starting the simulation
and messages if the simulation finished successfully. It also export one dictionary
as the result containing the states during the simulation and a vector (matrix) of
inputs that MPC applied to the plant.It can be used in the way which is shown
below:

Results = Simulate_Plant(Data_MPC, Data_Plant)

4.2.4 Plot_Plant

Plotting the result can be considerably beneficial for better understanding of the
MPC. This can be done using the function Plot_Plant. This function takes the
result of 4.2.3 and the information obtained from 4.2.2 as inputs and create a figure
showing the results graphically. It can be used in the way which is shown below:

Figure = Plot_Plant(Results, Data_MPC)
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4.2.5 Save_Plant

Exporting the results to outside of the program is a key to keep the important data
for further analysis or comparing with other cases. The figure made in 4.2.4 can be
saved in a range of formats which can be picked by user. It also takes an address
for saving the file and finally save the figure in specified directory. An example of
using the plotting command in PkgMPC is shown below:

Save_Plant(Figure,” //home//amir//Documents//Package _Results//MPC_Results.svg”)

This will save a file named MPC_Results.svg in the directory ...//Package_Results.
A range of other formats can be used instead of .svg such as .eps or non_vectorized
fromat: .jpg or .png .

4.2.6 Export_Plant

This is anothe options of PkgMPC for exporting not the figures but the data as a
file. The command Ezport_Plant will take the data obtained from MPC and the
data obtained from 4.2.2 and save the outputs of the program (states and optimal
inputs and setpoint) in the specified directory. This function can be used in the way
which is stated below:

Export_Plant(Results,Data_MPC, ” //home//amir//MPC_Results.csv”)

Where the Results and Data_MPC are obtained from 4.2.3 and 4.2.2 respectively.
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5 Improvements and Performance

5.1 Improvements

This package has another version in MATLAB which can perform optimization and
control a plant with MPC using Orthogonal Collocation method which makes it a
good case for comparing different factors in MATLAB version of the program and
Julia version of it. These two program can be compared from different points of
view such as execution time, the price of buying the license or other features in
MATLAB and Julia. for the rest of this part, there is going to be a comparison
between these factor. Note that the MATLAB version of the program is available
upon the request from the author (Postdoctoral Fellow 2020)

5.2 Execution Time

Speed is one of the most important factors when it comes to analysing the perform-
ance of a program. It might not be the case in small scale problems, but in industrial
cases the execution speed might make a considerable difference. So the first factor
for making comparison is the execution time of running the same problem in MAT-
LAB and julia. It has been done with considering the bio-reactor case study with
the same parameter and simulation horizon in MATLAB and julia. It turned out
that the julia version is considerably faster than MATLAB. In MATLAB there is a
function called tic-toc which calculates the execution time between two lines of the
code. For the simulator For-Loop (Without Plotting) it takes 23.567436 seconds to
run the plant for NFE_Sim = 60 while it’s just 2.559795929 seconds in julia to run
the SimulatePlant command. In julia, the command @elapsed is used to calculate
the execution time. The elapse time for executing each of commands in PkgMPC is
shown in Table 1. Note that the Precompiling time is excluded from the numbers
because that time is just for one time for loading the dependencies.

Name Elapsed Time (sec)
Simulation_Data 9.316e-5
Model _Par 3.907e-6
Simulate_Plant 2.521711482
Plot_Plant 4.941620962
Save_Plant 0.602635045
Export_Plant 0.000587409

Table 1: Execution Time for different commands in PkgMPC

5.3 Privileges of Having Package Form

Having compared a single code in any language with a program which can handle
different problems and situation, one can comprehend that the second case might
be a better case to be used by user. Because in a package form of a code, user can
change the properties of the problem without changing the scripts directly and so
can be more convenient. For instance, in the PkgMPC package, user can change
the simulation horizon or the number of collocation point without knowing how the
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different functions are managed and working, it is just a change in a parameter. So,
in the author’s opinion it can be more convenient and helpful to have a package form
for the codes so everyone can use it easier! The other matter is the opportunity for
developing the work can be more than the situation that only a script is written
for a specific problem. For instance, people can contribute in different parts of
the project to develop them in a better way than when they should know almost
everything about the code in a single script, because in a package there are different
functions which can be connected together. All in all, while writing the code in
MATLAB and using the features that MATLAB provides are beneficial, it could be
done in a more convenient and faster way in julia when the scripts are written in a
package form.

5.4 Plotting Options

When it comes to analysing the data, visualizing the result plays a key role. In julia
language there is a feature which user can choose between different backends for
plotting. This will make a huge difference between the plots created in MATLAB
and the same in julia. It might be possible to create the same quality plots in both
languages, both considering the time and needed effort for making them, julia will
occupy a better ranking. Considering different backends in julia, it is possible to
change them just by choosing, for example, PlotlyJS() or GR(). Some of the most
popular backends in julia can be found in julia’s documentation for backends

5.5 Open Source or Licensed

In almost every kind of project, the cost of using the software might be very high.
So, using the open-source software or languages could be beneficial considering the
economic points of view. MATLAB counts as an expensive software to work with
while julia language is a open-source language. Julia might not have the best de-
veloped toolboxes compared to MATLAB; but, considering the license cost and the
open source packages in that, one can consider it as a good tool to work with.

5.6 Performance of the Package for Different Situations

Considering all the features and properties explained in previous parts, one can ask
that how can the package be tested? The answer is quite obvious which is to test
the package in different situations such as set point trajectory changing or changing
the parameters, In this part the package is tested in four different types of set point
trajectory to see the performance of it. The results are shown in 7. As it can be seen
from the plots, one can figured out that the controller controlled the plant well and
the state X; follows the setpoint smoothly. Also the controller seem to be smooth
and the input changing does not have big jumps. In other words, the controller
seems to be robust.
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Setpoint Trajectory #3 Setpoint Trajectory #4

Figure 7: Testing the package with 4 different setpoint trajectories. Results are obtained with the
bioreactor case study.

5.7 Opportunities for Future Work

One of the best thing about this project is that it is not about to finish something
but to start to create a new environment which opens a range of new ideas to work
on. The package itself might be simple but it sets a background for considerable
number of ideas to be developed. For example the package PkgMPC only accepts
ODEs which can be updated with DAEs which is more complicated or the method
used for translating the dynamic optimization was Orthogonal collocation which can
be supported by other methods such as shooting methods. In this part, some future
work which can be added to this project are presented.

Considering developing the package one can starts with developing the methods
inside the package or work on the software engineering aspects of the package such
as how to make it more user friendly. Some of the methods which might be added
to the package can be listed as:

e Adding other solvers for solving the differential equation system which can be
chosen by user such as the wide range of methods DifferentialEquations.jl can
support. (Rackauckas 2020)

e Adding new optimization methods to widen the range of supported problems.

e Importing Machine Learning to the package so that it would help a lot in
complex cases which finding the model is not "Easy” or faces difficulties to use
conventional methods.
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e the orthogonal collocation method, the package uses Radau Lagrangian poly-
nomials which can be updated by other polynomials such as Legendre which is
higher in order of accuracy

e Different types of MPC can be applied to the package so the user can just
”choose” the objective function and sets the parameter. Also robust MPC can
be considered.

e and SO MANY MORE IDEAS!
And for the software aspects of the project, one can consider these items:

e Adding different properties for the package which make it more ”dynamic” such
as Continues Integration (CI) which will test the package continuously.

e Managing the function and connection between inputs and outputs to make it
more User-Friendly. For instance some of the functions are fixed with the first
version of the package which can be transformed to be a ”Command” in the
package.

e Enabling multiple dispatch which is a key to make the package much more
faster than the other versions in MATLAB or other languages.

e Enabling the functionality for the package to make it able to decide about
considered method based on the user input. For example for solving the MPC
problem, only one function is defined which can have different methods based
on the inputs users give to it.

e and SO MANY MORE IDEAS!
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6 Conclusion

Different aspects of the project have been discussed throughout the report such as
development of the code, method and results. Keeping all those in mind, one can
conclude that the available pack is able to perform an acceptable performance on
controlling the plant with different setpoint while it might not be as effective as it
was for bioreactor case when it comes to handling different ODE systems. But the
work opened a door to a range of new ideas for developing the package to be able
to show a better performance.

Also the differences between the julia version and the MATLAB version of the
code were illustrated which can be summarized as: while MATLAB has very strong
performance on matrix calculation, it might not be the best case for handling the
project because of some limitations in coding when the project is handled by CaSADi
in MATLAB. The limitations are that the problem must be built in a for loop which
makes it slower than julia in case of execution time.
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Appendix

For the most updated versions of files please go to : PkgMPC GitHub Page

A PkgMPC.jl

-

module PkgMPC

2

w

# Write your package code here.

4 using Reexport

Q@reexport using Plots

Q@reexport using CSV

O@reexport using JuMP

Q@reexport using Ipopt

Q@reexport using DataFrames

10 @reexport using DifferentialEquations
Q@reexport using PlotlyJS

© N o w

©

1

.

12

13 include ("Extra.jl")
14 include("main.j1")
include ("NMPC. j1")
16 include ("Plant.jl")

17

1

o

18

19 export F, Model_Par, Simulation_Data, Simulate_Plant

20 export Simulate_Plant, Plot_Plant, Save_Plant, Export_Plant
21

22 end

B main.jl

include("Plant.j1")
include ("NMPC. j1")

3 include ("Parameters.jl")
4 using Plots

-

N

6 ## Defining Simulation Parameters

10 ## Options for plotting, saving the figure and Eporting the data
#Plotting = false;
12 #Fig_Save = false;
13 #Export_Vars = false;

[
.

14
15 ## Simulation of the plant
16 function Simulate_Plant(Data_MPC, Data_Plant)

17

18 #sim_par = Data_MPC;

19 TO_sim = Data_MPC[:TO_sim]
20 Tf_sim = Data_MPC[:Tf_sim]
21 dt_sim = Data_MPC[:dt_sim]
22 Tf_MPC = Data_MPC[:Tf_MPC]
23 dt_MPC = Data_MPC[:dt_MPC]
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end

NCP = Data_MPC[:NCP]
NFE_sim = Data_MPC[:NFE_sim]
NFE_MPC = Data_MPC[:NFE_MPC]

uk = Data_MPC[:uk]
Xsp = Data_MPC[:xp]
xk = Data_MPC[:xk]
U_Plot = [1;
X1_Plot = [1;
X2_Plot = [J;

# push the starting point into the final vectors
push! (U_Plot, uk[1])

push! (X1_Plot, xk[1])

push! (X2_Plot, xk[2])

global dt_sim, uk, xk

println("Start Simulation!")
for k in 1:NFE_sim
global xk, uk, dt_sim
%sp_MPC = %, [k:k - 1 + NFE_MPC]
uk = Solve_MPC(xk, uk, xs,_MPC,NFE_MPC, NCP, Data_Plant)
xk = Plant(xk, uk, dt_sim, Data_Plant);
push! (U_Plot, uk[1])
push! (X1_Plot, xk[1])
push! (X2_Plot, xk[2])
end
println("The objective function is satisfied successfully!")
myDict = Dict(
:X1_Plot => X1_Plot,
:X2_Plot => X2_Plot,
:U_Plot => U_Plot
)

return myDict

## Plotting with the option to show/not show the figure. Also different backends can be

—

choose!

function Plot_Plant(MPC_Results, Data_MPC)

end

TO_sim = Data_MPC[:TO_sim];
dt_sim Data_MPC[:dt_sim];
Tf_sim Data_MPC[:Tf_sim];
NFE_sim = Data_MPC[:NFE_sim];

Xsp = Data_MPC[:xsp];

X1_Plot = MPC_Results[:X1_Plot];
X2_Plot = MPC_Results[:X2_Plot];
U_Plot = MPC_Results[:U_Plot];

t_plot = collect(TO_sim:dt_sim:Tf_sim)

pil = plot( t_plot, [X1_Plot[nIter] for nIter in 1:NFE_sim+1],label="x1")

pll = plot!(t_plot, [X2_Plot[nIter] for nIter in 1:NFE_sim+1],label="x2")

pll = plot!(t_plot, xsp[1:NFE_sim + 1], label="y_sp",

— linetype=:steppost, linestyle=:dash)

p12 = plot(t_plot[i:end], [U_Plot[nIter] for nlIter in 1:NFE_sim+1],  label="u",

< linetype=:steppost)

figl = plot(pll, pl2, layout=(2, 1));
plotlyjs(Q)

#gr ()

println("Start Plotting!")
display(figl)

println("Finish Plotting!")

return figl
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84 ##Checking the Option for saving

ss function Save_Plant(figl, Address)

36 savefig(figl, Address)

87 end

88 ## Exporting Data

89

90

o1 function Export_Plant(MPC_Results, Data_MPC, Address)

92 X1_Plot = MPC_Results[:X1_Plot];
03 X2_Plot = MPC_Results[:X2_Plot];
94 U_Plot = MPC_Results[:U_Plot];
95 Xsp = Data_MPC[:xsp];

96 NFE_sim = Data_MPC[:NFE_sim];
o7 TO_sim = Data_MPC[:TO_sim];
98 dt_sim = Data_MPC[:dt_sim];
99 Tf_sim = Data_MPC[:Tf_sim];
100 t_plot = collect(TO_sim:dt_sim:Tf_sim);
101 println("Start Exporting Data!")
102 #using CSV
103 #using DataFrames
104 df = DataFrame(Name = ["x1","x2","U","SetPoint","Time"],
105 Value = [X1_Plot, X2_Plot, U_Plot, xsp[1:NFE_sim+1], t_plot]
106 )
107 CSV.write(Address, d4f)
108 println("Finish Exporting Data!")
109 end
C NMPC.jl

1 using Ipopt, JuMP

2

3 include("CollMat.j1")

4

5

6 function Solve_MPC(x0, u0, x_sp, NFE, NCP, DataMPC)
7

sml = Model (Ipopt.Optimizer)

o Nx = size(x0, 1);
10 Nu = size(u0, 1);
11 dx0 = O*copy(x0)
1290 = 0;

13dq0 = 0;

14
15 model_par = DatalMPC
16 sf = model_par[:x2_f]

17 km = model_par[:km]
18 ki = model_par[:k1]
19 Y = model_par[:Y]
20 pmax = model_par[:umax]

21

22 M = Collocation_Matrix(NCP)

23

24 ##Defining the variables for the whole NFE_MPC horizon
25 @variable(m1, x[1:Nx, 1:NFE, 1:NCP+1]);

26 @variable(ml, dx[1:Nx, 1:NFE, 1:NCP]);

27 @variable(ml, ql 1, 1:NFE, 1:NCPJ])

28 @variable(ml, dql 1, 1:NFE, 1:NCP])

20 @variable(ml, u[1:Nu, 1:NFE])

30 ##Setting up the bounds for variables (in case of need)
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31 for nx in 1:Nx, nu in 1:Nu, nfe in 1:NFE, ncp in 1:NCP

32 set_lower_bound(x[nx, nfe, ncpl, 0)

33 set_upper_bound(x[1 , nfe, ncpl, 4.5)
34 #set_lower_bound(dx[nx, nfe, ncpl, 0)
35 #set_upper_bound(dx[nx, nfe, ncpl, 999)
36 set_lower_bound(u[nu, nfel, 0)

37 set_upper_bound(u[nu, nfe], 1)

38 end

30 ##Setting up the starting points for variables
40 for nx in 1:Nx, nu in 1:Nu, nfe in 1:NFE, ncp in 1:NCP

41 set_start_value(x[nx, nfe, ncpl, x0[nx])
42 set_start_value(dx[nx, nfe, ncp]l,dx0[nx])
43 set_start_value(u[nu, nfe], u0 [nu])
44 set_start_value(q[l, nfe, ncp], q0)

45 set_start_value(dq[l, nfe, ncpl, dq0)

16 end

4

3

##Rename some of the variables to write the equations easier
48 @NLexpressions(ml, begin

49 x1[nfe in 1:NFE, ncp in 1:NCP], x[1, nfe, ncpl
50 x2[nfe in 1:NFE, ncp in 1:NCP], x[2, nfe, ncp]
51 D[nfe in 1:NFE], ul1l, nfel

52 end)

53 ##Constraints defining region!

s6 #Here is where you should defining the model ODEs in each line
@NLconstraints(ml, begin

o
J

5s Constr_0DEl[nfe in 1:NFE, ncp in 1:NCP], dx[1, nfe, ncp] == (((umax * x2[nfe, ncpl) /
— (km + x2[nfe, ncp] + k1 * x2[nfe, ncp]~2)) - D[nfel) * xi[nfe, ncp]l;
59 Constr_ODE2[nfe in 1:NFE, ncp in 1:NCP], dx[2, nfe, ncp] == (sf - x2[nfe, ncpl) *

— D[nfe]l - (((umax * x2[nfe, ncpl) / (km + x2[nfe, ncp] + k1 * x2[nfe, ncpl~2))/Y) *
— x1[nfe, ncpl;

60 #For more ODEs:

# Constr_ODEi[nfe in 1:NFE, ncp in 1:NCP], dx[i, nfe, ncp] = Equation!

62 end)

63

6

=

64

6

o

#Defining the Quadrature Equations
66 @NLconstraints(ml, begin

67 Constr_dqO[nfe = 1 , ncp in 1:NCP], dql[l, nfe, ncp] == (x1[nfe,ncp] -
— x_splnfe])"2 + 0.5%(D[nfe] - uO[1] )72
68 Constr_dq[nfe in 2:NFE, ncp in 1:NCP], dql[1, nfe, ncp] == (x1l[nfe,ncp] -

— x_sp[nfe])"2 + 0.5%(D[nfe] - D[nfe-1])"2
69 end)
70
71
#Constraints on input usage (To avoid big jumps on input usage)
73 @NLconstraints(ml, begin

7

N

74 #Defining Inequality Constraints in each line

75 Constr_Ineql[nfe in 1:1 ], -0.08 <= D[nfe] - u0[1] <= 0.08
76 Constr_Ineq2[nfe in 2:NFE-3], -0.08 <= D[nfe] - D[nfe-1] <= 0.08
77 Constr_Ineq3[nfe in NFE-2:NFE ], D[nfe] - D[nfe-1] == 0.0

78 end)

79

80

1 #Collocation Equations for states and quadratures as Constraints
2 @NLconstraints(ml, begin

©

3

83 Coll_Eq_Diff[nx in 1:Nx, nfe = 1:NFE, ncp in 1:NCP], x[nx, nfe, ncp+l] ==
— x[nx, nfe, 1] + sum(M[ncp, i] * dx[nx, nfe, i] for i in 1:NCP)

84 Cont_Eq_First[nx in 1:Nx], x[nx, 1, 1] == x0[nx]

85 Cont_Eq_rest[nx in 1:Nx, nfe = 2:NFE], x[nx, nfe, 1] == x[nx,

< nfe-1, end]
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86

87

88

89

©
o

91

92

93

94
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96
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107
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109

110

111

112

113

-
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o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Coll_Eq_QuadO[ nfe = 1, ncp in 1:NCP], ql1, nfe, ncp] == q0 +
— sum(M[ncp, i] * dq[l, nfe, i] for i in 1:NCP)

Coll_Eq_Quad[ nfe in 2:NFE, ncp in 1:NCP], ql1l, nfe, ncpl] == ql1,
— nfe-1, NCP] + sum(M[ncp, il * dql[1, nfe, i] for i in 1:NCP)
end)

##And finally Defining the Objective Function!
@NLobjective(ml, Min, sum( (x1[nfe,NCP] - x_sp[nfe]l)~"2 for nfe in 1:NFE ) + 0.05*(D[1]
— = u0[1])"2 + sum( 0.05*%(D[nfe] - D[nfe-1])"2 for nfe in 2:NFE) )

## Calling the optimizer to optimize the whole prediction horizon
optimize! (m1)

JuMP.termination_status(ml)

JuMP.solve_time(ml: :Model)

## Extarcting the results and reshape them into julia form

star_x = JuMP.value. (x[:, :, NCP])
star_x cat(x0, star_x, dims = 2)
star_u = JuMP.value. (u)

star_x1 = JuMP.value.(x1[:, NCP])
star_x2 = JuMP.value. (x2[:, NCP])
star_x1 cat(x0[1], star_x1, dims = 1)
star_x2 = cat(x0[2], star_x2, dims 1)
star_D = JuMP.value. (D)

star_MPC = star_ul:,1]

##The output of the Function!

#Export the first input among NFE_MPC inputs as the output to be fed into the plant
return star_MPC

end

D Plant.jl

include("Parameters.j1")
using DifferentialEquations

function Plant(xkold,ukold,dt, DataPlant)
function Sgen(dx,x,p,t)
model_par = DataPlant;
x2_f = model_par[:x2_f]

km = model_par [:km]

k1 = model_par[:k1]

Y = model_par[:Y]

pmax = model_par[:pmax]
p = (umax * x[2]) / (km + x[2] + k1 * x[2]"2);
D = x[3];

dx[1] = (u - D) * x[1];
dx[2] = (x2_f - x[2]) * D - (u/Y) * x[1];

end

x0 = [xkold[1],xkold[2]]
DO = [ukold[1]]

U0 = vcat(x0,D0)

tspan = (0.0, dt)

prob = ODEProblem(Sgen,U0,tspan)

sol = DifferentialEquations.solve(prob, Tsit5())
xf = sol.ulend] [1:2];
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26 return xf
27 end

E Parameters.jl

1 #This is the place tu put all the variables needed for the project

2 #A11 the variable will be sent from here to required places in the programme

3

4 ##Parameters which are needed for setting up the plant and Differential Equations
5 function Model_Par(mi1,m2,m3,m4,m5)

6 myDict = Dict(

7 :x2_f =>ml,
8 1km => m2,
9 :k1 => m3,
10 'Y => m4,
11 :umax  => mb
12 )

13 return myDict

14 end

15
16 ## Parameters which are needed to set up the simulation of the plant.
17

1s function Simulation_Data(Tfsim, TfMPC, Ncp, states, inputs)

19 TO_sim = 0.0;

20 Tf_sim = Tfsim;

21 dt_sim = 1;

22 Tf_MPC = TfMPC;

23 dt_MPC = 1;

24 NCP = Ncp;

25 xk = states;

26 uk = inputs;

27

28 NFE_sim = convert(Int, (Tf_sim - TO_sim) / dt_sim);

29 NFE_MPC = convert(Int, (Tf_MPC) / dt_MPC);

30 Xsp = hcat(1.5032 * ones(1, convert(Int, NFE_sim / 3)), 0.9951 *
< ones(1,convert(Int, NFE_sim / 3)), 0 * ones(1l,convert(Int, NFE_sim / 3)), 0 *
< ones(1,convert(Int, NFE_MPC)));

31 myDict = Dict(

32 :TO_sim => TO_sim,

33 :Tf_sim => Tf_sim,

34 :dt_sim => dt_sim,

35 :Tf_MPC => Tf_MPC,

36 :dt_MPC => dt_MPC,

37 :NCP => NCP,

38 :NFE_sim => NFE_sim,

39 :NFE_MPC => NFE_MPC,

40 ‘Xsp => ZXsp,

41 :xk => xk,

42 ruk => uk

43 )

44 return myDict

15 end
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F CollMat.jl

function Collocation_Matrix(N)

#Radau
if N ==

tl
t2 =

333333

1]
= O

M1

]
—

M2

1]
—

M = M1 % inv(M2)

elseif N ==

tl1 = 0.155051

t2 = 0.644949

t3 = 1.0

M1 = [
t1 1/ 2% t1”
t2 1/ 2 % t2°
t3 1/ 2 % t3°
]

M2 = [
1 t1 t1°2
1 t2 t2°2
1 t3 t372
1

M = M1 * inv(M2)

elseif N ==

t1l = 0.088588;

t2 = 0.409467;

t3 = 0.787659;

t4 = 1;

M1 = [
t1 1/ 2% t1°
t2 1/ 2 % t2°
t3 1/ 2 % t3”
t4 1/ 2 % t4"
]

M2 = [

1 t1 t172 t173
1 t2 t272 t273
1 t3 t372 t373
1 t4 t472 t4°3

M = M1 * inv(M2)

* X X ¥

* X X ¥

t174
t274
t374
t474
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61

62 elseif N == 5

63

64 tl = 0.057104;

65 t2 = 0.276843;

66 t3 = 0.583590;

67 t4 = 0.860240;

68 tb = 1;

69

70 M1 = [

71 t11/2*t1"21/3*xt1"31/4x%t1"4 1/ 5 % t1°5
72 t2 1/ 2% t2°21 /3 %xt2°31/ 4% t2°4 1/ 5 % t2°5
73 t31/2*t3°21/3*%t3’31/4x*+t3"4 1 /5 % t3°5
74 t4 1/ 2% t4"21 /3 *xt4°3 1/ 4%t4"4 1/ 5 % t475
75 t4 1/ 2*t4"21 /3 *xt4°3 1/ 4 *t4"4 1/ 5 % t57°5
76 1

77 M2 = [

78 1 t1 t172 t1°3 t1°4

79 1 t2 t272 t273 t2°4

80 1 t3 t372 t37°3 t374

81 1 t4 t4°2 t4°3 t4°4

82 1 t4 t4°2 t4°3 t574

83 ]

84

85 M = M1 * inv(M2)

86

87 end

88

89

90 return M

91 end

G runtests.jl

1 using PkgMPC
2 using Test
3
4
6
7 F(3,5)
8
o ##For Testing
10 Data_MPC = Simulation_Data(60.0, 8.0, 3, [1.0; 1.0], 0.35)
11 Data_Plant = Model_Par(4.0, 0.12, 0.4545, 0.4, 0.4)
12 Results = Simulate_Plant(Data_MPC, Data_Plant)
13 Figure = Plot_Plant(Results, Data_MPC)
14 Save_Plant (Figure,"//home//amir//Documents//Package_Results//MPC_Results.svg")
15 Export_Plant (Results,Data_MPC,
— "//home//amir//Documents//Package_Results//MPC_Results.csv")
16 ##for timing
17 Data_MPC = Qelapsed Simulation_Data(60.0, 8.0, 3, [1.0; 1.0], 0.35)
1s Data_Plant = Q@elapsed Model_Par(4.0, 0.12, 0.4545, 0.4, 0.4)
19 result = Qelapsed Simulate_Plant(Data_MPC, Data_Plant)
20 Figure = Qelapsed Plot_Plant(Results, Data_MPC)
21 time_save = Qelapsed
— Save_Plant (Figure,"//home//amir//Documents//Package_Results//MPC_Results.svg")
22 time_export = Qelapsed Export_Plant(Results,Data_MPC,
— "//home//amir//Documents//Package_Results//MPC_Results.csv")
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26 Otestset "PkgMPC.jl" begin
27 # Write your tests here.
28 Q@test F(2,3) == 13

29 Q@test F(3,0) == 6

30 end
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