
TKP4580 - Chemical Process Technology, Specialization project

Bayesian neural networks: A
comparison of Monte Carlo

variational inference and Monte
Carlo dropout

Hege Landbø

Submission date: 18.12.2020
Supervisors: Johannes Jaschke, IKP

Halvor Aarnes Krog, IKP

Norwegian University of Science and Technology

Abstract

This project aims to compare two of the most common methods used for approximat-
ing a Bayesian deep learning model, namely Monte Carlo variational inference (MCVI)
and Monte Carlo dropout (MCDO). The purpose of comparing the two methods is to ob-
tain knowledge on which approximation gives the most robust and accurate model that also
produces the expected results according to the theoretical background. Bayesian learning
techniques, which incorporates model uncertainty into the results, have become increas-
ingly popular in industrial context and have been proven as an efficient tool for data-driven
applications. This is mainly due to its ability to indicate just how certain or uncertain the
model is about the outcome that was predicted. However, several techniques are needed
to approximate and simplify the mathematical model of a Bayesian neural network due to
its complexity and intractable analytical solutions. Many have proposed different methods
during the last two decades, showing varying results, but this project will focus on two of
the seemingly most popular and commonly used methods. To examine the properties of
the two model structures, and the differences between the two, both models were imple-
mented and trained on the same three datasets. The hyperparameter tuning of the models
were investigated, and the average training times, model precision and visual prediction
results for the two models were compared in each case. Results showed somewhat similar
prediction results and accuracy, however, the MCDO model proved to have shorter aver-
age training time for all three cases, as well as slightly lower mean squared error losses. It
was also more user-friendly in terms of intuitive model structure and parameter tuning.

i

Preface

Declaration of Compliance

I, Hege Landbø, hereby declare that this is an independent work according to the exam
regulations of the Norwegian University of Science and Technology (NTNU).
Signature:

Place and Date: Trondheim - Gløshaugen, December 2020

ii

Table of Contents

Abstract i

Preface ii

Table of Contents iv

List of Tables vi

List of Figures ix

Abbreviations x

1 Introduction 1

2 Background and theory 3
2.1 The Basics of Machine Learning and Neural Networks 3
2.2 Feed forward neural network . 4
2.3 Probabilistic modelling: Bayesian neural networks 5

2.3.1 Bayesian inference . 6
2.3.2 Variational inference . 7
2.3.3 Monte Carlo dropout . 9

3 Building and evaluating a neural network 11
3.1 Tuning of hyperparameters . 11
3.2 Data pre-processing . 13
3.3 Model evaluation . 14

3.3.1 Over- and underfitting . 14
3.3.2 Hold-out cross validation and data splitting 14
3.3.3 Evaluation . 15

iii

4 Model testing and evaluation 17
4.1 Case 1: Sinusoidal function . 18

4.1.1 MCVI model . 19
4.1.2 MCDO model . 20
4.1.3 Results . 21
4.1.4 Discussion . 23

4.2 Case 2: Cubic function . 25
4.2.1 MCVI model . 25
4.2.2 MCDO model . 26
4.2.3 Results . 27
4.2.4 Discussion . 29

4.3 Case 3: Auto MPG dataset . 31
4.3.1 MCVI model . 32
4.3.2 MCDO model . 32
4.3.3 Results . 34
4.3.4 Discussion . 38

5 Final evaluation and future work 40

Bibliography 42

Appendix I
A Visual example of uncertainty . I
B Case 2: Example of overfitting . III
C Bayesian optimization for hyperparameter tuning VI
D Activation functions . VIII
E Additional results . IX
F Implementation of models in Python . XIII

iv

List of Tables

3.1 This table shows the different hyperparameters that needs tuning for both
Monte Carlo variational inference, and Monte Carlo dropout. The general
hyperparameters are common for both methods. 12

4.1 Versions of Python libraries used for implementation. 18
4.2 Hyperparameters of MCVI model. �, µ and ⇡ are specific for the varia-

tional inference model. 19
4.3 The number of training epochs, trainable parameters in the network and

number of training data points used to train MCVI model for case 1. . . . 19
4.4 Hyperparameters of MCDO model. p and � are specific for the MC dropout

model. 20
4.5 The number of training epochs, trainable parameters in the network and

number of training data points used to train MCDO model for case 1. . . 20
4.6 Mean squared error for training and validation set and average training

time, for both models in case 1. 23
4.7 Hyperparameters of MCVI model for case 2. �, µ and ⇡ are specific for

the variational inference model. 25
4.8 The number of training epochs, trainable parameters in the network and

number of training data points used to train MCVI model for case 2. . . . 26
4.9 Hyperparameters of MCDO model for case 2. p and � are specific for the

MC dropout model. 26
4.10 The number of training epochs, trainable parameters in the network and

number of training data points used to train MCDO model for case 2. . . 26
4.11 Mean squared error for training and validation set and average training

time for both models in case 2. 29
4.12 Hyperparameters of MCVI model for case 3. 32
4.13 The number of training epochs, trainable parameters in the network and

number of training data points used to train MCVI model for case 3. . . . 32

v

4.14 Hyperparameters for MCDO model. p and � are specific for the MC
dropout model. 33

4.15 The number of training epochs, trainable parameters in the network and
number of training data points used to train MCDO model for case 3. . . 33

4.16 Mean squared error for training and validation set and average training
time for MCDO model in case 3. 38

vi

List of Figures

2.1 Simplified NN with an input layer, n hidden layers and an output layer.
The bias unit is not shown in this figure. 4

3.1 Figure shows typical data-splitting procedure. First, some fraction of the
available data is sampled and held out for later testing of the model. The
remaining dataset is sampled to create the validation set which is also held
out and used to validate the model during training. Typical fractions of the
resulting training-, validation- and training-datasets are 0.6, 0.2 and 0.2
respectively [3]. 15

3.2 The figure shows three simplified plots of validation and training loss
during training. Case A shows underfitting, where the training and val-
idation loss seizes to decrease after a short period, remaining at a high
value. Case B shows overfitting, where the validation loss starts to in-
crease, while training loss decreases further. Case C shows a ”just right”
fitted model, where training and validation loss decreases somewhat si-
multaneously throughout the training period [25]. 16

4.1 Prediction based on the test data in case 1 for the Monte Carlo variational
inference model, with epistemic uncertainty. 21

4.2 Mean squared error between model output and y-label for the Monte Carlo
variational inference model in case 1, computed for validation and training
data at each training epoch. 21

4.3 Prediction based on the test data in case 1 for the Monte Carlo dropout
model, with epistemic uncertainty. 22

4.4 Mean squared error between model output and y-label with additional l2
regularization, for the Monte Carlo dropout model in case 1, computed for
validation and training data at each training epoch. 22

vii

4.5 Prediction based on test data in case 2 for the Monte Carlo variational
inference model, with epistemic uncertainty. 27

4.6 Mean squared error between model output and y-label for the Monte Carlo
variational inference model in case 2, computed for validation and training
data at each training epoch. 27

4.7 Prediction based on test data in case 2 for the Monte Carlo dropout model,
with epistemic uncertainty. 28

4.8 Mean squared error between model output and y-label with additional l2
regularization, for the Monte Carlo dropout model in case 2, computed for
validation and training data at each training epoch. 28

4.9 Predictions based on test data in case 3 for the Monte Carlo variational
inference model. MPG in 2D-plot, as function of (a) horsepower and (b)
weight. 34

4.10 Prediction based on test data in case 3 for the Monte Carlo variational
inference model. MPG in 3D-plot as function of horsepower and weight. 34

4.11 Correlation between model output and true y-label values for Monte Carlo
variational inference model. 35

4.12 Mean squared error between model output and y-label, for the Monte
Carlo variational inference model, computed for validation and training
data at each training epoch. 35

4.13 Predictions base on test data in case 3 for the Monte Carlo dropout model.
MPG in 2D-plot, as function of (a) horsepower and (b) weight. 36

4.14 Prediction based on test data in case 3 for the Monte Carlo dropout model.
MPG in 3D-plot as function of horsepower and weight. 36

4.15 Correlation between model output and true y-label values for Monte Carlo
dropout model. 37

4.16 Mean squared error between model output and y-label with additional l2-
regularization, for the Monte Carlo dropout model, computed for valida-
tion and training data at each training epoch. 37

A.1 The figure show the model mean and standard deviation of 10 predictions
made on the training data. The red lines are the model mean, the blue lines
are the standard deviations and the black line is the ensemble mean of the
10 prediction means. II

B.1 The figure shows a prediction made with the MCDO model, with the epis-
temic uncertainty. The red line is showing the predictive mean and can be
seen tracing specific data points instead of the general trend, which is an
indication of overfitting. IV

B.2 The plot shows the training and validation loss computed during training
of the model. After around 5000 epochs, the validation loss is starting to
increase while the training loss is continously decreasing. This is a sign
that the model is overfitting to the training data. IV

viii

C.1 Illustration of Bayesian optimization. The objective function is shown as
the black stippled line, while the true objective function is shown as the
black whole line. The green shaded function in the bottom of each graph
represents the aquisition function, in which the objective function will be
evaluated where this function has high values. VII

D.1 Two of the most common activation functions applied to the units in the
network hidden layers. VIII

E.1 Prediction on test data for the MCVI model in case 1: Sinusoidal function.
Sigmoid activation function is here used in both hidden layers, resulting in
a smaller and nearly constant confidence interval over the whole range. . IX

E.2 Training and validation loss curves for the MCVI model in case 1: Sinu-
soidal function. The curves show the computed loss from the maximiza-
tion of the ELBO; Neg.log likelihood + DKL[q✓|p(w)], used for optimiz-
ing the parameters, as shown in section 2.3.2. X

E.3 Training and validation loss curves for the MCVI model in case 1: Si-
nusoidal function. The curves show the MSE-loss between the output y
and the true label value for the training and validation data. Enlarged plot,
corresponding to Figure 4.2. X

E.4 Training and validation loss curves for the MCVI model in case 2: Polyno-
mial function. The curves show the computed loss from the maximization
of the ELBO; Neg.log likelihood + DKL[q✓|p(w)], used for optimizing
the parameters, as shown in section 2.3.2. XI

E.5 Correlation between all features in the dataset in case 3: Auto MPG. The
plot was constructed with the pairplot function from the Pandas-library. . XII

E.6 Training and validation loss curves for the MCVI model in case 3: Auto
MPG. The curves show the computed loss from the maximization of the
ELBO; Neg.log likelihood + DKL[q✓|p(w)], used for optimizing the pa-
rameters, as shown in section 2.3.2. XII

ix

Abbreviations

AI Artificial intelligence

BNN Bayesian neural network

EI Expected improvement

ELBO Evidence lower bound

HP Horsepower

KL Kullback-Liebler

LSTM Long short-term memory

MAP Maximum a posteriori

MCDO Monte Carlo dropout

MCVI Monte Carlo variational inference

ML Machine learning

MLE Maximum likelihood estimate

MPG Miles per gallon

MSE Mean squared error

NaN Not a Number

NN Neural network

PCA Principal component analysis

Relu Rectified linear unit

x

RNN Recurrent neural network

SRS Simple random sampling

xi

xii

CHAPTER 1

Introduction

Machine learning (ML) is one of the most promising developements within artificial in-
telligence (AI) over the past decade, and has become an increasingly popular tool within
several types of industries, due to the increasing amounts of data being collected. For in-
stance, machine learning models are used within the manufacturing industry for optimiza-
tion, control and troubleshooting, in medicine for medical diagnosis and within finance for
credit applications and fraud detection, just to mention a few.

Machine learning is basically to program computers to optimize a performance crite-
rion, an optimization objective, using example data or past experience. This can be done
to either make predictions about the future or to gain knowledge about the data. Neural
networks (NN) are a class of models within machine learning. They are computational
models that integrate the principles from the different information levels in the human
brain, and are efficient tools for sovling complex problems. However, an important fac-
tor that is missing from the neural network architectures, is the measure of uncertainty in
the predictions, which may result in overconfident decision-making. This is why Bayesian
neural networks (BNN) have gathered increased attention, because it offers uncertainty es-
timates of its parameters as probability distributions, providing uncertainty measurements
of the prediction.

Bayesian neural networks have the ability to combine the properties of neural networks
with Bayesian uncertainty modelling. However, the difficulties with choosing meaningful
prior distributions and the intracability of inferring the posterior distribution, limits the ef-
fectiveness of these networks. Approximations for the model posterior is then necessary,
and one popular approach is called variational inference. The posterior is then approxi-
mated by a variational distribution of a known functional form, in which the parameters
are optimized so that it comes as close to the true posterior as possible. Blundell et al.

1

(2015) [4] provided a variational inference approach that resembles backpropagation in
regular neural networks, and this method is called Bayes by backprop. It is, however,
stated that variational inference doubles the amount of parameters that needs to be trained,
without significant improvement of the results. Gal and Ghahramani (2016) [10] proposed
in their paper an approach to variational inference, involving dropout during both training
and inference, providing both the properties of uncertainty estimates as well as model ro-
bustness. This approach is called Monte Carlo dropout, and it is supposedly able to avoid
the difficulties regarding priors and the posterior approximation, and still getting similar
results.

The aim of this project is to compare the two mentioned methods for approximating
a Bayesian neural network, namely Bayes by backprop, which in this project will mainly
be referred to as Monte Carlo vaiational inference (MCVI), and Monte Carlo dropout
(MCDO). The purpose of this is to find the model that shows best potential in regards to
prediction results, robustness and practical implementation. The best approach will then
be the basis for further work.

This project thesis will be structured in the following way:

1. Chapter 2 will present some basic theory on machine learning, specifically neural
networks, and then a theoretical background on Bayesian neural networks and the
two proposed methods for approximation.

2. In chapter 3, a brief review of some general theory regarding the building of a neu-
ral network, and evaluation of a model, will be presented.

3. In chapter 4, the implemented models using the two approaches will be presented,
together with the results from testing both on three different datasets, in three sepa-
rate case-studies. For each case, the models will be discussed and evaluated based
on the results.

4. Lastly, in chapter 5, a final evaluation and conclusion of the results will be pre-
sented, together with suggestions for future work.

2

CHAPTER 2

Background and theory

The following chapter will present a theoretical background for this project. The first two
sections will address some general concepts of machine learning and explain the basic
mechanisms of a feedforward neural network. In section 2.3, background theory on prob-
abilistic learning and Bayesian neural networks will be presented. In addition, a more
detailed explanation of two different approaches for implementation of a BNN, Monte
Carlo variational inference and Monte Carlo dropout, will be provided.

2.1 The Basics of Machine Learning and Neural Networks
Machine learning is a branch within artificial intelligence which is the study of algorithms
that improve themselves based on experience. Briefly explained, ML-algorithms use sta-
tistical approaches to discover patterns in data and apply that pattern to make educated
guesses [13]. The ML model is constituted by a set of assumptions that makes inferences
about unobserved data possible [11]. There are two types of learning that are most com-
monly used, namely supervised and unsupervised learning. Supervised learning is applied
when the dataset the algorithm is being trained on, includes labeled data. This basically
means that the intended or desired output is known, and the algorithm is learning the rela-
tionships and parameters based on the minimization of a cost function of the desired and
predicted output. Unsupervised learning is applied when the training data is not labeled,
and when the objective is to find some pattern, structure or clusters in the data, not knowing
what the output should look like. An example of unsupervised learning is the mapping of
genes into groups of genes with similar properties [21]. There are also two main types of
problems one can encounter in when working with supervised machine learning, namely
regression and classification problems. A problem is a classification problem if the ob-
jective is to predict a discrete output, a class label, for a training example, while its a

3

regression problem if the output predicted is a continuous quantity [5]. This project, in-
cluding the cases presented in chapter 4, will focus on regression with supervised learning.

2.2 Feed forward neural network
Figure 2.1 presents a typical neural network architecture. It is composed of layers of nodes,
one input layer, n intermediate layers called hidden layers, and one output layer. Determin-
ing the number of hidden layers and the number of nodes in each layer is dependent on the
problem and the type of model, and the numbers will vary. The figure does not show the
node containing the bias term which should be added to each hidden layer and output layer.

Figure 2.1: Simplified NN with an input layer, n hidden layers and an output layer. The bias unit is
not shown in this figure.

The input layer receives external input variables from a dataset, and the number of
nodes in this layer is determined by the number of different features in each training ex-
ample. One training example i is composed of a set of features and their corresponding
label, {xi,yi}. The nodes propagate the information in a ”feed-forward” matter, through
each layer where the output from a node in one layer constitutes an input for the next
layer. A network layer can be expressed as a vector, ai, where i ✏ [0, n], n representing the
number of hidden layers. The network can generally be represented as

a0 = xi
ai = �(Wiai�1 + bi)

ŷi = an (2.1)

Here, Wi is the weight matrix applied to incoming connections of layer i, that ampli-
fies or dampens the signals of the transferred data. �(·) represents the activation function,

4

which is a bounded function such as a sigmoid function, that introduces non-linearity to
the model [2]. Figures of two of the most commonly used activation functions can be
found in Appendix D.

Ultimately, the information reaches the output layer and an optimization problem,
minwJ(w), can be solved. An example of a commonly used cost function for the op-
timization of regression problems is the mean squared error, MSE(ŷi,yi) [7]. The com-
puted cost is the accumulated loss of the whole model, and this is propagated back into
the network by computing the partial derivative with respect to the weight associated with
every node in all the layers. This technique is called backpropagation, and it obtains the
gradient of the cost function, rJ(w), for the optimization, enabling tuning of the weights
for best possible prediction performance [22].

The transferring of the entire dataset through the network with the corresponding cost
computation, backprogagation and parameter tuning, make up one iteration or one epoch
of the network training algorithm.

2.3 Probabilistic modelling: Bayesian neural networks
The basic principles of a probabilistic modelling approach is to replace unobserved quan-
tities where uncertainty will occur, with a probability distribution [11]. BNN’s are neural
networks where the applied weights, normally estimated by point estimates, are the un-
certain unobserved quantity that are represented by probability distributions, from which
estimates can be drawn. It is then the parameters of these distributions that will be learned
instead of the weights directly, and in this way uncertainty in the weight estimation, and
thus in the model itself, is taken into account.

Uncertainties

There exists different types of uncertainties, and two main types of uncertainty in Bayesian/prob-
abilistic modelling is aleatoric and epistemic uncertainty [11]. Aleatoric uncertainty refers
to the noise in the observed data. This uncertainty is covered by placing a probability
distribution upon the predicted value, and is an uncertainty that can not be reduced by e.g.
adding more data. Epistemic uncertainty refers to the uncertainty of the model itself and is
covered by the posterior distribution. This is modelled by placing a prior distribution over
the model weights and trying to capture how much they vary with the given data. This is
a type of uncertainty that can be reduced by adding more data. An example showing both
aleatoric and epistemic uncertainty in the predictions of a Bayesian neural network, and a
more thorough explanation of these, can be found in Appendix A.

Prior, likelihood and posterior

There are three important components that defines the probabilistic model, the likelihood,
prior and posterior distributions. The likelihood is a conditional distribution of the data
as a function of the model parameters and can be defined as l(w) = p(D|w). It indicates

5

the likelihood of observing the data, D, given the parameters, w. The prior, p(w), is a
distribution placed upon the parameters and gives a prior estimation of the parameters
before observing any data. The posterior is a distribution defined by Bayes theorem, and
is proportional to the product of the likelihood and the prior,

p(w|D) =
p(D|w)p(w)

p(D)
/ l(w)p(w) (2.2)

p(D) is called the normalizing term, and will be explained in section 2.3.1. Following
the properties of the prior and the likelihood, the posterior distribution posits all informa-
tion that can be learned about the parameters, w, from the given data. It gives the most
likely parameters, given the observed data [19].

Estimating parameters

In general, when a neural network is introduced to an observed data input, x, the objective
is to make a prediction of the output, y, based on that data. To give an as accurate predic-
tion as possible, one needs to have good estimates of the model weights, i.e. the model
parameters, based on the training of the network on a labeled dataset.

One common way of estimating the parameters, w, is to compute the maximum like-
lihood estimate (MLE). In this case, one seeks to find the parameter that maximizes the
objective,

w⇤ = argmax
✓

p(D|w), (2.3)

By applying the proportionality property of the posterior, given above, one can incorporate
prior knowledge about the model parameters which then serves as a form of regularization.
By finding the parameter that maximizes this posterior,

w⇤ = argmax
✓

p(D|w)p(w), (2.4)

one gets the maximum a posteriori (MAP) estimate. In this case, the prior is assumed to
be uniform, p(w) / 1 [19]. However, these give only a point estimate that neglects the
fact that there are other possible parameters that are nearly likely [15].

By instead using the full probability distribution of the posterior as an estimate, and by
evaluating the shape of the distribution, one can acquire the confidence of the parameter
estimates. The parameter estimate is then the average over all possible parameters of the
distribution, which is known as marginalisation. This is referred to as Bayesian estimation,
and is the basis of Bayesian inference in neural networks [15].

2.3.1 Bayesian inference
Bayesian inference makes it possible to make predictions that also take into account the
uncertainties of all the weights of the network with respect to the posterior distribution,
and one is able to more accurately model the epistemic uncertainty of the network [19].

6

The posterior distribution is, as mentioned, computed by Bayes’ theorem, and in the case
of a posterior distribution of the model parameters w given the dataset D, Bayes theorem
can be written as

p(w|D) =
p(D|w)p(w)R

w p(D|w’)p(w’)dw’
(2.5)

Both the likelihood and the prior is fairly easy to compute, but the denominator compo-
nent, p(D) =

R
w p(D | w’)p(w’)dw’, can make the analytic computation of the posterior

intractable for neural networks. p(D) is known as the normalizing term and shows whether
the data D is generated from the model. This computation requires an integration over all
possible model parameters, and is called marginalization [20].

A posterior distribution is, in addition to estimating the weights of the network, used
to make predictions of the output, ypred, given some unseen input data, Dnew = {x}.
This can be done by computing the posterior predictive distribution with the approximated
posteriors of the parameters as the prior, given by

p(ypred|x,Dnew) =

Z
p(ypred|x,w,D)p(w|D)dw (2.6)

The distribution is the density of the likelihood of the prediction multiplied with the
posterior distribution of the weight parameters w, and is equivalent to averaging predic-
tions weighted by the posterior probability of the parameters. This makes it possible
to quantify the aleatoric uncertainty by extracting the standard deviation of the output
distribution.[17] On a more practical note, this means that the predicted output is retrieved
by sampling from the output distribution. By extracting the model prediction N number
of times and getting N sampled predictions, one can retrieve the mean prediction together
with the epistemic uncertainty by taking the mean and standard deviation of the N pre-
diction vectors, ypred. A good demonstration of this output is shown in Figure A.1 in
Appendix A.

Due to the difficulties of analytically expressing the posterior, an alternative method
for characterizing an approximate posterior is needed, and one such method is called vari-
ational inference, presented in the following section [19].

2.3.2 Variational inference
To deal with the problem of an intractable posterior, a popular approximation method
called variational inference can be applied. The posterior is then instead approximated by
a variational distribution, q(w|✓) of a known functional form. In theory, any distribution
could be chosen for this purpose, however, a family of distributions that is often chosen
as the functional form for the approximation is the Gaussian family. This was also proven
by Graves (2011) [12], in his paper on variational inference, to be the best choice for both
posterior and prior distribution. ✓ = (µ,�) is then the variational parameter which is learned
during training of the network, so as to retrieve a member of the Gaussian family as close
to the true posterior as possible [17]. Consequently, the problem becomes an optimization

7

problem, where the objective is to minimize some divergence between the approximate
and the true posterior [19]. Usually the Kullback-Liebler (KL) divergence as a function of
the variational parameter, is used as the objective funtion, shown in Equation 2.7.

✓
⇤ = argmin✓DKL[q(w|✓)||p(w|D)] (2.7)

✓
⇤ is here the estimated variational parameter. Since the KL-divergence function orig-

inally requires computation of the posterior, one can derive the evidence lower bound
(ELBO) as an alternative optimization objective. The ELBO for this case is defined as,

ELBO = �DKL[q(w|✓)||p(w)] + E[log(p(D|w))] (2.8)

and is derived from the KL-divergence in the following way, [16]

DKL[q(w|✓)||p(w|D)] = Eq[log
q(w|✓)

p(w|D)p(w)
p(D)]

= Eq[log(q(w|✓)) + log(p(D)� log(p(D|w)� p(w)]

= Eq[log(q(w|✓))� log(p(D|w)� log(p(w))] + log(p(D)

= Eq[log
q(w|✓)
p(w)

� log(p(D|w)] + log(p(D)

= DKL[q(w|✓)||p(w)]� E[log(p(D|w))] + log(p(D)) (2.9)

The first term is the KL-divergence between the variational distribution and the true
prior, which is known as the complexity cost, and works as a form of penalty term in the
optimization. The middle term is the negative expected log-likelihood, called the likeli-
hood cost, and the last term is called the marginal cost. Since the marginal cost is inde-
pendent of ✓ and therefore constant when varying q, the resulting cost, also known as the
variational free energy, is defined as [4]

J(✓) = DKL[q(w|✓)||p(w)]� E[log(p(D|w))] (2.10)

where J(✓) = �ELBO. Therefore, minimizing the KL-divergence is in fact equivalent
to maximizing the ELBO, and the resulting optimization objective is shown in Equation
2.11 [19].

✓
⇤ = argmax✓{Eq[log(p(D|w)]�DKL[q(w|✓)||p(w)]} (2.11)

However, analytical computation of the ELBO’s gradients is not possible and intro-
duces additional difficulty regarding optimization [19]. Blundell et al. [4] proposed a
method using an unbiased estimator for the gradients, often referred to as the Monte Carlo
estimator, resulting in a backpropagation-like algorithm for variational inference called
Bayes by Backprop. This method is introduced below.

8

Monte Carlo variational inference

A monte carlo estimatior is useful for computing expectations of distributions. It draws
samples from this distribution to compute a sample average of the respective function.
With some altering of the ELBO, it can be found that one needs to compute an expectation
w.r.t. the variational approximation q(w|✓). Monte Carlo estimation thus involves sam-
pling N samples, ✓ ⇠q✓, and computing the average so that the ELBO and its gradient can
be estimated [19]. The resulting approximated cost can be shown as,

J(✓) =
nX

i=1

log(q(wi|✓))� log(p(wi))� log(p(D|wi)) (2.12)

where w
i is the ith Monte Carlo sample drawn from the approximate variational distribu-

tion, q(w|✓) [4].

One MC estimator referred to as a path-wise derivative estimator or reparameterization
gradient estimator, involves a re-parameterization trick which allows gradient computation
[19]. The mentioned Bayes by backprop method by Blundell et al uses a generalization of
this re-parameterization trick to learn the distributions of the weights. In cases where q✓ is
a normal distribution, a sample, ✏, is drawn from a parameter-free distribution, N(0, I), and
is then transformed with a deterministic function, t(µ,�,✏) = µ+��✏ [17]. This transfor-
mation makes normal backpropagation through the network, with calculations of gradients
for parameter updates, possible [4]. In more general terms, this method is also known as
Monte Carlo variational inference (MCVI).

Prior distribution

Regarding the priors of the network, is should be mentioned that there are several options
for choosing both the applied distributions and the parameters of them. As mentioned
previously in this section, Graves suggests that distributions from the Gaussian family for
both the prior and the posterior is the better choice [12]. In his paper, the prior parameters
µ and �

2 (mean and variance) are also learned during training. Blundell et al. argues in
their paper that using a fixed scaled mixture prior of two Gaussian distributions, yields best
performance for Bayes by backprop, and will therefore be used in the implemented MCVI
models presented in chapter 4 [4]. This means that the parameters of the two distributions
are hyperparameters, meaning they are determined and fixed prior to training the model.

2.3.3 Monte Carlo dropout
Gal and Ghahramani [10] proposed a more practical approach to obtaining uncertainty of
a model that is equivalent to variational inference with MC sampling, explained in the
previous section. This approach is called Monte Carlo Dropout (MCDO), and includes
performing dropout on every layer in the network both during training and testing, with
some probability of units being dropped out. The variational distribution resembles in this
case a Bernoulli distribution by being a mixture of two Gaussian processes with small
variances and one of the means fixed at zero. A mathematical derivation of this, and proof

9

of exactly how and why this is equivalent to MCVI, is beyond the scope of this project.
However, this can be found in Gal’s phd thesis (2016) [8] and the mentioned paper of
Gal and Ghahramani. By approximating the minimization of the KL-divergence between
the variational and the posterior distribution, one arrives at the following minimization
objective for regression problems,

J(Mi,mi) = � 1

N

NX

n=1

log(p(Dn|ŵn)) +
LX

i=1

(
1� p

2N
||Mi||2 +

1

2N
||mi||2) (2.13)

where Mi and mi are the variational parameters of qw, p is the dropout probability, N
is the number of data points and ŵn is the weight sampled from the variational distribution,
ŵn ⇠ qw, which is now of the approximate form [9]

w = {Wi}Li=1

Wi = Mi · diag([zi,j]Ki
j=1)

bi = mi

zi,j ⇠ Bernoulli(pi), for i = 1,..,L , j=1,..,Ki�1 (2.14)

L is here the number of layers, Ki the number of units in layer i and pi the dropout
probability of layer i. Mi and mi are the variational parameters for the weight matrices,
wi, and the bias vector, bi, respectively. This makes qw a distribution over matrices which
columns are set to zero [9].

The practical implementation of MCDO is done by dropping random units during
training and at each test iteration, for N iterations, in which one is left with N empiri-
cal samples from an approximate posterior of the predictions. From this, one can compute
the estimate of the predictive mean and predictive standard deviation from the N sample
vectors, in the same way as for Bayesian inference, to collect the model prediction and
epistemic uncertainty. During training, the objective is to minimize the cost function, to
estimate the weight parameters. The first term of the cost function given above is the
negative log-likelihood, and it can be shown that maximizing the likelihood (MLE), as
described in section 2.3, gives the same optimal parameters as when minimizing the mean
squared error (MSE). The optimization objective for the practical implementation can thus
be derived as

J(Mi,mi) =
1

N

NX

n=1

||yi � ŷ
i||2 + �

LX

i=1

(||Mi||2 + ||mi||2) (2.15)

with a generalized weight decay, �, for the l2 regularization [9]. Using l2 regularization
in point estimate neural networks is equal to setting a Gaussian prior with zero mean and
a fixed variance, from a Bayesian point of view [12]. One could say that the regularization
term works as a soft constraint, just as the prior does for the posterior. These are similar
arguments to those used in the paper by Gal and Ghahramani to demonstrate the equiva-
lence between MCVI and MCDO, and their respective loss functions [17].

10

CHAPTER 3

Building and evaluating a neural network

The following chapter will address some general considerations that needs to be taken into
account when building and evaluating a neural network. Firstly, the hyperparameters of a
neural network, and specifically of a MCVI and MCDO network, will be addressed. Then,
some methods for pre-processing of data necessary before training a machine learning
model will be briefly explained. Lastly, some important aspects regarding the evaluation
of a model will be presented in terms of performance evaluation and some steps to avoid
poor performance.

3.1 Tuning of hyperparameters
Hyperparameters are the parameters that are determined prior to training the model, and
their values determine the structure of the network. Examples of such parameters are
the number of hidden units in the network, the learning rate fed to the optimizer and the
dropout probability of a dropout NN. Tuning these parameters correctly is crucial to get-
ting good results. The tuning could be done manually, however, this can be tedious work
and give non-optimal solutions. Methods exist for automatic tuning by optimization tech-
niques such as the random search algorithm or the grid-search algorithm. However, these
methods have shown to be both computationally costly and time-consuming, and later re-
search have shed light on Bayesian optimization as an approach that outperforms these
methods as well as manual tuning by experts. An elaboration and further explanation of
Bayesian optimization can be found in Appendix C.

Another hyperparameter that is important for network performance, is the choice of ac-
tivation function for the different layers. All activation functions approximate a different
Gaussian process covariance function that corresponds to different uncertainty estimates.
One should therefore think of what the expected result is before choosing the activation.

11

For instance, if one expects the prediction uncertainty to increase the further outside of a
training data range it predicts (as is the case in the implementation case-studies in chapter
4), then a rectified linear unit (Relu) function should be used. This function is shown in
Figure D.1a in Appendix D. When comapring it with the Sigmoid function shown in Fig-
ure D.1b, one can see that the Relu function does not saturate as the Sigmoid does, and
this will lead to an increasing uncertainty [10].

Table 3.1 shows the different hyperparameters that are necessary to tune for an MCVI
and a MCDO network.

Method Hyperparameter Description

MCVI Prior distribution For example a Normal distribution, N(µ,�).
Could also choose mixed priors of
two or more distributions.
This parameter could also be trained.

Prior distribution parameters In the case of a Normal distribution,
the parameters are µ and �

Posterior distribution For example a Normal distribution, N(µ,�),
where µ and � are trained.

MCDO Dropout probability, p The probability of a unit not being dropped,
(1-p) of being dropped.

Weight decay, � Weight decay of l2-regularization.

General Learning rate, lr Determining size of optimization steps.

Units, K The number of hidden units in each hidden layer.

Layers, L The number of hidden layers in the network.

Activation function, a Activation function applied to
each unit in the network, for example
Relu or Sigmoid.

Table 3.1: This table shows the different hyperparameters that needs tuning for both Monte Carlo
variational inference, and Monte Carlo dropout. The general hyperparameters are common for both
methods.

12

3.2 Data pre-processing
Data pre-processing is a data mining technique that can have significant impact on the per-
formance of a machine learning model, as it transforms raw data into an understandable
format. It produces a dataset that is better fitted for model training, and hopefully results in
better generalization performance of the model, depending on the processing steps chosen.
Common pre-processing steps include data-cleaning and data-transformation. There also
exists several methods for both cleaning and transformation of data, and below are some
of the most popular methods listed [14][1].

Data Cleaning

• Removing outliers: This method involves removing data points that lies outside of
some pre-determined bound that incorporates a percentage part of all the same type
data. Outliers have a great impact on model prediction, and is therefore an important
step.

• Missing data treatment: These methods involves treating incomplete datasets, by
for example listwise deletion, where all data corresponding to the missing point is
removed.

Data Transformation

• Scaling the data: The data is scaled so that all features are within the same order
of magnitude, and no features will wrongfully influence the the model more than
others. Standardization is a very common scaling method, and is shown in Equation
3.1.

• Smoothing the data: Smoothing is done when the raw data is very noisy, and some
techniques often used include binning or regression, which will not be elaborated
further in this report.

The mentioned standardization method for scaling of data can be shown as,

xscaled =
xtrain � µtrain

�train
(3.1)

where xscaled are the training and test-features, both scaled in terms of the training fea-
tures [1]. The importance of data preprocessing and the choice of processing methods will
vary depending on the type of data, the type of machine learning problem and the network
that is being trained.

13

3.3 Model evaluation
It is important to review the performance of a model before using it for prediction tasks.
There are many procedures and methods for discovering different types of problems with
the model and developing solutions to fix them. However, this section will focus on the
very common problems of over- and underfitting, how to detect it and what measures that
can improve the model performance.

3.3.1 Over- and underfitting
Over- and underfitting are some of the most common pitfalls when building and training a
machine learning model, and occurs when the model hypothesis is too generalized or too
specific to the training data. Luckily, there are ways of detecting such behaviour in the
model that are also quite intuitive, such as cross-validation which is explained below.

• When over-fitting occurs, it means that the output hypothesis has high variance and
the model fits very well to the training data, while not generalizing well to unseen
data, like the validation or test set.

• When Under-fitting occurs, it means that the output hypothesis has a high bias and
the model is underestimating the model parameters and is generalizing too much.
This can happen when the model is not capturing the complexity of the data, or is
the wrong type for that particular dataset.

The ideal is to find an optimal trade-off between these two phenomena and this is
referred to as the bias and variance dilemma [23]. Depending on if the model suffers from
high variance or high bias, there are different measures that can be considered to improve
the outcome. An example of an overfitted model and how it was improved can be found
in Appendix B.

3.3.2 Hold-out cross validation and data splitting
A common procedure when training a machine learning model on some training data, is to
split the data into a training, validation and test set. This way, one can train the model on
the sampled training data and at the same time, periodically validate the model according
to some loss function applied to the validation data. This is called hold-out cross valida-
tion [23]. The same loss function is applied to the training data, and by tracking both the
training loss and the validation loss, one is able to see whether the model is overfitting,
underfitting or performing in an expected matter overall. This works as a good indicator
of how the model is performing, and what might be wrong or lacking in the model. The
remaining test data is then used to test the model performance by predicting a result based
on the test features, and evaluating that result according to some error metric comparing
the test labels to the predicted values.

14

Figure 3.1 show a common split of training-, validation and test-datasets, where typi-
cally 20% of the available data is first sampled and held out for later testing. The valida-
tion set is then sampled from the resulting training set, and typically consists of 20% of
the training data. Statistical sampling techniques can be used for splitting, and one com-
mon procedure is to use simple random sampling (SRS). The different datasets are then
sampled randomly with a uniform distribution, and each sample has equal probability of
being selected. One problem that can occur with this method, often when the dataset itself
is not uniformly distributed, is that the sampled set does not cover the original dataset in a
sufficient way. This can in some cases lead to overfitting to the training data [23].

Figure 3.1: Figure shows typical data-splitting procedure. First, some fraction of the available data
is sampled and held out for later testing of the model. The remaining dataset is sampled to create the
validation set which is also held out and used to validate the model during training. Typical fractions
of the resulting training-, validation- and training-datasets are 0.6, 0.2 and 0.2 respectively [3].

3.3.3 Evaluation
Figure 3.2 shows three examples of plotting the validation and training loss for each train-
ing epoch. In case B the validation loss is higher than the training loss and increasing, and
this is usually a sign that the model is overfitting to the training data and is not generaliz-
ing well to unseen data. Several factors can lead to overfitting, but a typical cause is a too
high model complexity, i.e. too many hidden layers and units, following a large number of
trainable parameters. Methods for reducing overfitting may include adding regularization
terms to the cost function, adding dropout layers to the network or increasing the training
size, among others [18]. In case A, one can see that the validation and training loss has
stagnated and is generally high. This is a typical sign of underfitting, and that the model
is not able to learn from the data. In this case, one might have a network that does not
have enough parameters to properly fit to the given training data, and a solution may be
to increase the model complexity. Case C shows a trend that is preferable in most cases,
where both training and validation loss is decreasing in a similar matter throughout the
training period.

15

Figure 3.2: The figure shows three simplified plots of validation and training loss during training.
Case A shows underfitting, where the training and validation loss seizes to decrease after a short
period, remaining at a high value. Case B shows overfitting, where the validation loss starts to
increase, while training loss decreases further. Case C shows a ”just right” fitted model, where
training and validation loss decreases somewhat simultaneously throughout the training period [25].

Another problem that might occur when trying to fit a network to some training data, is
that validation error is much lower than the training error. This is counter-intuitive as ML
models should not be better at predicting the unknown than what it has learned. On the
other hand, this could also make sense if the data splitting process has given a validation
set that is generally easier to predict from, than it was to learn from the training set. In
any case, this is an undesirable result, and re-evaluation of the splitting method as well as
adding more data could be solutions to this problem.

16

CHAPTER 4

Model testing and evaluation

This chapter will present three case-studies in three separate sections. In each case, an
MCVI model and an MCDO model will train on different datasets, to examine the prop-
erties of, and comparing the models. The datasets and the following pre-processing steps
that were used prior to training the models, will be presented in the beginning of each
section. The models will then be described, followed by a presentation of the plots of the
test prediction results and the training and validation losses for both models. At the end of
each section, the results for the respective case will be evaluated in light of implementa-
tion, average training time, prediction accuracy and the plotted uncertainties of the models.
The model implementations in Python can be found in Appendix F.

For implementation of the models in Python, the machine learning libraries Tensor-
Flow and Keras were used. Table 4.1 show the versions of libraries in Python used for the
implementation, and the version of Python used was Python 3.7. The aleatoric uncertainty
in all three cases was neglected in the plotting of the results, and only the epistemic uncer-
tainty is shown. In addition, only the MSE-plots will be shown in all cases for comparison
purposes. However, the training and validation loss in terms of the ELBO function for the
MCVI models can be shown in Appendix E, in addition to other left out figures.

17

Library Version

TensorFlow 2.3.0
TesnorFlow probability 0.11.2

Keras 2.3.1
Keras tuner 1.0.2
Scikit learn 0.23.2

Scipy 1.4.1
Pandas 1.1.2

Table 4.1: Versions of Python libraries used for implementation.

The CPU specifications for the computer used for implementation of the models:
Intel(R) Core(TM) i7-6600U CPU 2.60GHz 2.80GHz.

4.1 Case 1: Sinusoidal function
This case-study was based upon an example implemented by Krasser (2019) [16], and the
dataset consists of an input vector x with m number of equally spaced data points in the
range (-0.5,0.5), and an output vector, y, with the associated y-labels. The input and output
data are related by the following sinusoidal function,

f(x) = 10 sin(2⇡x) (4.1)

Gaussian noise was added to create some randomness in the data such that y = f(x) + ✏,
where ✏ ⇠ N (0,�2) with constant �=1.5 for all input points. The training dataset can be
presented as,

x =

2

66664

x1

x2

x3

...

xm

3

77775
,y =

2

66664

y1

y2

y3

...

ym

3

77775

where a training example is represented as Di = {xi, yi}. In this example, there is only
one input feature to each output.

The training data was split into a training and validation set by extracting 20% of the
data for validation. The test set was constructed by 1000 equally spaced x-values in the
range (-1.0,1.0). This is not normal procedure, but was done for the purpose of demon-
strating the increasing uncertainty when using the model for extrapolation. For this rea-
son, the MSE between the test labels and the predictions will not be used to evaluate this
model since these values would be higher than what is expected when following normal
procedure. The training, validation and test set was scaled according to Equation 3.1 in

18

Section 3.2, with the StandardScaler-function in the Sklearn library, and no other data-
preprocessing steps were necessary to follow.

The model mean and standard deviation shown in the results below are based on 500
predictions on the test data, and all data was scaled back to original value before plotting.

4.1.1 MCVI model
This model is based on Krasser’s (2019) [16] implementation of an MC variational infer-
ence BNN. The variational distribution, q✓, was chosen to be of the Gaussian family of
distributions. The prior distribution was fixed and of a mixed form of two Gaussian dis-
tributions, with ⇡ determining the ratio, and �1 and �2 determining the variances between
the two. The network was composed of 2 dense variational layers with 20 hidden units in
each layer, and the Relu activation function was applied to the units in both layers. The hy-
perparameters are given in table 4.2 below, and were determined as suggested by Krasser
(2019) in his implementation. The number of training epochs, trainable parameters and
training data points are given in table 4.3.

Layers, L Units, K Activation, a lr �1 �2 ⇡

MCVI 2 20 Relu 8e-3 1.5 0.1 0.5
20 Relu

Table 4.2: Hyperparameters of MCVI model. �, µ and ⇡ are specific for the variational inference
model.

Epochs Trainable parameters Training data points

3000 962 200

Table 4.3: The number of training epochs, trainable parameters in the network and number of
training data points used to train MCVI model for case 1.

19

4.1.2 MCDO model
The MC dropout model was built with the TensorFlow-Keras implemented Dense and
Dropout layers. It consisted of 2 layers with 20 hidden units in each layer, and the Relu
activation function was used in this model as well. The hyperparameters are given in ta-
ble 4.4 below, and were determined by manual tuning due to non-optimal results using
Bayesian optimization. The optimization algorithm gave, however, a good starting point
for manual tuning which was exploited. The number of training epochs, trainable param-
eters and training data points are given in table 4.5.

Layers Units Activation LR p �

MCDO 2 20 Relu 1e-3 0.05 1e-4
20 Relu

Table 4.4: Hyperparameters of MCDO model. p and � are specific for the MC dropout model.

Epochs Trainable parameters Training data points

3000 962 200

Table 4.5: The number of training epochs, trainable parameters in the network and number of
training data points used to train MCDO model for case 1.

20

4.1.3 Results
Figures 4.1 and 4.2 show the MCVI model’s prediction of the output when made on the
test set, and the corresponding losses computed during training, respectively.

Figure 4.1: Prediction based on the test data in case 1 for the Monte Carlo variational inference
model, with epistemic uncertainty.

Figure 4.2: Mean squared error between model output and y-label for the Monte Carlo variational
inference model in case 1, computed for validation and training data at each training epoch.

21

Figures 4.3 and 4.4 show the MCDO model’s predicted output of the test data and the
corresponding losses computed during training, respectively.

Figure 4.3: Prediction based on the test data in case 1 for the Monte Carlo dropout model, with
epistemic uncertainty.

Figure 4.4: Mean squared error between model output and y-label with additional l2 regularization,
for the Monte Carlo dropout model in case 1, computed for validation and training data at each
training epoch.

22

Model MSE training MSE validation Avg. training time [s]

MCVI 2.9283 2.8216 48.14
MCDO 0.0674 0.1044 25.78

Table 4.6: Mean squared error for training and validation set and average training time, for both
models in case 1.

4.1.4 Discussion
The result of the prediction done with the MCVI model, shown in Figure 4.1, showed the
expected trend in regards to uncertainty. The model seems to be quite certain about its
prediction within the range of the training data, while the epistemic uncertainty increases
when trying to predict outside the range. This is in accordance with the fact that machine
learning in general is not good for extrapolation, and should not predict with certainty in
those cases. The model mean, shown in red, also seem to give a good prediction of the
true function within the training range. The fact that the uncertainty seems to increase
linearly outside the training data range, can be connected to the type of activation function
used for this model, as explained in Section 3.1. The Relu activation function shown in
Figure D.1a in Appendix D, which increases linearly with increasing input, is used in both
models in this case. Figure E.1 show an example where the MCVI model with the same
hyperparameter tuning, was trained with Sigmoid activation in both layers instead, and it is
clear that the uncertainty has reached some kind of saturation in which it does not increase.

When evaluating the training and validation loss, shown in Figure 4.2, it is difficult to
interpret whether the trend is decreasing with the training epochs due to the scale of the
plot. However, Figure E.3 in Appendix E.1 show the same plot, only here with the limits
of the y-axis significantly decreased. In this figure, one can see that the loss is relatively
noisy, which is common for Bayes by backprop when only one MC sample is taken each
iteration for evaluation of the ELBO, presented in Section 2.3.2 [17]. However, one can
see a clear downwards trend until around 1500 epochs. One could then have considered
to stop the training at 1500, but when trying this the prediction result became significantly
worsened. This might be due to the noisiness in the error, and thus that one should increase
the number of epochs to reach a state with more stable gradient computation. The plot for
the ELBO-loss, which the parameter optimization was based on, is shown in Figures E.2a
and E.2b in Appendix E.1. Here, the validation loss is lower than the training loss for
all epochs. As explained in Section 3.3.3, this is counter-intuitive, as the model should
be better at predicting the data it is being trained on than unseen data. Due to the fact
that computing the ELBO cost function involves stochastic sampling from distributions,
as explained in Section 2.3.2, and that it is not as intuitive as the MSE, it is difficult to
interpret what might be the reason for this result. It could be a sign that the splitting of the
data, done with simple random sampling, result in a validation set that does not cover the
training range in a sufficient way. It could also be that the model should have been trained
for longer even though the loss seemed to have converged. However, neither increasing
the epochs nor changing the split ratio or random seed for extracting datapoints, seemed

23

to make a difference.

The prediction with the MCDO model, shown in Figure 4.3, showed similar results to
the MCVI model in terms of uncertainty and prediction mean. However, the uncertainty
within the training range is slightly larger, which could mean that this model would per-
form better with more data provided for training, as epistemic uncertainty can be reduced
by adding more data. It could also be a sign of sub-optimal hyperparameter tuning, as the
tuning in this case was done by trial and error, while the tuning of the MCVI model in this
case followed the suggestions of Krasser (2019) [16], which are assumed to give optimal
results. However, as the test data is noisy, it could be that the MCDO model gives the
more reasonable result as the confidence interval covers more of the test data points than
the MCVI model, and therefore gives a more realistic prediction of the test data.

Figure 4.4 show the MSE + regularization loss for the MCDO model. The loss-curves
are far less noisy than for the MCVI model, which was expected as the practical imple-
mentation of this model does not include stochastic sampling. It shows a clear downwards
trend, and even though the validation loss is lower than the training loss in the beginning
of the curve, the deviation is only 0.037 at the end of the training epochs, which in this
case could be regarded as a sufficient result. In this case the training data was constructed
by equally spaced datapoints, and this could have affected the randomness of the selected
validation set, and further the models ability to predict good and even better results from
the validation data.

Table 4.6 show the MSE after the last training epoch for validation and training loss,
as well as the average training time, for each model. The MCVI model used 3000 epochs
for training, before reaching a sufficiently low MSE. This was three times the number that
the MCDO model needed, which makes sense as learning the posterior with variational
inference is in general much slower than regular backpropagation [17]. The loss-curves
for this model also converged at a higher mean squared error than the MCDO model. It
was expected that the runtime of the MCVI model would be even slower compared to the
MCDO model, which only trained for 1000 epochs, due to the higher number of trainable
parameters in this model. However, when testing the time it took for the MCDO model
to train for 3000 epochs, it was only 4 seconds faster. This might be due to the simplicity
of the dataset, and that a larger time difference would occur with more complex data and
model structure.

24

4.2 Case 2: Cubic function

In this case-study the dataset was contructed, and can be represented, in the same way as
for case 1, but with a different function, f(x). The x-vector consisted in this case of m
number of equally spaced points in the range (1.5,5). The dataset was constructed with the
following cubic function,

f(x) = 0.1x3 � 0.7x2 + x (4.2)

with Gaussian noise such that y = f(x) + ✏, where ✏ ⇠ N (0,�2) with constant � = 0.1.

The training data was split into a training and validation set by extracting 20% of the
data for validation. The test data was also in this case constructed separate from the train-
ing data, for the same reasons as for case 1, by 1000 equally spaced x-values in the range
(0,6.5). The training, validation and test data was scaled according to Equation 3.1 in
Section 3.2, with the StandardScaler-function in the Sklearn library, and no other data-
preprocessing steps were necessary to follow.

The model mean and standard deviation shown in the results below are based on 500
predictions on the test data, and all data was scaled back to original value before plotting.

4.2.1 MCVI model

The MCVI model in this case was built with the DenseVariational layer in TensorFlow-
Keras, with mixed non-trainable priors. A Gaussian distribution was chosen as the pos-
terior. This layer is based on the same logic as the dense variational layers in Krasser’s
model from case 1. The model consisted of 1 hidden layer with 10 units, and the number
of training epochs, trainable parameters and training data points are given in table 4.8. The
Hyperparameters are given in table 4.7, and were determined by manual tuning due to non-
optimal results using Bayesian optimization. The optimization algorithm gave, however, a
good starting point for manual tuning which was exploited.

Layers Units Activation LR �1 �2 ⇡

MCVI 2 10 Relu 8e-3 1 1e-7 0.5
10 Relu

Table 4.7: Hyperparameters of MCVI model for case 2. �, µ and ⇡ are specific for the variational
inference model.

25

Epochs Trainable parameters Training data points

3500 84 700

Table 4.8: The number of training epochs, trainable parameters in the network and number of
training data points used to train MCVI model for case 2.

4.2.2 MCDO model
The MCDO model was built with the same TensorFlow-Keras layers as in case 1, and the
model had 2 hidden layers with 20 hidden units in each layer. The Relu activation function
was used in both layers. The number of trainable parameters, training epochs and training
data points are given in table 4.10. The hyperparameters are given in table 4.9, and were
determined by manual tuning due to non-optimal results using Bayesian optimization, as
described in Appendix C. The optimization algorithm gave, however, a good starting point
for manual tuning which was exploited. The resulting number of trainable parameters was
481.

Layers Units Activation LR p �

MCDO 2 20 Relu 1e-3 0.05 5e-5
20 Relu

Table 4.9: Hyperparameters of MCDO model for case 2. p and � are specific for the MC dropout
model.

Epochs Trainable parameters Training data points

500 481 700

Table 4.10: The number of training epochs, trainable parameters in the network and number of
training data points used to train MCDO model for case 2.

26

4.2.3 Results
Figures 4.5 and 4.6 show the prediction made on the test data and the loss computed during
training for the MCVI model, respectively.

Figure 4.5: Prediction based on test data in case 2 for the Monte Carlo variational inference model,
with epistemic uncertainty.

Figure 4.6: Mean squared error between model output and y-label for the Monte Carlo variational
inference model in case 2, computed for validation and training data at each training epoch.

27

Figures 4.7 and 4.8 show the prediction made on the test data and the loss computed
during training for the MCDO model, respectively.

Figure 4.7: Prediction based on test data in case 2 for the Monte Carlo dropout model, with epis-
temic uncertainty.

Figure 4.8: Mean squared error between model output and y-label with additional l2 regularization,
for the Monte Carlo dropout model in case 2, computed for validation and training data at each
training epoch.

28

Model MSE training MSE validation Avg. training time [s]

MCVI 0.2470 0.2072 55.24
MCDO 0.1858 0.2475 13.58

Table 4.11: Mean squared error for training and validation set and average training time for both
models in case 2.

4.2.4 Discussion
Figure 4.5 shows the same expected results as for case 1, with a linearly increasing un-
certainty outside the training data range. However, it seems slightly overconfident within
the training data range, where the standard deviation is very small and the model mean
is not identical to the true function over the entire range. This might be due to the fact
that the model structure is relatively simple with only one hidden layer, and therefore not
introducing much uncertainty. The hyperparameters regarding the prior distribution of the
MCVI model were tuned based on the article by Blundell et al. [4], in which the example
was a classification problem. Still, these parameter values seemed to give good results for
this model as well, despite this being a regression problem.

The training and validation loss curves, shown in Figure 4.6, show a relatively gradual
downwards trend, even though the decrease seems to be mainly due to the decreasing level
of noise. Figures E.4a and E.4b in Appendix E.2 show the ELBO-loss of the training and
validation data, and here it is more clear that the actual loss is decreasing with the number
of epochs.

The MCDO model needed only 500 epochs to converge to minimum MSE values for
the training and validation loss. Figure 4.7 show the prediction on the test data, and it
shows a similar trend as for the MCVI model, only with larger confidence interval both
within the training range, and a higher increase on the outside. This model had two hidden
layers with 20 units in each layer, which coincides with the theory that higher complexity
in the model introduces more uncertainty in the predictions.

Figure 4.8 show the loss curves computed during training, and the trend is clearly de-
creasing also in this case. However, training loss is now slightly lower than validation
loss for all epochs, but both curves are decreasing simultaneously, which is the preferred
result as described in Section 3.3.3. This shows that the model is training and improving
performance on the training data, and managing to generalize to the unseen validation data.

Table 4.11 show the MSE of the training and validation data at the end of the training
epochs, as well as the average training time, for each model. The MCDO model was sig-
nificantly faster, as was expected due being trained for only 500 epochs, while the MCVI
model was trained for 3500 epochs. One might have expected the runtime of the MCVI
model to be quite fast, as it only had 84 trainable parameters. However, as mentioned for
case 1, the training time might not be affected by the number of parameters in a very large

29

sense when the dataset is as simple as this one, with only one training feature. Overall, it
can be seen that the MSE training loss for the MCDO model is lower than for the MCVI
model, and that both the prediction plot and the MSE-loss plot showed a more expected
and better result.

30

4.3 Case 3: Auto MPG dataset
This case-study will examine how the two approximative models handles larger datasets
with several features, and compare the results as done in the previous cases. The models
will not try to predict out of range data in this case-study.

This dataset was collected from the UCI Machine learning repository [6], and consists
of data that describes the city-cycle fuel consumption of a number of old cars, in miles
per gallon (MPG). The original dataset includes 5 continuous attributes and 3 discrete.
The discrete attributes were removed from the dataset, to avoid any difficulties regarding
mixing categorical and continuous features. The dataset consists of 398 instances, which
gives an x-matrix of dimensions 398x4 and y-vector of dimensions 398x1, and the data
can be presented as,

x =

2

66664

x
1
1x

1
2x

1
3...x

1
n

x
2
1x

2
2x

2
3...x

2
n

x
3
1x

3
2x

3
3...x

3
n

...

x
m
1 x

m
2 x

m
3 ...x

m
n

3

77775
,y =

2

66664

y
1

y
2

y
3

...

y
m

3

77775

where m is the number of instances and n is the number of features in each training
example, which is here 398 and 4 respectively. After pre-processing the data with scaling
and removing outliers and missing values, the number of training examples was reduced
from 398 to 314.

The data was scaled with Equation 3.1 in Section 3.2, and the missing values were re-
moved using the dropna() function in Pandas. The outliers were removed with the z-score
function in stats from the Scipy-library. The training data was split into a training and test
set by extracting 20% of the data for testing. During training, 20% of the training data was
extracted for validation.

The correlation between the different features can be shown in Figure E.5, and based
on which features showed the most visible trend with the MPG data, the features weight
and horsepower (HP) were used to show whether the prediction of MPG followed the
expected trend. Further feature analysis have not been performed in this project, and the
results should therefore only be reviewed in light of the visual trends in the plots. The
model mean and standard deviation shown in the results are based on 500 predictions on
the test data, and all data was scaled back to original value before plotting.

31

4.3.1 MCVI model

The Monte Carlo variational inference model was built with the DenseVariational layer in
TensorFlow-Keras, with mixed non-trainable priors. A Gaussian distribution was chosen
as the posterior. The model had 1 hidden layer with 10 units, and the number of epochs,
trainable parameters and training data points can be found in table 4.13. The hyperpa-
rameters were tuned manually due to non-optimal solutions with Bayesian optimization.
Sigmoid activation was used in the hidden layer of this model due to exploding values
during loss-calculation when using the Relu activation function.

Layers Units Activation LR �1 �2 ⇡

MCVI 1 10 Sigmoid 1e-3 1 1e-7 0.5

Table 4.12: Hyperparameters of MCVI model for case 3.

Epochs Trainable parameters Training data points

5000 144 314

Table 4.13: The number of training epochs, trainable parameters in the network and number of
training data points used to train MCVI model for case 3.

4.3.2 MCDO model

The MC dropout model was built with the TensorFlow-Keras implemented Dense and
Dropout layers. Bayesian optimization was used to find the optimal hyperparameter tun-
ing, which resulted in a model with 2 hidden layers, the first with 100 units and the sec-
ond with 20 units. Four of the hyperparameters were included in the search space of the
Bayesian optimization, namely dropout-rate, number of hidden layers, number of units in
each hidden layer and the weight decay for the l2-regularizer. The remaining parameters
were manually tuned, and Relu activation was used in both layers. The hyperparameters
are given in table 4.14, and the number of epochs, trainable parameters and training data
points can be found in table 4.15.

32

Layers Units Activation LR Dropout �

MC 2 100 Relu 1e-3 0.1 1e-4
20 Relu

Table 4.14: Hyperparameters for MCDO model. p and � are specific for the MC dropout model.

Epochs Trainable parameters Training data points

50 2541 314

Table 4.15: The number of training epochs, trainable parameters in the network and number of
training data points used to train MCDO model for case 3.

The Bayesian optimization algorithm was implemented with the Keras tuner applica-
tion in the Keras-library, and the implementation can be found in Appendix F.

33

4.3.3 Results
Figures 4.9a and 4.9b show the predictions of MPG as a function of horsepower and weight
respectively, and Figure 4.10 show a 3D-plot of the prediction of how MPG vary with both
features.

(a) MPG as a function of horsepower. (b) MPG as a function of weight.

Figure 4.9: Predictions based on test data in case 3 for the Monte Carlo variational inference model.
MPG in 2D-plot, as function of (a) horsepower and (b) weight.

Figure 4.10: Prediction based on test data in case 3 for the Monte Carlo variational inference model.
MPG in 3D-plot as function of horsepower and weight.

34

Figure 4.11 show the correlation between the predicted values of miles per gallon and
the true value.

Figure 4.11: Correlation between model output and true y-label values for Monte Carlo variational
inference model.

Figure 4.12 show the MSE-loss computed during training of the model.

Figure 4.12: Mean squared error between model output and y-label, for the Monte Carlo variational
inference model, computed for validation and training data at each training epoch.

35

Figures 4.13a and 4.13b show the predictions of miles per gallon as a function of
horsepower and weight respectively, and Figure 4.14 show a 3D-plot of the prediction of
how MPG vary with both features.

(a) MPG as a function of horsepower. (b) MPG as a function of weight.

Figure 4.13: Predictions base on test data in case 3 for the Monte Carlo dropout model. MPG in
2D-plot, as function of (a) horsepower and (b) weight.

Figure 4.14: Prediction based on test data in case 3 for the Monte Carlo dropout model. MPG in
3D-plot as function of horsepower and weight.

36

Figure 4.15 show the correlation between the predicted values of miles per gallon and
the true value.

Figure 4.15: Correlation between model output and true y-label values for Monte Carlo dropout
model.

Figure 4.16 show the MSE-loss computed during training of the model.

Figure 4.16: Mean squared error between model output and y-label with additional l2-
regularization, for the Monte Carlo dropout model, computed for validation and training data at
each training epoch.

37

Table 4.16 show the MSE at the end of the training epochs, the MSE between the true
test labels and the prediction output, and the average training time. The MSE test values
are computed with non-scaled values after prediction is completed.

Model MSE training MSE validation MSE test [mpg2] Avg. training time [s]

MCVI 0.4874 0.5858 11.243 114.01
MCDO 0.2669 0.2514 10.939 1.66

Table 4.16: Mean squared error for training and validation set and average training time for MCDO
model in case 3.

4.3.4 Discussion
Figures 4.9a and 4.9b, showing the 2D-plot of the prediction of MPG as function of horse-
power and weight, respectively, show an indication that the prediction is following the
expected trend of the correlation between the output and input feature. The Sigmoid ac-
tivation function was used in this model, which is probably the reason for the very low
uncertainty in the model. The Relu function was not suitable for this model, due to ex-
ploding loss values during the first epochs. As this model has more features than the
datasets in case 1 and 2, the added loss for each parameter during training got significantly
higher. With the relu function being a linearly increasing function, one can assume that
this resulted in high loss values that could not be handled by the algorithm, and thus giving
out Not a Number (NaN)-values for the rest of the iterations. In both of of the 2D-plots, it
might seem like the lack of smoothness in the curves could be a sign of overfitting, how-
ever, both HP and weight are just one out of four features affecting the prediction, and
the plots does therefore not give an indicateion of whether or not the model is overfitting.
Figure 4.10 show the 3D-plot of the correlation between the MPG-values and both the
horsepower and weight features. This figure gives a better visual of the models prediction
of the test data, and the prediction seems to be very similar to the actual values of the test
data. In table 4.16, the MSE between the predicted output and the test labels was 11.243
mpg2, which seems to be a reasonably good result.

Figure 4.11 show the correlation between the true values of the test data and the pre-
dicted output as the blue dots. They seem to be gathered around the ”perfect correlation”
line, which is a good indication that the model was able to predict the test data quite accu-
rately.

The MSE-loss is shown in Figure 4.12, and show a clear improvement with the num-
ber of epochs. It could look like the loss is at a minimum at around 3000 epochs, and
that there was no need for running for another 2000. However, Figures E.6a and E.6b in
Appendix E.3 show the computed ELBO-loss, in which it is more visible that the loss is in
fact decreasing slowly until around 5000 epochs. The curves showing both the computed
MSE and the ELBO are quite noisy, as was expected. This could be seen in both previous
case-studies for the variational inference models as well, and is due to the stochasticity of

38

the model itself.

Both Figure 4.13a and 4.13b, showing the prediction for the MCDO model, are quite
similar to those of the MCVI model. However, the uncertainty is larger overall, and es-
pecially for the outer points of both prediction curves, where there is less training data.
This could both be due to the choice of activation function and the increased complexity.
This model gives a more reasonable result as the 95% confidence interval is able to include
48.7% of the true test data values, while the MCVI models uncertainty only covers 12.82%
of the true values and thus being overconfident about its prediction. Figure 4.14 show the
3D-plot of the correlation between horsepower, weight and MPG, in which one can see
that the prediction follows the test data in a good way. This can also be seen in figure 4.15,
where the correlation between the predicted outcome and the true test labels lie along the
”perfect correlation” line. The MSE between the true test value and the predicted outcome
was 10.939 mpg2, which was slightly lower than for the MCVI model.

The MSE loss curves for the MCDO model, shown in figure 4.16 show a rather steep
descend during the first 5-7 epochs, followed by a more gradual decrease in both valida-
tion and training loss for the rest of the training period. The validation loss is lower in the
fist 30 epochs, which is an undesired result, but seems to keep a stable level as the training
loss decreases to a generally lower value at the end. Due to some noise in the validation
loss curve, the final MSE-value is actually lower for the validation loss, as shown in table
4.16.

In this case-study, the Bayesian optimization algorithm was able to give slightly better
hyperparameter tuning than the manually tuned Monte Carlo dropout model. This proved
that there is some potential in implementing the optimization method, however, it needs
to be improved for generalized use on different models and datasets. The average training
time for MCDO, shown in table 4.16, was very low, which was expected due to the few
number of epochs that the model was trained for. Overall, it seems that the MCDO model
gave the best results in terms of lower mean squared error, lower number of necessary
epochs for training, and a relatively fast algorithm.

39

CHAPTER 5

Final evaluation and future work

The results in Section 4.1 and 4.2 showed overall expected results according to theory of
Bayesian neural networks, and the models were able to predict well inside the training data
range with a reasonable increase in uncertainty on the outside.

The manual tuning of the hyperparameters regarding the priors of the MSVI-model
proved to be very difficult, and tuning based on intuitive knowledge was practically im-
possible. Bayesian model performance is in general sensitive to the choice of prior and it
is difficult to choose suitable and meaningful priors in MCVI, even with prior knowledge
about the data [27]. The hyperparameters of the MCDO-model was in general easier to
tune, as each parameter had an intuitive effect on the model performance. For example,
when the model was overfitting is was a natural choice to try increasing the weight decay,
�, or the dropout probability, p, as explained in Appendix B. This model also showed to
be more robust, and not as sensitive to small changes in the model structure or hyperpa-
rameters as the MCVI model.

The average training time did not seem to be affected by the number of parameters in
the three cases, but a rather significant increase in runtime could be seen with increasing
epochs. Due to the larger number of epochs needed for the MCVI models, those models
were naturally a lot slower than the MCDO-models. This is an important factor to con-
sider in further work, as average runtime becomes more important with large and complex
networks, and one may want to choose the faster model.

The Bayesian optimization algorithm only provided good results for the MCDO-model
in case 3, and there are several possible reasons for the poor performance. The search space
may have been too small, or in the wrong range. It could also be that the search algorithm
did not get enough trials to reach the optimal solution, or that it simply needed more fea-

40

tures to make the right decisions.

Based on the evaluation of the three case-studies conducted in this project, using Monte
Carlo dropout as a method for approximating a Bayesian neural networks seems to be the
better choice. This based on the results from each case presented in tables 4.6, 4.11 and
4.16, where MCDO showed both lower MSE-values and overall faster network training
(mainly due to lower necessary number of epochs). Therefore, in further studies, this
method will be used as a basis for new models.

Further work should focus on using this model as a starting point, and explore possibil-
ities for improving it for specific types of data. Improvements may include the implemen-
tation of Long short-term memory recurrent neural networks (LSTM-RNN) for working
with time-dependent datasets. This for making the model able to predict on realistic data,
and be used as a tool in a research context. An improvement of the Bayesian optimiza-
tion algorithm would also be necessary, to avoid time consuming hyperparameter tuning.
When working with high dimensional datasets, feature analysis, e.g. Principal Component
Analysis (PCA), should be performed for better understanding of the data and sorting out
important features to simplify the data structure.

41

Bibliography

[1] A.B. Kotsiantis, D. K. and Pintelas, P. [2006]. Data preprocessing for supervised
learning, International journal of computer science 1(1).
URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.8413rep=rep1type=pdf

[2] Anthony T.C. Goh, Fred H. Kulhawy, C. C. [2005]. Bayesian neural network analysis
of undrained side resistance of drilled shafts, Journal of geotechnical and geoenvi-
ronmental engineering 131.

[3] Bland, G. [n.d.]. Train/test split and cross validation – a python tutorial.
URL: https://algotrading101.com/learn/train-test-split/

[4] Blundell, C., Cornebise, J., Kavukcuoglu, K. and Wierstra, D. [2015]. Weight uncer-
tainty in neural networks.

[5] Brownlee, J. [2017]. Difference between classification and regression.
URL: https://machinelearningmastery.com/classification-versus-regression-in-
machine-learning/

[6] Dua, D. and Graff, C. [2017]. UCI machine learning repository.
URL: http://archive.ics.uci.edu/ml

[7] Feindt, M. and Kerzel, U. [2006]. The neurobayes neural network package, Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 559(1): 190 – 194. Proceedings of
the X International Workshop on Advanced Computing and Analysis Techniques in
Physics Research.
URL: http://www.sciencedirect.com/science/article/pii/S0168900205022679

[8] Gal, Y. [2016]. Uncertainty in Deep Learning, PhD thesis, University of Cambridge.

[9] Gal, Y. and Ghahramani, Z. [2015]. On modern deep learning and variational infer-
ence.

42

[10] Gal, Y. and Ghahramani, Z. [2016]. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning.

[11] Ghahramani, Z. [2015]. Probabilistic machine learning and artificial intelligence,
Nature 521: 452–459.

[12] Graves, A. [2011]. Practical variational inference for neural networks, in J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira and K. Q. Weinberger (eds), Advances in
Neural Information Processing Systems, Vol. 24, Curran Associates, Inc., pp. 2348–
2356.
URL: https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-
Paper.pdf

[13] Hao, K. [2018]. What is machine learning, MIT Technology Review .

[14] Huang, J., Li, Y.-F. and Xie, M. [2015]. An empirical analysis of data preprocess-
ing for machine learning-based software cost estimation, Information and Software
Technology 67: 108 – 127.
URL: http://www.sciencedirect.com/science/article/pii/S0950584915001275

[15] Kenji Doya, Shin Ishii, A. P. and Rao, R. P. N. [2007]. Bayesian Brain - Probabilistic
approaches to neural coding, The MIT press.

[16] Krasser, M. [2019]. Variational inference in bayesian neural networks.
URL: http://krasserm.github.io/2019/03/14/bayesian-neural-networks/

[17] Laurent Valentin Jospin, Wray Buntine, F. B. H. L. and Bennamoun, M. [2020].
Hands-on bayesian neural networks - a tutorial for deep learning users, ACM Comput.
Surv. 1(1).

[18] Michelucci, U. [2018]. Applied Deep Learning - A case-based approach to under-
standing deep neural networks., Apress Media LLC.

[19] Miller, A. C. [2018]. Advances in Monte Carlo variational inference and applied
probabilistic modelling, PhD thesis, Harvard University.

[20] Murphy, K. P. [2012]. Machine Learning - A Probabilistic Perspective, The MIT
Press.

[21] Ng, A. [2020]. Machine learning, https://www.coursera.org/learn/machine-
learning/home/welcome.

[22] Nielsen, M. A. [2015]. Neural networks and deep learning, Determination press.

[23] Reitermanová, Z. [2010]. Data splitting.
URL: https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10105i1Reitermanova.pdf

[24] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. and de Freitas, N. [2016]. Taking
the human out of the loop: A review of bayesian optimization, Proceedings of the
IEEE 104(1): 148–175.

43

[25] Shanqing Cal, S. B. and Nielsen, E. [2019]. Deep learning with JavaScript, Manning
publications.

[26] Snoek, J., Larochelle, H. and Adams, R. P. [2012]. Practical bayesian optimization
of machine learning algorithms.

[27] Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernández-Lobato, J. M. and
Gaunt, A. L. [2018]. Fixing variational bayes: Deterministic variational inference
for bayesian neural networks, CoRR abs/1810.03958.
URL: http://arxiv.org/abs/1810.03958

44

APPENDIX A

Visual example of uncertainty

As this is meant to be an example to visualize the uncertainties of an MCVI model, the
dataset and tuning of the model will not be elaborated. As explained in section 2.3 of this
report, there are two main types of uncertainties to consider Bayesian modelling, aleatoric
and epistemic uncertainties. The output layer of a Bayesian network gives a distribution,
from which a mean and variance can be retrieved. Inference is done with this model 10
times resulting in 10 mean predictions with corresponding standard deviation. The result
is shown in Figure A.1 below.

The figure show the training data from which the model was trained on as the blue dots,
and the red lines represents the prediction mean, µ, from each prediction. The blue lines
represents the standard deviation, �, for each µ. From this illustration one can clearly see
the uncertainty in the model as the variations of the different prediction results, and this is
the epistemic uncertainty. By adding more data, the variation of these red lines could be
reduced. The aleatoric uncertainty, which respresents the noise in the data, is shown by
the different blue lines. This is inherent noise, which can not be reduced by adding more
data.

I

Figure A.1: The figure show the model mean and standard deviation of 10 predictions made on the
training data. The red lines are the model mean, the blue lines are the standard deviations and the
black line is the ensemble mean of the 10 prediction means.

II

APPENDIX B

Case 2: Example of overfitting

When manually trying to fit the MC dropout model to the data, several combinations of
hyperparameters were tried out. One of the many achieved results of this case is shown
in Figures B.1 and B.2, and is presented to give an example of an overfitted model. The
different causes that can lead to overfitting and how it can be spotted was introduced in
chapter 3, and the plots below show clearly some of the typical signs of overfitting. This
model had 2 hidden layers with 100 hidden units in each layer. The dropout rate was set
to 0.05, and the model was trained for 30000 epochs.

III

Figure B.1: The figure shows a prediction made with the MCDO model, with the epistemic un-
certainty. The red line is showing the predictive mean and can be seen tracing specific data points
instead of the general trend, which is an indication of overfitting.

Figure B.2: The plot shows the training and validation loss computed during training of the model.
After around 5000 epochs, the validation loss is starting to increase while the training loss is conti-
nously decreasing. This is a sign that the model is overfitting to the training data.

One can see from Figure B.2 that after around 5000 epochs, the validation loss is
slightly starting to increase while the training loss is decreasing further. This indicates that
the model is fitting better to the training data, and getting worse at generalizing to other
data. When looking at the prediction plot, Figure B.1, one can in fact see that the predictive
mean is trying to follow the different training data points instead of following the overall

IV

trend of the data. As mentioned in chapter 3, there are several possible factors that can
lead to this result, but a somewhat obvious way of improving the performance is to reduce
the number of hidden units. The number of trainable parameters is very large (10401) with
100 units in two sequential layers. This increases the complexity of the model, and with
a simple dataset like this, it over-complicates the fitting making the model very specific to
the training data. Other ways of improving the generalizability of the model is to increase
the regularization factor lambda, or to increase the dropout factor. This will induce a larger
regularizing effect on the network weights, making it less prone to overfitting. Also, this
is an indication that far less epochs is necessary for training, and one should stop training
when validation loss starts to increase, as described in section 3.3.3.

In the result presented from this case in section 4.2.3, in Figure 4.7 and 4.8, the model
was improved by reducing the number of hidden units to only 20 hidden units per layer,
and additionally increasing lambda from 1e-5 to 5e-5, needing only 500 epochs for train-
ing.

V

APPENDIX C

Bayesian optimization for hyperparameter tuning

Bayesian optimization has in cases of tuning hyperparameters of a deep neural networks
been proven as the superior choice of approach due to the way the next combination of
hyperparameters is chosen during optimization [26]. The method is designed to choose
the next location to evaluate a cost function based on the results of previously tested hy-
perparameter combinations.

One is interested in finding the minimum of the objective function J(✓), which is con-
structed as a probabilistic model and represents the performance of the network. A prior
distribution of functions is selected, usually a Gaussian process over the hyperparameter
values, from which a prior belief about the objective function can be drawn. This Gaussian
process is known as the surrogate model for the optimization, and is used to approximate
the objective function. An aquisition function is used to select the optimal location to
sample the objective function in the next step, and is based on the posterior of the pre-
viously sampled objective functions. There are two ways of choosing the next optimal
point, namely by exploitation or exploration, and the aquisition function bases its choice
on a trade off between these two. Exploitation means to evaluate the cost function where
the surrogate model predicts high objective values, and where selecting this location is
likely to increase performance. Exploration means to evaluate where the uncertainty of
the surrogate model prediction is high and information is lacking. Both high objective
values and high prediction uncertainty corresponds to high aquisition values, and thus the
objective is to maximize the aquisition function. A graphical example of such a process
is shown in Figure C.1, where it is clearly shown how the decision on where to evaluate
the objective function next is determined by the maximization of the aquisition function,
shown in the bottom of each graph [24].

VI

Figure C.1: Illustration of Bayesian optimization. The objective function is shown as the black
stippled line, while the true objective function is shown as the black whole line. The green shaded
function in the bottom of each graph represents the aquisition function, in which the objective func-
tion will be evaluated where this function has high values.

The next location xn to sample the objective function f(xn), is defined as

xn = argmaxxa(x|xn�1, yn�1) (C.1)

where x is the set of hyperparameters, a is the aquisition function, and (xn�1,yn�1) de-
notes the n � 1 samples drawn from the objective function so far, where yn�1 = f(xn�1)
+ ✏n�1 is the noisy sample of the objective function. The the new sample is then used
to update the Gaussian process prior. A popular choice for the aquisition function is the
expected improvement(EI), which can be defined as

EI(x) = E[max(f(x)� f(x+), 0)] (C.2)

Where f(x+) denoted as the value of the best sample so far, and x+ is the location of
that sample. This represents the potential improvement over the space of hyperparameters.
Even though this procedure requires more computation than for example random search
method, the implementation of previous information at each step results in fewer steps
towards the optimum [26].

VII

APPENDIX D

Activation functions

(a) Relu activation function (b) Sigmoid activation function

Figure D.1: Two of the most common activation functions applied to the units in the network hidden
layers.

VIII

APPENDIX E

Additional results

E.1 Case 1

Figure E.1: Prediction on test data for the MCVI model in case 1: Sinusoidal function. Sigmoid
activation function is here used in both hidden layers, resulting in a smaller and nearly constant
confidence interval over the whole range.

IX

(a) Training and validation ELBO-loss. (b) Training and validation ELBO-loss, enlarged plot.

Figure E.2: Training and validation loss curves for the MCVI model in case 1: Sinusoidal function.
The curves show the computed loss from the maximization of the ELBO; Neg.log likelihood +
DKL[q✓|p(w)], used for optimizing the parameters, as shown in section 2.3.2.

Figure E.3: Training and validation loss curves for the MCVI model in case 1: Sinusoidal function.
The curves show the MSE-loss between the output y and the true label value for the training and
validation data. Enlarged plot, corresponding to Figure 4.2.

X

E.2 Case 2

(a) Training and validation ELBO-loss. (b) Training and validation ELBO-loss, enlarged plot.

Figure E.4: Training and validation loss curves for the MCVI model in case 2: Polynomial function.
The curves show the computed loss from the maximization of the ELBO; Neg.log likelihood +
DKL[q✓|p(w)], used for optimizing the parameters, as shown in section 2.3.2.

XI

E.3 Case 3

Figure E.5: Correlation between all features in the dataset in case 3: Auto MPG. The plot was
constructed with the pairplot function from the Pandas-library.

(a) Training and validation ELBO-loss. (b) Training and validation ELBO-loss, enlarged plot.

Figure E.6: Training and validation loss curves for the MCVI model in case 3: Auto MPG.
The curves show the computed loss from the maximization of the ELBO; Neg.log likelihood +
DKL[q✓|p(w)], used for optimizing the parameters, as shown in section 2.3.2.

XII

APPENDIX F

Implementation of models in Python

"""
__
IMPORTED LIBRARIES:
__
"""

import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
tfpl = tfp.layers
tfkl = tf.keras.layers

from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense , Input
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras import regularizers

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

import numpy as np
import matplotlib.pyplot as plt

import tqdm

XIII

"""
__
SINUS-FUNCTION:

f(x) = 10sin(2pix) + epsilon

The training data was scaled with StandardScaler()-function,
(x-mu)/sigma, before being split into a training and validation
set. Validation set was 20% of original training set.

epsilon ˜ N(0,sigmaˆ2)
__
"""
def f(x, sigma):

epsilon = np.random.randn(*x.shape) * sigma
return 10 * np.sin(2 * np.pi * (x)) + epsilon

train_size = 200
noise = 1.5

x = np.linspace(-0.5, 0.5, train_size).reshape(-1, 1)
y = f(x, sigma=noise)

x_train_scaler = StandardScaler() #scales (x-mu)/sigma
x_train_scaler.fit(x)
x_train_scaled = x_train_scaler.transform(x)
y_train_scaler = StandardScaler()
y_train_scaler.fit(y)
y_train_scaled = y_train_scaler.transform(y)

x_train, x_val, y_train, y_val = train_test_split(x_train_scaled,
y_train_scaled,
test_size = 0.2,
random_state = 42)

x_test = np.linspace(-1.,1.,1000)[:,np.newaxis]
y_true = f(x_test,0)
x_test = x_train_scaler.transform(x_test)

XIV

"""
__
POLYNOMIAL FUNCTION:

f(x) = 0.1xˆ3 - 0.7xˆ2 + x + epsilon

The training data was scaled with StandardScaler()-function,
(x-mu)/sigma, before being split into a training and validation
set. Validation set was 20% of original training set.

epsilon ˜ N(0,sigmaˆ2)
__
"""
def f(x, sigma):

epsilon = np.random.randn(*x.shape) * sigma
return 0.1*x**3 - 0.7*x**2 + 1*x + epsilon

train_size = 700
noise = 0.1

x = np.linspace(1.5, 5, train_size).reshape(-1, 1)
y = f(x, sigma=noise)

x_train_scaler = StandardScaler()
x_train_scaler.fit(x)
x_train_scaled = x_train_scaler.transform(x)
y_train_scaler = StandardScaler()
y_train_scaler.fit(y)
y_train_scaled = y_train_scaler.transform(y)

x_train, x_val, y_train, y_val = train_test_split(x_train_scaled,
y_train_scaled,
test_size = 0.2,
random_state = 42)

x_test = np.linspace(0.1,6.5,1000)[:,np.newaxis]
y_true = f(x_test,0)
x_test = x_train_scaler.transform(x_test)
y_test = f(x_test,noise)

XV

"""
__
MONTE CARLO VARIATIONAL INFERENCE MODEL:

Hyperparameters for mixed, non-trainable priors with two Gaussian
distributions:

scale = sigma1,
scale = sigma2,
mix = Pi

Other hyperparameters:
batch_size
activation
units
learning_rate
epochs

__
"""

def prior_mix(kernel_size, bias_size, dtype = None):
"""
The belief of which model parameters are likely, before any
data is seen. Mixed, non-trainable prior of two Gaussian
distributions <==> independent normal distr. placed upon
each weight and bias, all with equal variance.

The function defines the prior distribution for a given
Dense Variational layer.

Parameters

kernel_size :

Number of parameters in the dense layer weight matrix
bias_size :

Number of parameters in the dense layer bias vector
dtype : TYPE, optional

Default = None.

Returns

Callable lambda function, which takes input tensor T and
returns independent normal distr with mean = 0 and variance = 1.
This is the prior over the dense layer parameters.

"""
n = kernel_size + bias_size

XVI

mix = Pi
p = np.array([[mix, 1-mix]]*n)

bimix_gauss = tfd.Mixture(cat=tfd.Categorical(probs=p),
components=[

tfd.Normal(loc=tf.zeros(
n,
dtype = dtype),

scale=sigma1),
tfd.Normal(loc=tf.zeros(

n,
dtype = dtype),

scale=sigma2])
prior_model = lambda t: tfd.Independent(

bimix_gauss,
reinterpreted_batch_ndims = 1
)

return prior_model

def posterior_distLam(kernel_size, bias_size, dtype = None):
"""
Variational distribution of a known functional form, which
parameters will be optimized to get as close to the true
posterior as possible. Placed upon the model parameters.
Gives the most likely parameters, given the data.

Parameters

kernel_size :

Number of parameters in the dense layer weight matrix
bias_size :

Number of parameters in the dense layer bias vector
dtype : TYPE, optional

Default = None.

Returns

Callable which takes an input and produces a tfd.Distribution
instance.

"""

XVII

n = kernel_size + bias_size
return Sequential([

tfpl.VariableLayer(2*n, dtype = dtype),
tfpl.IndependentNormal(n)
])

batch_size = x_train.shape[0]
num_batches = x_train.shape[0]/ batch_size
activation = activation

"""
Build model:

Input layer
1 hidden layer, 10 hidden units
1 layer providing mu and sigma for the output layer distribution
Output layer (distribution)

"""
model = Sequential([

tfpl.DenseVariational(input_shape = (x_train.shape[1],),
units = units,
make_prior_fn=prior_mix,
make_posterior_fn = posterior_distLam,
kl_weight = 1/x_train.shape[0],
activation = activation),

tfpl.DenseVariational(
units = tfpl.IndependentNormal.params_size(1),
make_prior_fn=prior_mix,
make_posterior_fn = posterior_distLam,
kl_weight = 1/x_train.shape[0]),

tfpl.IndependentNormal(1)
])

"""
Training the model:

"""
def nll(y_true, y_pred):

"""
Negative log likelihood, for computing the ELBO loss function.

Parameters

y_true :

XVIII

True values, y-labels.
y_pred :

Prediction output distribution.

Returns

Negative log likelihood of the y-labels given the predicted
distribution.

"""
return -y_pred.log_prob(y_true)

model.compile(loss = nll,
optimizer = tf.optimizers.Adam(

learning_rate = learning_rate),
metrics = "mse")

history = model.fit(x_train, y_train,
batch_size = batch_size,
validation_data = (x_val,y_val),
epochs = epochs, verbose = 0)

XIX

"""
__
MONTE CARLO DROPOUT MODEL:

Hyperparameters for dropout model:
dropout = dropout probability
lam = lambda (weight decay)

Other hyperparameters:
batch_size
activation
units
learning_rate
epochs

__
"""
tau = 1
dropout = dropout
lam = lam
N = x_train.shape[0]
batch_size = N
num_batches = N/batch_size

"""
Build model:

Input layer
L hidden layers, K hidden units (L=2, K=20 in this case)
Dropout layer after every hidden layer
Output layer

"""
x_in = Input(shape=(1,))
L1 = Dense(units = units,

activation = activation,
kernel_regularizer = regularizers.l2(lam),
kernel_initializer = "random_normal")(x_in)

K1 = tfkl.Dropout(dropout)(L1, training=True)
L2 = Dense(units = units,

activation = activation,
kernel_regularizer = regularizers.l2(lam),
kernel_initializer = "random_normal")(K1)

K2 = tfkl.Dropout(dropout)(L2, training=True)
x_out = Dense(units = y_train.shape[1])(K2)

model = Model(x_in,x_out)

XX

"""
Training the model:

"""
model.compile(loss = MeanSquaredError(),

optimizer = tf.optimizers.Adam(
learning_rate = learning_rate)

)

history = model.fit(x_train, y_train,
batch_size = batch_size,
validation_data=(x_val,y_val),
epochs = epochs, verbose = 0)

XXI

"""
__
BAYESIAN OPTIMIZATION FOR MONTE CARLO DROPOUT MODEL:
__
"""

def BuildAndCompile(hp):
"""
Callable that takes in hyperparameters and produces a
model with those hyperparameter values.

For Int and Float hyperparams, minimum and maximum values
for search space must be determined, optional: step size.

Parameters

hp :

Hyperparameters

Returns

model :

An instance of the Model class.

"""
dropout = hp.Float("dropout",

min_value = minimum_dropout,
max_value = maximum_dropout)

lam = hp.Float("lamda",
min_value = minimum_lam,
max_value = maximum_lam)

x_in = Input(shape=(train_features.shape[1]))

x = Dense(units = hp.Int("HidLay_0",
min_value = minimum_units,
max_value = maximum_units,
step = step_units),

activation = "relu",
kernel_regularizer = regularizers.l2(lam),
kernel_initializer = "random_normal")(x_in)

x = Dropout(dropout)(x, training=True)
for i in range(hp.Int("num_layers",

minimum_layers,

XXII

maximum_layers)):
x = Dense(units = hp.Int("HidLay_"+str(i+1),

min_value = minimum_units,
max_value = maximum_units,
step = step_units),

activation = "relu",
kernel_regularizer = regularizers.l2(lam),
kernel_initializer = "random_normal")(x)

x = Dropout(dropout)(x, training=True)

x_out = Dense(units =1)(x)

model = Model(x_in,x_out)
model.compile(loss = MeanSquaredError(),

optimizer = tf.optimizers.Adam(
learning_rate = learning rate)

)

return model

"""
Search for best hyperparameters:

BayesianOptimization class: creates tuner objects
Parameters:

hypermodel:

Model instance, model
objective:

Model metric to minimize or maximize
num_initial_points:

The number of randomly generated samples as initial
training data for Bayesian optimization

max_trials:
Total number of triels to test at most

beta:
Balancing factor of exploration and exploitation

Search method: Performs a search for best hyperparameter
configurations

Parameters:

Takes in same parameters as the fit-method for

XXIII

training.
"""

tuner = BayesianOptimization(hypermodel = BuildAndCompile,
objective = Objective("model_metric",

direction = "min"),
num_initial_points = num_initial_points,
max_trials = max_trials,
beta = beta,
project_name="Project_name")

tuner.search(train_features, train_labels,
epochs = epochs,
validation_split = 0.2,
shuffle = True,
verbose = 0)

best_hps = tuner.get_best_hyperparameters()[0]

"""
__
INFERENCE:

500 predictions on test data.
Resulting in mean and standard deviation vectors of all
predictions.

__
"""
import tqdm

y_hats = []
for i in tqdm.tqdm(range(500)):

y_hat = model.predict(x_test)
y_hats.append(y_hat)

y_pred = np.mean(y_hats, axis = 0)
y_std = np.std(y_hats, axis = 0)

XXIV

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and theory
	The Basics of Machine Learning and Neural Networks
	Feed forward neural network
	Probabilistic modelling: Bayesian neural networks

	Building and evaluating a neural network
	Tuning of hyperparameters
	Data pre-processing
	Model evaluation

	Model testing and evaluation
	Case 1: Sinusoidal function
	Case 2: Cubic function
	Case 3: Auto MPG dataset

	Final evaluation and future work
	Bibliography
	Appendix
	Visual example of uncertainty
	Case 2: Example of overfitting
	Bayesian optimization for hyperparameter tuning
	Activation functions
	Additional results
	Case 1
	Case 2
	Case 3

	Implementation of models in Python

