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Abstract

Virtual Flow Metering (VFM) is becoming an increasingly attractive method for estimating the flow of oil

and gas. Data-driven VFM requires a large amount of data to train machine learning algorithms. This is

problematic for VFM where the available training data often origins from wells with different trajectories

and operating conditions. Neural networks are capable of generalizing the function inside the subspace

spanned by the training samples but will struggle if presented with new data outside the trained range.

This project will, therefore, investigate the extrapolation capabilities of neural network-based Virtual

Flow Metering. Two methods will be investigated. The first method is based on feature engineering and

the objective was to transform the raw data into physically meaningful features as well and including

first principle model solutions as input. The second method aims to shift the original distribution of

the training and validation sets by incorporating first principle model solutions into the target variable,

thus reducing the extrapolation range. The first principle models which will investigate are the Bernoulli

choke model, Al-Safran choke model, and the ”No Pressure Wave” tubing model. The data was produced

synthetically with LedaFlow, and measurement noise was included to make the data set realistic. Ten

case studies where performed, including one baseline model. Method 1 consists of five case studies that

investigate various features and how the first principle models affect performance. Method 2 also covers

five case studies where different first principle model solutions were incorporated into the target variable.

It has been shown that Method 1 and 2 can increase the extrapolation capabilities and performance of a

neural network-based VFM. However, Method 1 proved to be superior when the distribution of training

and validation sets were more equal, while Method 2 resulted in the highest performance when the target

distributions for the training and validation sets were more separated.
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1 Introduction

Oil and gas have become, and still is, the most important source of energy. However, as fields start

to deplete and become economically marginal, optimizing the production of oil and gas is crucial for

maintaining the field viable [AL-Qutami et al., 2018]. Monitoring real-time production can provide in-

formation about reservoir size and how the well stream parameters should be altered in order to maximize

production. In addition, it can contribute to determining the positioning of new wells and installations

[Marshall and Thomas, 2015].

Well testing and multiphase flow meters (MPFM) are two widely used techniques to monitor the flow

of oil and gas. However, these methods are linked to large capital and operational costs. MPFM also

has a limited operational envelope. Virtual Flow Metering (VFM) has become an increasingly attractive

and represents a more cost-effective solution alternative which is able to meet the monitoring demands

[AL-Qutami et al., 2018]. By utilizing existing measurements, VFM can estimate the oil, gas and water

rates without measuring it directly. As the name suggests, VFM does not require any additional hardware

installations thus eliminating the need for physical maintenance.

Data-driven VFM, which will be the focus of this project, estimates the flow using machine learning

models which maps the relationship between the system state variables and corresponding flow rates.

The state variable typically includes pressure and temperature readings at the bottomhole and wellhead

and choke opening. Being a machine learning-based alternative, the risk of bias and error increases

when the VFM is operating outside the trained range [Marshall and Thomas, 2015]. It is commonly

accepted that neural networks have poor extrapolation skills and are often considered as ”a prisoner of

its training data set” [Minns and Hall, 1996]. This is often ignored when deploying machine learning

models into the real world and could be a significant disadvantage during the operational phase of a

VFM [Varoonchotikul, 2003].

A complete oil and gas producing system typically consist of a reservoir, several individual wells, wellhead

valve, flowlines, separators, pumps and transportation pipelines. The well is responsible for transporting

oil, gas, and water from the reservoir to the surface where the production is typically controlled by a

wellhead valve. The flowline transports the produced fluids to a processing facility where the oil, gas, and

water are separated. The pumps and compressors further transport the oil and gas through pipelines to

the sales point [Ghalambor, 2007]. Overall, oil and gas production systems are complex, but the scope of

this project will be narrowed down to the well, wellhead valve, flowline, and their corresponding available

measurements.

This project will aim to investigate several methods that could potentially improve the extrapolation

capabilities of a neural network-based VFM. It is also desirable to explain why certain methods improve
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performance. Therefore the training and validation data sets are required to be selected carefully and

systematically. The data was therefore produced synthetically using LedaFlow which is a simulation tool

provided by Kongsberg Digital[Kongsberg, 2001]. There are two main methods which will be considered:

1. Method 1: Feature engineering and including principle model solutions as inputs.

2. Method 2: Incorporating first principle model solutions into the target variable.

There are two scenarios where being able to extrapolate with a neural network-based VFM will be

advantageous. Firstly, if the VFM is intended to operate as a stand-alone solution, the available data will

origin from wells with different compositions, trajectories, and operating conditions. Secondly, assuming

the VFM is trained based on the estimates from the MPFM, and the VFM operates as a backup or

supplementary solution. Then, if the MPFM fails or drift, the VFM will eventually enter a zone of

operating conditions that are different from the distribution it was trained upon.
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2 Theory

The theory section is meant to provide a background regarding the case studies which will be presented

and is organized as follows. The first section gives a brief overview of methods, working principle and

preliminary work on Virtual Flow Metering. Then the basic working principle behind neural networks

is described as well as previous work on extrapolating with neural networks. Bayesian hyperparameter

optimization as a tuning technique will also be presented. Since this study aims to determine whether

the inclusion of first principle models can improve the performance, the Bernoulli choke model, Al-Safran

choke model and the ”No pressure wave” tubing equation will be described.

2.1 Virtual Flow Metering

Accurate multiphase flow rate measurements are important in reservoir management, production opti-

mization, and rate allocation [Marshall and Thomas, 2015]. There are different methods in the industry

that are used to measure the flow such as multiphase flow meters(MPFM) and test separators, both

having their advantages and disadvantages [Robertson, 2014]. To perform a well test, produced fluids

from one well are isolated and sent to a test separator. The test separators typically require a separate

flowline which ensures that a sample from each well is transported to the separator without shutting down

the field [Bikmukhametov and Jäschke, 2019]. Combining the resulting fractions from the separator and

the duration of the well test gives a snapshot of the production rate [Marshall and Thomas, 2015]. In

contrast, MPFM exploits a combination of multiple measurement principles and provides real-time mon-

itoring of the flows [Barbariol et al., 2019]. A major disadvantage with MPFM is the large capital cost

and physical maintenance. It is also sensitive to corrosion, blockages and requires careful calibration both

in the start-up phase and during its lifetime [Marshall and Thomas, 2015].

Due to an increased interest in real-time monitoring of the flow, several new methods have emerged to

estimate the rate both accurate and cost-effective. Virtual Flow Metering is a method for estimating pro-

duced oil, gas and water without measuring the rates directly and is becoming an increasingly attractive

alternative in the oil and gas industry [Bikmukhametov and Jäschke, 2020b]. By utilizing existing field

measurements, it can provide a real-time estimation of the flow [Robertson, 2014]. Typical measurements

used in VFM are:

• Bottomhole pressure, PBH

• Bottomhole temperature, TBH

• Wellhead pressure upstream and downstream of the valve, PWHCU and PWHCD

• Wellhead temperature upstream and downstream of the valve, TWHCU and TWHCD
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• Choke opening, Cop

In general, VFM represents a more affordable alternative compared to MPFM and well testing. Since

VFM is based on existing measurements, it does not require any additional installation of hardware.

Therefore, a VFM eliminates the need for maintenance such as handling corrosion and sand plugging.

VFM can also be a useful tool for estimating future production and predicting the outcome of different

scenarios. However, since VFM is based on sensor measurements, the reliability can be diminished if the

sensors are calibrated poorly or fail. [Marshall and Thomas, 2015].

There exist various methods of how to estimate multiphase flows using VFM and multiple companies

have developed commercial VFM. Several of these methods are being used in the industry, either as a

standalone solution or as a backup system to a MPFM [Bikmukhametov and Jäschke, 2020a]. Based on

model methodology VFM can be distinguished into two categories,

• First principle VFM

• Data-driven VFM

First principle VFM is based on physical models which describe the relationship between existing mea-

surements and corresponding rates. The models utilize sensor reading along the flow path such as

pressure and temperatures in the wellbore and the pressure drop across the choke. The models are

calibrated by optimizing the tuning parameters to calculate the current rate for the individual flows

[Holm̊as and Løvli, 2011]. By now, first principle VFM is the most popular choice in the industry.

[Bikmukhametov and Jäschke, 2020a].

Similarly to first principle VFM, data-driven VFM is also based on collecting available field data to fit

a mathematical model. In contrast to first principle VFM, data-driven VFM utilizes a black-box mathe-

matical model, referred to as machine learning model [Bikmukhametov and Jäschke, 2020a]. Data-driven

VFM is based on the relationship between the system state variables; pressure, temperature and choke

opening, and the system output; corresponding flowrates. Since data-driven VFM does not require any

exact knowledge about the behavior of the system, the process of developing complex multiphase flow

models is eliminated. However, being a machine learning-based alternative, data-driven VFM introduces

the risk of bias or error if it is operating outside the trained range [Solomatine and Ostfeld, 2008]. Nev-

ertheless, VFM has gained increased attention in the oil and gas industry because of its performance and

accurate predictions.

Data-driven VFM requires preprocessing of the data to train the machine learning model. Dealing with

missing values, which most machine learning algorithms do not allow, is crucial. Abnormalities such

as outliers and noise in the data set must be taken care of before the training phase, as well as during
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the operational phase. Feature engineering is a popular technique used in machine learning and is also

applicable to data-driven VFM. Transforming the raw data into physically meaningful features, like the

pressure drop over the choke or tubing, could potentially represent the underlying relationship between

input and output more accurate and enhance the performance.

After the data is preprocessed, the next step is to develop the machine learning algorithm. There have

been tested several algorithms, like radial basis function network [T. A. Al-Qutami et al., 2017], gradient

boosting algorithm with regression trees [Bikmukhametov and Jäschke, 2019] and various types of neural

networks such as Long short-term memory neural networks [Andrianov, 2018]. After the model is trained

the performance must be verified to ensure that the performance is sufficient.

2.2 Neural Networks

Machine learning is a branch of artificial intelligence that identifies patterns and makes decisions without

human intervention. Neural networks are one of the most popular machine learning algorithms. Fore-

casting, pattern recognition, and decision making are among the main applications of neural networks

[Mak et al., 2019]. During the last years, neural networks have gained large attention when repeat-

edly outperforming other machine learning methods [Schmidhuber, 2015]. The increase in popularity is

caused by the improvements in processing power, the development of sophisticated algorithms, and the

availability of data.

2.2.1 Working principle

Artificial neural networks(ANN) are, as the name suggests, computational networks that try to simulate

the decision process similar to how nerve cells in a human body interact. For regression problems, the

objective is to minimize the error between the target and predicted values. There are several metrics

which describes the error and one of the most commonly used in regression problems is the mean squared

error [Lars Hulstaert, 2017]:

J = 1
N

N∑
i=1

(ŷi − yi)2 (1)

where ŷi denotes the predicted value, xi - the input, yi - the true value and J - the objective function.

A standard neural network consists of many simple neurons that are interconnected. Neurons are the

decision-makers in a neural network and decide the importance of each feature. The architecture of the

neural network is built up by a specific number of layers with each layer containing a fixed number of

neurons. The input layer is the set of neurons which first receives the input and defines the beginning of
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the workflow. The output layer produces the results for the given inputs while are all the intermediate

layers are known as hidden layers. An illustration of an architecture is shown in Figure 1.

Figure 1: An illustration of a neural network with one input layer, two hidden layers and an output layer.

Each neuron has a specific weight function, which either amplifies or dampens the input based on the

significance of the input with respect to the learning objective [Schmidhuber, 2015]. Whether a neuron is

activated is controlled by an activation function, which determines if the sum of inputs, xi and weights,

wi,

Y =
N∑

i=1
(xiwi) (2)

are above a certain threshold. Intuitively, the activation of the neuron determined by the significance of

the input to the target variable. There are different types of activation functions. ReLU is one of the

most commonly used and is defined as linear for all positive values, and zero for all negative. The simple

mathematical form yields easy computational operation and is thus fast and efficient. Besides, ReLU also

is advantageous in terms of not suffering from vanishing or exploding gradients [Jiang et al., 2018].

An important goal of machine learning is the ability to generalize the training data to produce accu-

rate predictions on unseen data. This is crucial because the expected performance on a new data set

is not necessarily consistent with the training accuracy. Like all machine learning models, neural net-

works are susceptible to overfitting which occurs when the model is too closely fitted to the training set

[Lawrence and Giles, 2000]. There are different techniques to prevent overfitting, and all methods which

aim to increase the generalization are collected under the generic term regularization. Regularization can

include various modifications such as changing the network architecture or tuning the hyperparameters.
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A popular technique is to add a loss term to the objective function to penalize large weight updates which

might only benefit the training set,

J = 1
N

N∑
i=1

(ŷi − yi)2 + λw2
2 (3)

where λ denotes the regularization coeffecient. By penalizing each weight update, the regularization

will encourage the neural network to produce a model that maps the relationship between inputs and

outputs whilst keeping the weights small. However, introducing regularization will lead to an additional

hyper-parameter which require careful tuning.

Neural networks are highly dependent on the set of hyper-parameters, and the accuracy will fluctuate

under different sets of hyper-parameters. One of the most important hyper-parameter is the learning

rate. Learning rate is the hyper-parameter which decides the adjustment of weights with respect to the

loss gradient:

w = w − lr ∂
∂w

J(w) (4)

where lr denotes the learning rate, J - the objective function and w - the weights. Choosing a learning

rate which is too small will result in slower convergence and increase the run-time drastically if the data

set is large. Besides, the algorithm can get stuck in local minimums which leads to poor generalization.

If the learning rate is set too high, the gradient descent can overshoot the minimum and fail to converge

[Zhang et al., 2019].

To minimize the objective function it is also necessary to choose a suitable optimization algorithm.

Stochastic Gradient Decent(SGD) is the core technique behind optimizing the objective function in a

neural network. The gradient provides information about the direction the function should take to

reach the minimum. However, a problem with SGD is that the step size is equal for all parameters.

Several attempts have been made to find a more adaptable optimizer based on SGD. Adaptive Moment

Estimation (Adam) is one of the most popular methods and unlike SGD, it uses an adaptive learning rate

for each parameter. RMSProp maintains per-parameter learning rates which are based on the average

of the magnitude of the weight gradients. RMSProp also performs well on non-stationary problems and

noisy problems [Basha et al., 2018].

2.2.2 Neural Network Extrapolation

A major drawback of neural networks is that they show poor performance for extrapolation tasks. Making

accurate predictions with a neural network is possible as long as the input range does not extend the
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input range the network was trained upon. As to say, if the network was trained to recognize digits

and is then presented to a picture of a car, the network will return a digit. This is because the network

does not directly learn function nor the characteristics of the function, instead it simply maps the input

to the output. Previous work has found that adding nodes to the hidden layers increases accuracy,

while additional layers in extrapolation tasks did not increase the network’s ability to extrapolate. This

suggests that changing the neural network architecture might have a minimal impact on how well the

neural network performs extrapolation [Haley and Soloway, 1992]. For regions outside the training range,

the output of a neural network is not reliable and will often produce arbitrary results. As shown in Figure

2 a neural network has been taught the function f(x) = 1− cos(x). Within the training range the neural

network map the relationship accurately, while for the data set which was outside the trained scope

resulted in arbitrary predictions [Jhedengren, 2018].

Figure 2: Results of training an artificial neural network on 10 data points. The neural network is able to

interpolate but does not perform well in extrapolation [Jhedengren, 2018].

However, the neural network can, to some extent perform extrapolation in some regions which is close

to the training set. [Barnard and Wessels, 1992]. Quality control is an area where neural network ex-

trapolation has been applied. In quality control, one does not necessarily know all the possible scenarios

which can lead to failure. Therefore it is impossible to create a training set witch fully characterizes

the problem. Extrapolation can be viewed as a more general task, and for many applications like VFM,

it would be advantageous is extrapolation could be performed. A severe challenge with extrapolation

is that the required number of training samples increases exponentially with input space dimensional-

ity. In contrast, interpolation can successfully be solved even though the input dimensionality is large
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[Barnard and Wessels, 1992].

There have been suggested a variety of methods to improve the extrapolation capabilities of a neural

network. A method which showed promising results was to manipulate the standardization range for

input and outputs. By setting maximum and minimum values of a possible range could prevent saturation

of the activation function for each node in the network [Varoonchotikul, 2003] However, this requires that

the training and testing sets are known before training the network which will be disadvantageous for

an online system. There also different techniques such as covariate shift, where the independent input

variables are manipulated to overlap. Concept shift, where the relationship between the independent and

target variables are shifted. In Prior Probability Shift, the target variables in the training and validation

data are shifted to mutually overlap [Quionero-Candela et al., 2009].

2.2.3 Bayesian Hyperparameter Tuning

Machine learning models frequently involve tuning of model hyperparameters. Neural network, especially,

requires careful tuning of all its hyper-parameters. If the hyperparameters are tuned poorly, the perfor-

mance will be significantly affected. One way of finding the hyper-parameters is by hand-tuning. This

can become extremely time-consuming, besides, the optimal set of parameters are often counter-intuitive.

Grid-search is the most widely used method for finding the optimal parameters. The hyperparameters

are found by iterating through every combination for a given set of parameters. By testing all the possible

combinations in the search space the method will consequently eventually find the optimal set of hyper-

parameters. However, grid search will suffer from being an extremely time consuming process because

the number of joint values grows exponentially with the number of hyperparameters. Also, it does not

take into account the fact that some hyperparameters will have a less significance on the performance.

Random search is also a common way of tuning the hyper-parameters and works by selecting the tested

sets of hyperparameters randomly. It is similar to grid-search, but yet is has proven to yield slightly

better results [Yakowitz and Lugosi, 1990].

Recently, Bayesian hyper-parameter optimization has been proven to be a superior alternative. Instead of

testing every combination of the search space, the Bayesian optimization will select the next set of hyper-

parameters based on the most promising alternative. Bayesian hyper-parameters optimization is, in other

words, a more intelligent method compared to grid-search and random-search [Lévesque et al., 2016]. The

method is based on a probabilistic model where the objective is to find the best set of hyperparameters,

x*, that minimize the function f(x) for a given probability distribution MGP,

x∗ = argmin
x

f(x |MGP ) (5)
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The idea behind Bayesian hyperparameter optimization is to use a surrogate model, MGP, which ap-

proximates the target function, f(x), over the domain space, where x denotes a set of hyperparameters

[Lévesque et al., 2016]. The surrogate model can be viewed as an approximation of the objective func-

tion, and is used because the true function is expensive to evaluate. The Gaussian process regression

model, MGP, will serve as the surrogate model and starts by specifying a normal prior distribution over

the whole search space. The distribution will have a corresponding variance and mean which is typically

zero. As more hyperparameters gets explored, the surrogate will map the corresponding variance for the

whole search space [Snoek et al., 2012].

As we are interested in selecting the next set of hyperparameters more intelligently, an acquisition

function,f(x | MGP), is used. The acquisition function is used for proposing a new set of hyperpa-

rameters which is likely to improve the accuracy of the machine learning model based on the posterior

distribution, MGP. One of the most popular acquisition function is the expected improvement(EI) and

is defined as,

f(x |MGP ) = E[max(0, f ′ − f(x))] (6)

Where f’ is the best point for f(x) observed so far. Since the distribution is normal, Equation 6 can be

computed analytically. The expected improvement is in general high for points we expect to be good

and for points which have a high uncertainty while it is generally low for points which have already been

evaluated. The acquisition function also serves as a balance between exploitation and exploration. In

other words, if the function should either focus on exploring larger parts of the search space or exploit

smaller regions. If the exploration-exploitation trade-off is too large, the acquisition function spends most

of its time exploring areas that have a small expected improvement thus searching very inefficient. If the

exploration-exploitation trade-off is set too small, the probability of getting stuck in sub-optimal peaks

is significant which will lead to a non-optimal set of hyperparameters [Lévesque et al., 2016].
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2.3 First Principle Models

In this section, the three models which are used in combination with the neural network are presented.

Two choke models will be evaluated, the Bernoulli choke model and Al-Safran choke model. In terms of

hybrid-machine learning, the Bernoulli choke equation will serve as the simplest description for the flow

over the choke. On the other hand, Al-Safran will represent a more accurate model for calculating the

rates. Moreover, the ”No pressure wave” tubing equation will be presented and will be used for estimating

the flow of oil and gas in the wellbore.

2.3.1 Bernoulli Choke Model

Bernoulli equation describes a one dimension flow, single phase, incompressible, steady and frictionless

flow along a streamline. By the conservation of momentum Bernoulli equation can be written as a function

of two points on a streamline [Ghiaasiaan, 2019],

P1 − P2 = ρ

2(U2
2 + U2

1 ) (7)

Where P1 and P2 denotes the pressure, - U2 and U1 the velocity, at two points along a streamline. ρ

denotes the density of the phase.

By substituting U= Q
A , we can express the equation in terms of volumetric flow rate [Yoon et al., 2006],

Q = CdA1

√√√√ 2(P1 − P2)
ρ
((

A1
A2
)2 − 1

) (8)

Where A1 denotes the pipe cross sectional area before the choke, A2 - the choke throat area and Cd - the

discharge coefficient.

The discharge coefficient is used for correction of the rate and is defined as the ratio of the actual discharge

to the theoretical discharge. For multiphase flows, the discharge coefficient will be dependent on whether

the flow is critical or subcritical. However, since the discharge coefficient is a function of the choke

opening it is possible to simply make it equal to Cop [Bikmukhametov and Jäschke, 2020b]. Also, since

the flow consists of two phases, ρ is substituted by the mixture density, ρmix. In order to express the flow

rate in terms of known variables, P1 and P2 can be substituted by the wellhead pressure upstream and

downstream, PWHCU and PWHCD. Further, the ratio of the cross-sectional areas can be substituted by
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the inverse of the choke opening,

Q = CopA1

√√√√2(PW HCU − PW HCD)
ρmix

(
1

C2
op
− 1
) (9)

Despite its simplicity, it captures the main dynamics of choke flow. Since the choke model was developed

for a single-phase flow, it has been suggested several methods in the literature to correct the equation,

but since the exact solution is not as important for the methods considered, it will not be included. A

severe limitation of the Bernoulli equation is that the flow can be overestimated in the presence of gas,

and could be disadvantageous for describing the qualitative solution [Haug, 2012].

2.3.2 Al-Safran Choke Model

Al-Safran and Kelkar developed a two-phase flow slip model for describing the multiphase flow across

a choke. The equation is based on the work of Sachdeva et al. (1986) and Perkins (1993). The model

is based on a one-dimensional balance equation of mass, momentum, and energy and assumes constant

quality and incompressible liquid phase. The model can deal with both critical and sub-critical flows,

and takes into account the slippage phenomenon between the gas and liquid phase at the choke throat

which contributes to a more accurate description of critical flow rates [Al-Safran and Kelkar, 2009]. The

selection of the slip model will depend on whether the flow is critical or subcritical. However, since the

flows investigated in this report are in the critical region, only the relevant equations will be presented.

The mass flow can be obtained by Equation (10),

ṁ2 =
CA2

2p1

(
α(1− rc) + n

n−1 (1− r
n−1

n
c )

)
xgvg1

(
r
− 1

n
c + α

)2(
xg + 1

R (1− xg)
) (10)

where rc denotes the critical pressure ratio, C - a correction factor, A2 - the choke throat area, p1 - the

upstream pressure, R - the slip ratio, n - the polytropic gas-expansion exponent, xg - the gas quality or

mass fraction, νg1 - the upstream gas specific volume, and α - a hypothetical parameter defined as,

α = R(1− xg)νL

xgνg1
(11)

where νL denotes the liquid specific volume.

The critical pressure ratio, rc, is defined by Equation (12), and requires an iterative procedure in order
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to be solved

r
1− 1

n
c =

α(1− rc) + n
n−1

n
n−1 + n

2 (1 + αr
1
n
c )2

(12)

The polytropic gas-expansion exponent can be calculated by Equation (13).

n = xgkCvg + (1− xg)CL

xgCvg + (1− xg)CL
(13)

where Cvg denotes the gas specific heat constant at constant volume, CL - the liquid specific-heat constant

and k - the gas specific-heat ratio.

The calculation of the slip ratio, R, depends on whether the flow is critical or sub-critical, and the critical

slip ratio is defined by Equation (14)

R =
√

1 + xg

(ρL

ρg

)
(1 + 0.6e−5.0xg ) (14)

where ρL denotes the liquid density and ρg - the gas density.

2.3.3 No-pressure-wave(NPW) Tubing Model

The Drift-Flux model is one of the most commonly used multiphase models used, and is based on mass and

momentum balances as well as slip relations. Although widely used, finding efficient numerical solutions

for the dynamic formulation of the model is considered challenging. Simplifications such as assuming a

quasi-equilibrium momentum balance and neglecting the effect of acoustic waves have resulted in what is

called ”reduced DMF” or ”No Pressure Wave”(NPW) models [Ambrus et al., 2016]. The NPW equation

is given as,

dP

dl
= ξmixρmixU

2
mix

2gDtubing
+ ρmixgsinθ (15)

where P denotes the fluid pressure, ξmix - the friction factor, Umix - the mixture velocity, Dtubing - the

tubing diameter, l - the pipe axial coordinate and θ - the pipe inclination.

To solve Equation 15 the equation must be discretized and solved numerically. However, since the

qualitative solution is most relevant for machine learning purposes, a simplified model is desirable. By
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averaging over the fluid properties over the pipe axial coordinate and integrating an analytical solution

can be obtained [Bikmukhametov and Jäschke, 2020b],

Qtubing
mix =

√
(PBH − PW H − ρ̄mixgH)π2D5

tubingg

8ξmixLtubingρ̄mixsinθ
(16)

Relevant notation has been introduced in Equation 16, where PBH and PWH is the bottomhole and

wellhead pressure. Ltubing is the total length of the wellbore.

The average density can be found by,

ρ̄mix = ρmix,W H + ρmix,BH

2 (17)

If the friction factor is assumed to constant the solution can be solved analytically. If not, the friction

factor will be dependent on the Reynolds number and can be found by solving the Colebrook equation

with an iterative method [Colebrook, 1939],

1√
ξ

= −2log10

( ε

3.7Dtubing
+ 2.51
Re
√
ξ

)
(18)

Where ε is the relative roughness and Re is the Reynolds number.
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3 Methods

This section describes the basis in which the training and validation sets were built upon such as well tra-

jectories, inclinations, GOR, boundary properties, and measurement positions. Further on, the methods

which will be considered in the case studies are also presented as well as the motivation for each method.

It will also be provided additional information on how the fluid properties, used in the first principle

models, were obtained.

3.1 Training and validation sets

The training and validation sets were produced from LedaFlow which is a simulation tool provided by

Kongsberg and resolves multiphase hydrodynamics of oil, gas, and water along a pipeline in one dimension

[Kongsberg, 2001]. LedaLink was used as a gateway between LedaFlow and Python to exchange boundary

conditions, run simulation files and extract important information. All the wells are equipped with a

wellbore, choke valve and a short flowline to measure the upstream properties. The data in the training

set were produced from three different wells with different inclinations and composition which resulted

in a specific GOR. All the wells in both the training set and validation set had the same reservoir and

boundary pressures and temperatures and equal length. The specifications are presented in Table 1 and

an illustration of the three wells used for training can be found in Figure 3a.

Table 1: Specifications for traning data. PR and TR is the reservoir pressure and temperature. PB and TB is the

boundary pressure and temperature at flowline.

Well Inclination[o] GOR[-] PR[Bar] PB[Bar] TR[C] TB[C] Length[m]

1 60 20 250 40 76.85 6.85 1000

2 70 40 250 40 76.85 6.85 1000

3 50 60 250 40 76.85 6.85 1000

Since the objective is to investigate the extrapolation capabilities of a neural network-based virtual flow

meter, the first validation set was designed with an inclination of 40◦ and GOR of 80 as shown in Table 17.

Since a realistic well often will consist of different inclinations, the second validation set was constructed

of three different sections. At the bottom of the well, the inclination is 40◦, 50◦ at the middle part and

90◦ in the top. Similar to the validation set 1, GOR was specified to be 80. All the properties for the

validation sets can be found in Table 17, and an illustration of the wells can be found in Figure 3b
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Table 2: Specifications for validation data. PR and TR is the reservoir pressure and temperature. PB and TB is

the boundary pressure and temperature at flowline.

Well Inclination[◦] GOR[-] PR[Bar] PB[Bar] TR[C] TB[C] Length[m]

1 40 80 250 40 76.85 6.85 1000

2 30, 40, 90 80 250 40 76.85 6.85 1000

(a) Illustration of the wells used to produce data for the train-

ing set.

(b) Illustration of the wells used to produce data for the vali-

dation set.

In addition, an error was added to make the data set more realistic and was drawn from a normal

distribution with a standard deviation of 0.05. All the measurements were logged at the exact same

position for both the traning and validation sets. Measurements, given in meters from bottom of the

well, are shown in Table 3.

Table 3: Measurement positions given in meters from reservoir. BH denotes the bottom hole measurement, LM

is the second measurement and UM is the third measurement after the bottom hole. CU and CD is the choke

upstream and downstream measurements at the wellhead.

WellboreBH[m] WellboreLM[m] WellboreUM[m] WellheadCU[m] WellheadCD[m]

25 327 682 990 1010

At first sight, the training and validation set does not look too different. However, by closer inspection,

the problem in terms of extrapolation reveals to be far more complicated. Figure 4a and 4b shows the

distribution of the oil and gas rates. It is apparent that the oil rate is less affected by the GOR, while

the gas rate is more sensitive and is almost twice as large in the validation set compared to the training

set. The large deviation in gas rates could potentially provide a major challenge in predicting the correct

quantitative rate.
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(a) Gas rate distribution for the traning set and validation set

1 and 2.

(b) Oil rate distribution for the traning set and validation set

1 and 2.

3.2 Calculation of fluid properties

Multiflash was used for generating the PVT tables which was constructed from oil and gas compositions.

Based on these compositions, Multiflash calculates properties under different pressure and temperature

conditions. The compositions which created the basis for the PVT can be found in Appendix 18. The

PVT tables were also used to find properties such as,

• Oil and gas density, ρoil and ρgas

• Oil and gas viscosity, µoil and µgas

• Oil and gas heat capacities, Cp,gas, Cp,oil

• Gas mass fraction, xg

Based on the pressure and temperature measurements in the well, the properties were found by inter-

polation and were used to calculate the first principle model equations. It is important to note that the

properties will change as the reservoir depletes. Therefore, the exact fluid composition will not always

be available and could potentially be a source of error if data was measured when the compositions were

unknown. However, since the data for this project was produced synthetically, it is assumed that the

compositions are known.

3.3 Neural network methods

The methods are based on the work done by Bikmukhametov and Jäschke(2020), which proposed several

techniques to improve the explainability and transparency of the machine learning model. It was found

that these approaches improved the performance compared to using the raw measurements directly. The

idea is the transform the raw data into more physically meaningful features, which can represent the

underlying problem more exact and potentially improve the accuracy. It was also proposed to include

the first principle solutions as an input which could improve the model’s ability to capture the governing
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dynamics of the system and quantitative rates. Moreover, it was also suggested to train the model on

the mismatch between the true rate and the solution provided by the first principle model.

3.3.1 Baseline: Raw data

By now, the most common approach in Virtual Flow Metering is using the raw data directly as an input.

The raw measurement includes pressures and temperatures at the bottomhole, downstream and upstream

of the choke, inclination and choke opening. Figure 5a shows the training phase, where the neural network

is trained to minimize the error on the target values, and Figure 5b shows the validation phase of the

Baseline Model.

(a) Training phase of Baseline Model (b) Validation phase of Baseline Model

3.3.2 Method 1: Feature engineering

Instead of feeding the raw data directly into the machine learning model, the data can be transformed

into features. The idea is the create features that optimize the information density thus reducing the

input dimensionality and possibly represent the underlying pattern better. Also, introducing features

may allow the neural network to discover and exploit relationships the raw data cannot directly provide.

In addition, first principle model solutions can also be included. This form of data enrichment can

improve the neural network’s ability to capture the quantitative relationship of oil and gas rates, as well

as supplementing information about the governing dynamics.

Figure 6a illustrates the training phase, and Figure 7b shows the validation phase of Method 1.
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(a) Training phase of method 1 (b) Test phase of method 1

3.3.3 Method 2: Incorporating first principle model solutions into the target variable.

In Method 2 the target variable is the mismatch between the true rate and the first principle solution,

as shown in Figure 7a. The idea behind using the mismatch as a target variable is that it can alter the

target distribution thus reducing the extrapolation range. During the validation phase as shown in Figure

7b, the neural network predicts the mismatch. The sum of the first principle solution and the predicted

mismatch will is then the prediction of the flow rate.

(a) Training phase of method 1 (b) Test phase of method 1

3.4 Tuning pipeline

In machine learning a data set is usually divided into a training, validation and test set. However,

since the data is produced synthetically, the training and validation were produced separately and

are therefore distinct and partition of the data set is unnecessary. Since the oil and gas rates may

have a different correlation with the inputs the architecture and hyperparameters will consequently
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differ. It was therefore used individual neural networks for oil and gas. The procedure proposed by

[Bikmukhametov and Jäschke, 2020b] is used for tuning all the models. First, the neural network is

trained with a fixed number of epochs and using Bayesian Hyper-parameter optimization, the set of opti-

mal hyperparameters was obtained. Then the neural network was reinitialized and trained from scratch

with early stopping to avoid overfitting.
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4 Case studies

In total there were conducted ten case studies. The case studies are structured in a way such that each

method systematically introduces new and increased features and first principle solutions.

The Baseline Model uses the raw data directly as an input without any pre-processing, as shown if

Table 4. Feeding the raw data into the neural network represents the most common way of training a

VFM, and will therefore so serve as the case, which is used to determine the relative improvement for all

the case studies.

Case 1.1 if the first case in Method 1. The raw data were transformed into choke features, as shown

in Table 4. To investigate how the performance is affected by only the features, no first principle model

solutions are included. The true oil and gas rate were used as target variables.

Case 1.2 also transforms the raw data into choke features. In addition, the Bernoulli choke equation

was included as an input as shown in Table 4. The idea is that the first principle model solutions can

give additional information about the quantitative relationship of the oil and gas flow rates. The true oil

and gas rate were used as target variables.

Case 1.3 is similar to Case 1.2 but considers the Al-Safran choke model solution as an input, as shown

in Table 4. By using the Al-Safran choke model, it is possible to investigate how different first principle

model solutions affects the performance.

Case 1.4 builds on Case 1.3. In addition to the features in Case 1.3, the pressure and temperature drop

were also included as well as the ”No Pressure Wave” tubing equation solutions, as shown in Table 4.

The hypothesis is that by including more features, the neural network’s ability to capture the underlying

relationship for the system will increase.

Case 1.5 also builds on Case 1.4. However, the well was divided into three sections, bottom, middle, and

top. Where each section has a corresponding pressure and temperature drop and first principle model

solution obtained from the ”No pressure Wave” equation as shown in Table 4

Case 2.1 is the first case that considers Method 2. As in the Baseline Model, the raw data were used

directly as an input. The Bernoulli choke model was incorporated in the target variables, and the neural

network was trained on the mismatch, as shown in Table 4. The idea is that by including first principle

model solutions in the target variable, the distribution will shift, thus increasing the characteristics of

interpolation.

Case 2.2 is similar to Case 2.1. Instead, the Al-Safran was integrated into the target variable as shown

in Table 4. By using the Al-Safran choke model, it is possible to investigate how different first principle
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model solutions affect the transformed target distribution.

Case 2.3 considers the integration of the ”No pressure wave” tubing equation into the target variable.

The raw data was used directly as an input, and the friction factor is assumed to be constant, as shown

in Table 4.

Case 2.4 is conceptually identical to Case 2.3, except for that the friction factor is assumed to be a

function of the Reynolds number, as shown in Table 4. Case 2.4 will examine how the friction factor

affects the performance and the transformed distributions.

Table 4: Summary of case studies conducted.

Case Input First principle model Training target

Baseline PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ not used Qoil, Qgas

1.1 ∆Pchoke, ∆Tchoke, Cop, θ not used Qoil, Qgas

1.2 ∆Pchoke, ∆Tchoke, Cop, θ, QBernoulli
choke,gas, QBernoulli

choke,oil not used Qoil, Qgas

1.3 ∆Pchoke, ∆Tchoke, ∆Ptubing, ∆Ttubing,Cop, θ, QAlSafran
choke,gas, QAlSafran

choke,oil not used Qoil, Qgas

1.4 ∆Pchoke, ∆Tchoke, ∆Ptubing, ∆Ttubing, Cop, θ not used Qoil, Qgas

QAlSafran
choke,gas, QAlSafran

choke,oil, QNPW
tubing,oil, QNPW

tubing,gas

1.5 ∆Pchoke, ∆Tchoke, Cop, ∆Ptubing,bottom, ∆Ptubing,middle ∆Ptubing,topθ not used Qoil, Qgas

∆Ttubing,bottom, ∆Ttubing,middle, ∆Ttubing,top, QAlSafran
choke,gas, QAlSafran

choke,oil, QNPW
bottom,tubing,gas

QNPW
bottom,tubing,oil, QNPW

middle,tubing,oil, QNPW
middle,tubing,gas, QNPW

top,tubing,oil, QNPW
top,tubing,gas

2.1 PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Bernoulli choke model Qmismatch
oil , Qmismatch

gas

2.2 PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Al Safran choke model Qmismatch
oil , Qmismatch

gas

2.3 PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Tubing model Qmismatch
oil , Qmismatch

gas

ξ = const

2.4 PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Tubing model Qmismatch
oil , Qmismatch

gas

ξ = f(Re)

Since the extent of the case studies is comprehensive, the presentation of the results and discussion will

be structured in the following way:

• Case studies

1. Summary of method

2. Results

3. Discussion regarding the performance of the particular case, compared to the previous methods.

For Method 2, the distribution before and after the transformation of target variables will be

presented, as well as the Pearson correlation matrix for validation set 1.

• Results summary

• Overall discussion and analysis about general performance in Method 1 and 2, and weaknesses in

the methodology.
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4.1 Baseline Model

In the Baseline model the raw data is used directly as an input. A summary of the input feature and

target variables can be found in Table 5.

Table 5: Inputs, first principle models and traning targets for Baseline Model.

Input First principle model Training target

PBH, TBH, WHCU, TWHCU, PWHCD, TWHCD, Cop, θ not used Qoil, Qgas

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 8 and 9 for validation

set 1 and 2, respectively.
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Figure 8: Validation set 1: Oil and gas predictions for Baseline Model.
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Figure 9: Validation set 2: Oil and gas predictions for Baseline Model.

From Figure 8 and 9, it is clear that the model captures the governing dynamics of the system. However,

the predictions are strongly biased, especially for the gas rate. The bias in the gas predictions is presum-

ably a result of the limited exploration capabilities of a neural network. Since the gas rate is the most

affected by an increased GOR, as shown in Figure 4a, the predictions will be more demanding in terms

of extrapolation.

The anticipated result was that the overall accuracy of the validation set 2 well would yield a lower

accuracy due to a more complex well trajectory. However, the oil prediction for validation set 2 is more

accurate compared to the validation set 1. A possible explanation is that the average inclination of

validation set 2(63◦), is more similar to the inclinations in the training set. Therefore, the inclination

drives the data in validation set 2 closer to the characteristics of interpolation.

4.2 Case 1.1

In Case 1.1, the raw data were transformed into physically meaningful features, more precisely, into the

choke pressure and temperature drop. Feature engineering is motivated by the fact that transforming the

raw data could represent the underlying problem more accurate, resulting in improved model accuracy

on new data. A summary of the input feature and target variables can be found in Table 6.

Table 6: Inputs, first principle models and traning targets for Case 1.1.

Input First principle model Training target

∆Pchoke, ∆Tchoke, Cop, θ not used Qoil, Qgas
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The oil and gas predictions and true rates for the first 500 hours are shown in Figure 10 and 11 for

validation set 1 and 2, respectively.
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Figure 10: Validation set 1: Oil and gas predictions for Case 1.1
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Figure 11: Validation set 2: Oil and gas predictions for Case 1.1

As discussed, by transforming the raw data into features can allow the neural network to exploit new

relationships and improve dynamic behaviour. In other words, the relative change in the true flow due

to change in choke position should be reflected in the predictions. This is confirmed for the oil rate

prediction in validation set 2 where predictions follow the trend quite accurately. Similarly, even though

the bias increased in validation set 1, the predicts are more consistent with the system dynamics.

At first, it was counter-intuitive that the oil predictions improved significantly for validation set 2, while
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the error increased for validation set 1. Even though physically meaningful features were introduced, the

bottom hole raw measurements were removed. Since the well in validation set 2 is more complex in terms

of trajectory, it should intuitively require more features which are representative for the flow along the

whole well. However, as previously suggested, the improved accuracy is because the average inclinations

increase the characteristics of interpolation, thus increasing the performance.

Another conspicuous change is the major decrease of accuracy for the gas predictions in validation set

2. In the same way for the gas, the upstream pressure is also dependent on the inclination, thus the

pressure drops over the choke for the training and validation set 2 will be of similar magnitude. Since

the corresponding gas rates for the training set are small, the predicted gas rates for validation set 2 will,

consequently, also be of the same magnitude. In conclusion, including only choke features will result in

a more local model that is less able to generalize the inputs.

4.3 Case 1.2

Similarly to Case 1.1, the raw data were transformed into features describing the conditions over the

choke. In addition, the first principle solution from the Bernoulli choke model was included as a feature.

Including first principle solutions could provide additional information by capturing the governing choke

dynamics and improve the quantitative behavior. A summary of the input feature and target variables

can be found in Table 7.

Table 7: Inputs, first principle models and traning targets for Case 1.2

Input First principle model Training target

∆Pchoke, ∆Tchoke, Cop, θ, QBernoulli
choke,gas, QBernoulli

choke,oil not used Qoil, Qgas

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 12 and 13 for

validation set 1 and 2, respectively.
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Figure 12: Validation set 1: Oil and gas predictions for Case 1.2
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Figure 13: Validation set 2: Oil and gas predictions for Case 1.2

The most noticeable improvement is in oil predictions for validation set 1. Compared to Case 1.1,

the predictions are more accurate in terms of the quantitative behavior, yielding the highest accuracy

yet, which could support the hypothesis that including first principle solutions can improve the neural

network’s ability to predict rates of more precise magnitudes. However, the oil predictions for validation

set 2 resulted in a larger error when including the first principle solution. Even though the deviation is

small, it is expected that improvements in the oil rates accuracy should increase collectively.

There is an increased improvement for the gas predictions for validation set 1 and 2. Despite being

marginal, the predictions are less biased and more accurate in terms of quantitative behavior. In other
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words, the system dynamics for gas can be seen more clearly compared to the previous case. Using the

solution of the Bernoulli choke model as an input will also give the neural network an indication of the

gas quantity, which is reflected in an increased magnitude of the predictions.

4.4 Case 1.3

As in the previous cases, the raw data were transformed into choke features. In order to compare how

different first principle models affects the performance, the Al-Safran choke model solution was included

as a feature. A summary of the input feature and target variables can be found in Table 8.

Table 8: Inputs, first principle models and traning targets for Case 1.3

Input First principle model Training target

∆Pchoke, ∆Tchoke,Cop, θ, QAlSafran
choke,gas, QAlSafran

choke,oil not used Qoil, Qgas

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 14 and 15 for

validation set 1 and 2, respectively.
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Figure 14: Validation set 1: Oil and gas predictions for Case 1.3
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Figure 15: Validation set 2: Oil and gas predictions for Case 1.3

Including the solution of the Al-Safran choke model, yields similar accuracy compared to including the

Bernoulli choke model solution. That aside, there is an overall reduction in performance. For the oil, the

prediction is generally underestimated. The Al-Safran choke model will estimate the flow more accurate

compared to the Bernoulli choke model, which again will make the inputs more qualitative accurate. In

contrast, the Bernoulli choke model will overpredict the flow in the presence of gas. Since both validation

sets have a larger GOR, Bernoulli will generally result in a larger estimated flow compared to Al-Safran.

Since the neural network will map the trend larger first principle model inputs yields larger outputs, the

Bernoulli equation will consequently result in predictions of larger magnitude. While on the other hand,

the Al-Safran choke model will yield more accurate inputs, but does not have the same impact as the

Bernoulli choke equation.

With this in mind, it makes sense that the predictions are generally underpredicted. This deviation is

especially apparent for the gas predictions in validation set 1 where the accuracy was three times higher

when using the Bernoulli choke model solution as an input. However, the deviation is not apparent for

the gas predictions in validation set 2, where Case 1.2 and 1.3 yielded an almost identical accuracy.

However, the Bernoulli choke model might only benefit this particular case when the validation targets

of gas are larger compared to the training set. Therefore, it cannot be concluded that using the Bernoulli

choke model is more beneficial compared to Al-Safran.
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4.5 Case 1.4

In Case 1.4 the raw data were transformed into choke and tubing features. Since wells often differ in

trajectory and inclination the neural network might benefit from this additional information. Further on,

the solutions from the NPW equation were also included as an input feature. A summary of the input

feature and target variables can be found in Table 9.

Table 9: Inputs, first principle models and traning targets for Case 1.4

Input First principle model Training target

∆Pchoke, ∆Tchoke, ∆Ptubing, ∆Ttubing, Cop, θ not used Qoil, Qgas

QAlSafran
choke,gas, QAlSafran

choke,oil, QNPW
tubing,oil, QNPW

tubing,gas

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 16 and 17 for

validation set 1 and 2, respectively.
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Figure 16: Validation set 1: Oil and gas predictions for Case 1.4
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Figure 17: Validation set 2: Oil and gas predictions for Case 1.4

Including the tubing features yielded the highest accuracy for the oil predictions for validation set 1 so far.

The performance of the oil predictions in validation set 2 also increased compared to the previous case

where no tubing features were included. In general, the oil predictions precisely captures the dynamics

of the choke as well as having a minimal bias. The could confirm that including physically meaningful

features as well as first principle solutions for different parts of the system increases the neural network’s

ability to estimate the flow more accurately.

On the contrary, the increased accuracy of the oil rate prediction is not reflected in the gas predictions.

This result suggests that the gas rate may be less correlated with the tubing features. It can be because

tubing features are too general such that the underlying pattern is too vague to be correlated with the

gas predictions. Nevertheless, the gas prediction in validation set 2 yielded a marginal improvement,

which could support the hypothesis that a well with complex trajectory requires features which describe

the system more comprehensively.

4.6 Case 1.5

As in the previous case, the raw data were transformed into choke and tubing features. For Case 1.5, the

well was divided into three sections, bottom, middle and top with corresponding pressure and temperature

drops. In addition, the first principle solution for the different parts of the wells were incorporated as

inputs. A summary of the input feature and target variables can be found in Table 10.
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Table 10: Inputs, first principle models and traning targets for Case 1.5

Input First principle model Training target

∆Pchoke, ∆Tchoke, Cop, ∆Ptubing,bottom, ∆Ptubing,middle ∆Ptubing,topθ not used Qoil, Qgas

∆Ttubing,bottom, ∆Ttubing,middle, ∆Ttubing,top, QAlSafran
choke,gas, QAlSafran

choke,oil, QNPW
bottom,tubing,oil, QNPW

bottom,tubing,gas

QNPW
middle,tubing,oil, QNPW

middle,tubing,gas, QNPW
top,tubing,oil, QNPW

top,tubing,gas

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 18 and 19 for

validation set 1 and 2, respectively.
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Figure 18: Validation set 1: Oil and gas predictions for Case 1.5
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Figure 19: Validation set 2: Oil and gas predictions for Case 1.5
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Case 1.5 yielded the most drastic change in terms of accuracy. While in the previous cases the gas

predictions were characterized by a high bias and large error, Case 1.5 resulted in a large improvement in

the overall accuracy. Despite the noticeable variance, the gas predictions are now resembling the true rate

more accurately compared to the previous cases. By introducing features from different parts of the well,

the neural network is trained on the pressure and temperature development along the well. This could

increase the neural network’s ability to distinguish different trajectories and how it affects the overall gas

rate. However, measurements along the well are usually not available in a real system, which makes the

case less realistic.

On the other hand, the oil predictions overall decreased in accuracy compared to the previous cases. This

suggests that the total oil rate is less correlated with the individual flow solutions and corresponding

pressure drops along the well. In general, including more features which has less significance to the target

variable can make the neural network learn incorrect behaviour of the system. In addition, the neural

network will also require more time to filter out unnecessary information which can disturb the training

process.

4.7 Case 2.1

In Case 2.1, Method 2 was investigated with the Bernoulli choke model as first principle solution. Unlike

Method 1, the raw data is now used directly as an input. The target variables are the mismatch between

the actual gas rate and the Bernoulli choke model, as proposed in Method 2. A summary of the input

feature, target variables, and first principle solutions is shown in Table 11.

Table 11: Inputs, first principle models and traning targets for Case 2.1

Input First principle model Training target

PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Bernoulli choke model Qmismatch
oil , Qmismatch

gas

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 20 and 21 for

validation set 1 and 2, respectively.
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Figure 20: Validation set 1: Oil and gas predictions for Case 2.1.
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Figure 21: Validation set 2: Oil and gas predictions for Case 2.1

There is a significant contrast of the general trends between the feature engineering cases and Case 2.1,

where the model was trained on the mismatch between the true rate and the Bernoulli first principle

solutions. For instance, the quantitative behavior for the gas predictions is improved, which supports the

hypothesis that including first principle model solutions can shift the distribution. This is evident when

looking at the original and transformed target distributions in Figure 22.
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Figure 22: Original (left) distribution of gas rates and transformed (right) distribution after incorporating

Bernoulli choke model into the target variable.

Bernoulli

Since the Bernoulli choke model can overpredict the flow in the presence of gas, the calculated flow rates

in the validation sets, which have a higher GOR, will consequently yield larger mismatches. As a result,

the transformed distribution will therefore contain outliers in the validation sets, as seen in Figure 22.

Due to neural networks limited extrapolation capabilities, the mismatch is, therefore, predisposed to be

underestimated, thus the gas predictions in Figures 20 and 20 are essentially the Bernoulli choke model

solution.

Figure 23: Original (left) distribution of gas rates and transformed (right) distribution after incorporating

Bernoulli choke model into the target variable.

Bernoulli

As for the oil predictions, Method 2 does not improve the performance compared to the baseline model.

By looking at the initial and transformed distribution in Figure 23, it is clear that by including the

Bernoulli choke model solution into the target variables increases the target space and relative skewness.
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This will affect the regression intercept and coefficients associated with the model, which can reduce the

performance [Vasudev, 2017].

In addition, including the Bernoulli choke solution in the target variable will increase the information

density and therefore reduce the correlation between the input and output targets. This is evident when

looking at the Pearson correlation matrix in Figure 24. When the input-output correlation decreases, it

will be harder for the neural network to generalize the pattern. The only input variable with an increased

correlation is the choke opening, which is logical since the Bernoulli choke equation is linearly dependent

on the choke opening and could be the reason for a more aggressive choke characteristic in the predictions.

Figure 24: Pearson correlation matrix for true rates and mismatches calculated with the Bernoulli choke model.

4.8 Case 2.2

In Case 2.2, Method 2 was used with the Al-Safran choke model as the first principle solution. The raw

data is being used directly as an input, and the target variables are the mismatch between the true gas

rate and the solution from the Al-Safran choke model, as proposed in Method 2. A summary of the input

feature, target variables, and first principle solutions is shown in Table 12.

Table 12: Inputs, first principle models and traning targets for Case 2.2

Input First principle model Training target

PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Al Safran choke model Qmismatch
oil , Qmismatch

gas
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The oil and gas predictions and true rates for the first 500 hours are shown in Figure 25 and 26 for

validation set 1 and 2, respectively.
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Figure 25: Validation set 1: Oil and gas predictions for Case 2.2.
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Figure 26: Validation set 2: Oil and gas predictions for Case 2.2.

Replacing the target variable to the mismatch between the true rate and the Al-Safran choke model

results in improved results for both oil and gas for each validation set compared to the previous case.

Since the Al-Safran Choke model yields more accurate solutions compared to the Bernoulli choke model,

the mismatch will be more similar in the training and validation, which reduces the extrapolation range.

This is evident in the original and transformed target distribution of gas and as shown in Figure 27.

Compared to the transformed distribution with Bernoulli, as shown in Figure 22, the target space is both

reduced, less skewed, and more mutually overlapping.
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Figure 27: Original (left) distribution of gas rates and transformed (right) distribution after incorporating Al-

Safran choke model into the target variable.

Al-

Safran

Compared to the previous case, oil predictions are also more accurate. This can also be seen for Figure

28, where Al-Safran yields a smaller shift in the posterior distribution. Still, the transformed distribution

is less overlapping compared to the original distribution.

Figure 28: Original (left) distribution of oil rates and transformed (right) distribution after incorporating Al-

Safran choke model into the target variable.

Al-

Safran

There are, however, some regions where the validation sets exceed the range of the training set, which

in terms of extrapolation, is more difficult for the neural network to predict. Also, since the target

variable now contains information about both the true rate and the Al-Safran solution, the input-output

correlation could be harder to capture. This is also confirmed by looking at the Pearson correlation

matrix in Figure 34.

38



Figure 29: Pearson correlation matrix for true rates and mismatches calculated with the Al-Safran Choke model.

As expected, the overall correlation decreases when using mismatch as the target variable compared to

using the true rate. In addition, the relative change in each correlation value disproportionate, which

can make it harder for the neural network to generalize the correct underlying pattern. However, the

relative decrease in the correlations is smaller compared to Case 2.1 with Bernoulli, which is reflected by

an increased performance.

4.9 Case 2.3

In Case 2.3, the input for the neural network is the raw data, and the target variables are the mismatch

between the true gas rate and the solution for the NPW tubing equation, as proposed in Method 2.

The friction factor is assumed to be constant. A summary of input features, target variables, and first

principle solutions can are shown in Table 13.

Table 13: Inputs, first principle models and traning targets for Case 2.3

Input First principle model Training target

PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Tubing model Qmismatch
oil , Qmismatch

gas

ξ = const

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 30 and 31 for

validation set 1 and 2, respectively.
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Figure 30: Validation set 1: Oil and gas predictions for Case 2.3
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Figure 31: Validation set 2: Oil and gas predictions for Case 2.3

Compared to using choke models as first principle solution, which consistently over or under predicted the

flow rate, the dynamics is now less aggressive. For both validation sets the predictions are overall under

predicted. By looking at the distribution of the oil mismatches, it is clear that including the principle

solutions in the training targets have shifted the distance between traning and validation targets as shown

in Figure 32.
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Figure 32: Original (left) distribution of oil rates and transformed (right) distribution after incorporating the

NPW tubing equation with a variable friction factor into the target variable.

NPW

From Figure 32, it is clear that the predicted mismatches for oil will be underestimated, thus resulting

in overall lower flow rates. This suggests that if the original training set and validation targets have

similar or overlapping distribution, including first principle solutions in the training target can distort

the distribution and result in a significant error.

The predictions of gas in validation set 2 are notably improved. This is also evident in the distribution

for the gas mismatch, as shown in Figure 33. As discussed earlier, the well in validation set 2 is most

similar to the training set in terms of the average inclination. Hence, the pressure drop will be more

similar to the training set, and consequently, yield more alike first principle solutions and mismatches as

seen in Figure 33.

Figure 33: Original (left) distribution of gas rates and transformed (right) distribution after incorporating the

NPW tubing equation with a variable friction factor into the target variable.

NPW
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Even though the error increases compared to Case 2.1 and 2.2, the predictions are more quantitative

stable. Since the pressure drop over the tubing is larger relative to the choke pressure drop, the predictions

are less fluctuating around the true rates. The results imply that it can be beneficial to use a first principle

model that describes the system more globally. However, the NPW tubing model did not succeed in

shifting the target variables for validation set 1 inside the training distribution. Still, it is relatively closer

compared to the initial distribution, which is reflected in more quantitative correct predictions.

When looking at the correlation matrix, it is evident that by including the NPW tubing equation, the

relative correlations for oil are unaffected. Which in itself is good; however, by considering that the

transformed distribution is worse than the original, the overall performance will decrease. For the gas

in validation set 1, the correlation increased for most variables. This will have a positive effect on the

performance, which is supported by looking at the gas predictions from Figure 30. Still, as seen from

Figure 33, the transformed distribution for gas in validation set 1 is outside the range of the training

target, which consequently decreases the performance.

Figure 34: Pearson correlation matrix for true rates and mismatches calculated with the NPW tubing model and

constant friction factor.

4.10 Case 2.4

In Case 2.4, the input for the neural network is the raw data, and the mismatch between the NPW

tubing equation and true rate is the target variable. The friction factor is assumed to be a function of

the Reynolds number. A summary of input features, target variables and first principle solutions can be
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found in Table 14.

Table 14: Inputs, first principle models and traning targets for Case 2.4

Input First principle model Training target

PBH, TBH, PWHCU, TWHCU, PWHCD, TWHCD, Cop, θ Tubing model Qmismatch
oil , Qmismatch

gas

ξ = f(Re)

The oil and gas predictions and true rates for the first 500 hours are shown in Figure 35 and 36 for

validation set 1 and 2, respectively.
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Figure 35: Validation set 1: Oil and gas predictions for Case 2.4
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Figure 36: Validation set 2: Oil and gas predictions for Case 2.4
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Including the friction factor as a variable when calculating the NPW equation resulted in significant

improvements for oil compared to Case 2.3, both considering bias and matching the choke dynamics.

As discussed before, a more accurate first principle model will yield an improved mismatch distribution.

Compared to the previous case where a variable friction factor was assumed to be constant, the trans-

formed distribution for the training and validation set are more mutually overlapping, as seen in figure

37. This is also expected since the friction factor will have a preponderant effect on the oil flow. Although

performance for oil was not ideal compared to Method 1, it can be concluded that the inclusion of the

friction factor will be beneficial to describe the oil rate more precise.

Figure 37: Original (left) distribution of oil rates and transformed (right) distribution after incorporating the

NPW tubing equation with a variable friction factor into the target variable

NPW

In contrast, the gas predictions did not improve compared to the previous case. As seen in Figure 38,

the transformed distributions are closer. Comparing the distribution in Case 2.3, as found in Figure

33, the validation targets are separated further from the training targets. This is also reflected in the

results, due to a expanded extrapolation range the mismatch will be underestimated, thus resulting in

constantly underpredicted gas rates. Since the gas flow is not as dependent on the friction, the NPW

tubing equation can yield less accurate solution thus skewing the distribution.

As for the correlation matrix, the result is identical to Case 2.3. This suggests that the inclusion of

friction factor has an insignificant effect on the correlations.
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Figure 38: Original (left) distribution of gas rates and transformed (right) distribution after incorporating the

NPW tubing equation with a variable friction factor into the target variable.

NPW

Figure 39: Pearson correlation matrix for true rates and mismatches calculated with the NPW tubing model.
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5 Case Study Results

Table 15 presents the mean squared error for both oil and gas for each validation set. The improvement

compared to the baseline model is marked as green. Case 1.1 yielded the highest accuracy for the oil

predictions in validation set 2, Case 1.4 - for the oil in validation set 2, while Case 2.2 yielded the highest

accuracy for the gas predictions in both validation sets.

Table 15: Summary of the mean squared error for all case studies. Green indicates that the case improved

accuracy compared to the baseline model. The case which yielded the best performance is highlighted as bold

text

Case Validation set 1 Validation set 2

Oil Gas Oil Gas

Baseline 3.4420e-5 3.0249e-3 2.5742e-5 5.3970e-3

1.1 1.0541e-4 2.705e-3 1.3123e-6 1.1468e-2

1.2 1.1713e-5 2.0345e-3 3.609e-6 9.1366e-3

1.3 1.906e-5 6.65e-3 2.9158e-5 7.6765e-3

1.4 3.2422e-6 8.2785e-3 4.6655e-6 7.5068e-3

1.5 2.1742e-5 1.2383e-3 1.3851e-4 8.8000e-4

2.1 5.5638e-5 3.5235e-3 3.3067e-4 8.2350e-4

2.2 2.8044e-5 8.3587e-5 7.4354e-5 5.772e-4

2.3 1.0888e-3 5.9644e-3 1.1849e-4 1.5793e-3

2.4 1.2883e-5 6.3932e-3 3.5350e-5 2.4962e-3
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6 Case Study Discussion

The Baseline Model confirms that neural networks struggle when encountering data that is outside the

trained range. Including features should improve the neural network’s ability to generalize the data by

giving additional information about the quantitative relationship for both the total flow as well as the

individual rates of oil and gas. As a general trend, including first principle solutions as inputs in Method

1 improved the performance. The governing dynamics of the system, although biased, also improved.

The oil prediction was overall more accurate for Method 1. Especially, Case 1.4 resulted in very accurate

oil rate predictions, and compared to the Baseline Model, the error was reduced by a factor of ten. This

proves that the inclusion of first principle models will improve the performance, compared to the Baseline

Model, if the features are well correlated with the target variables. In addition, the features allowed the

neural network to discover and exploit relationships that the raw data couldn’t directly provide, which

is confirmed by improved dynamic behaviour.

The overall prediction accuracy for gas in Method 1 was weak compared to the Baseline Model. For

validation set 2, the input features did not represent the overall increase in flow rate due to properties

like average inclination being too close to the training data. By taking this into account and comparing

validation set 2 to Case 1.1 where only the features from the raw data were used, the gas prediction

improved by the inclusion of the first principle models. On the other hand, the gas predictions for vali-

dation set 2 showed an overall increased performance compared to the Baseline Model by systematically

introducing new features. Also, in Case 1.5, where both choke features and tubing features for three dif-

ferent sections of the well were included, benefited the gas prediction for both validation sets and yielded

the highest gas accuracy for Method 1. This indicates that including information about several parts of

the well could benefit the neural network’s ability to capture the governing dynamics along the well and

how it subsequently affects the rates.

For the gas predictions, Methods 2 generally resulted in more accurate and quantitative correct solu-

tions compared to the Baseline Model. Including first principle solutions in the target variables has been

proven to shift the target variables in the training and validation sets relatively closer, thus decreasing the

extrapolation range. As a general trend, more accurate first principle solutions result in more similar mis-

matches hence increasing the characteristics of interpolation, which again will increase the performance.

A limitation of Method 2 is that it generally decreases the input-output correlations. This reduces the

neural networks’ ability to generalize the pattern and the overall performance will consequently decrease.

The results of Method 2 were also more characterized by the first principle solutions compared to when

the true rate was used as a target variable, which was especially evident when using the choke models.

In other words, the mismatch predictions were diminished compared to the first principle solutions.

47



As for the oil predictions, Method 2 yielded an overall lower accuracy compared to Method 1. Since the

oil rate distribution for training and validation set already was mutual overlapping, the first principle

solutions can distort the original distribution, thus shifting the target variables further apart.

Since extrapolating with neural networks, in general, tends to produce arbitrary predictions, the results

might be misleading [Lohninger, 2012]. For the gas predictions, improvements by introducing new features

can, therefore, be due to randomness and not an increased ability to identify the underlying pattern.

There are, therefore, uncertainties linked to the results of the gas predictions in Method 1, were the

extrapolation range was extensive. Therefore, further investigations are needed to establish a general

trend for gas. On the other hand, since the oil distributions were more overlapping, it is safer to conclude

that prediction accuracy increases if more and well-correlated features are systematically included.

Using Bayesian hyperparameter optimization as a tuning technique has proven one of the most superior

methods to tune a neural network. However, one precondition is that the error function can be approx-

imated as a Gaussian process. To put it another way, similar combinations of hyperparameters should

result in a similar performance. However, as extrapolation predictions tend to be sometimes random,

this condition might not hold, such that solution converges to an arbitrary local optimum. This was

confirmed by hand-tuning the models, where the accuracy often fluctuated drastically under different,

yet similar, sets of parameters. However, this also implies that better performance can be achieved by

using a different tuning technique.

In this work, a low diversity of features could be a shortcoming in the data set. Even though noise was

added to make the data set realistic, the input range was still very narrow, especially considering the

GOR and inclination. Although GOR was not directly included as an input, it was indirectly incorporated

into the model using the PVT tables for calculating the first principle solutions. The training data set

consisted of only three unique GOR’s and inclinations. That may be too few for the neural network to

map the underlying relationship. Besides, the GOR and inclinations randomly coupled, which means

they did not increase simultaneously, which can make it even harder for the neural network to generalize

the underlying pattern, especially when faced with a validation set outside the trained range.
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7 Conclusion and future work

This project aimed to investigate several methods that could potentially improve the extrapolation capa-

bilities of a neural network-based VFM. Method 1 investigated the possibility of introducing physically

meaningful features that could describe the underlying pattern accurately. First principle model solutions

were also included in order to improve the neural networks ability to capture the quantitative relationship

between oil and gas rates as well as supplementing additional information about the governing dynamics.

Method 2 aimed to decrease the relative distance between the traning and validation set distributions

by transforming the target variable into the mismatch between the true rate and first principle model

solution.

As hypothesized for Method 1, transforming the raw data into features would allow the neural network

to exploit different relationships that the raw data can not directly provide. Method 1 resulted in overall

stable predictions and improved performance, especially for the oil rate predictions. There is a clear trend

between systematically introducing well-correlated features and performance improvement. It is, however,

difficult to point out which first principle solution yielded the overall highest accuracy, although a general

recommendation is to include at least one of them. Predicting flow rates in the correct quantitative range

when the extrapolation range is large, as in the gas predictions, proved to be a significant challenge.

However, by taking the initial distribution into account, the first principle model solutions contributed to

improving the accuracy and dynamics compared to the Baseline Model. It can, therefore, be concluded

that Method 1 gives a clear advantage over current methods that only use raw data as input without any

pre-processing. In Case 1.5, where multiple tubing features were included, the gas predictions improved

considerably and yielded the highest accuracy in Method 1. These measurements are, however, usually

not available in a real production system, and the method is, therefore, less realistic.

Method 2 revealed that the initial distribution could be transformed by incorporating first principle

model solutions into the target variable. The new distribution could, consequently, be more mutually

overlapping, thus reducing the extrapolation range. Especially, the findings proved to be an advantage for

the gas predictions were the original target distribution of the training and validation sets was separated.

A general recommendation is to use a first principle model that estimates the flows accurately to reduce

the target deviation. The importance of using accurate first principle models is proved by the comparing

Case 2.1 and 2.2, wherein Case 2.2 the Al-Safran choke model resulted in higher performance compared

to Case 2.1 with the Bernoulli choke model. It was also found that if the initial target distributions are

already overlapping, such as for the oil, the inclusion of first principle models in the target variable can,

in the worst scenario, increase the extrapolation range.

Considering the findings in a practical sense, it was previously introduced two scenarios where extrap-
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olation with a neural network-based VFM would be beneficial. The first scenario was that the VFM

would work as a backup or a supplementary solution. Here, it is assumed that the VFM would be trained

based on the estimates from the MPFM. As the fields start to deplete, the gas production will increase,

and the operating conditions will be different from the distribution it was trained upon. If we consider

a smaller time frame, the operation conditions will not be so different from the training set. Method

1 would then be the preferred solution. The second scenario was that if a VFM would operate as a

standalone solution, the training data will originate from different wells, such that the input training and

target distributions will differ from the actual operating conditions. The recommended method will then

depend on the available data. If the available data are from wells that are significantly different from

the new well, Method 2 is beneficial. By including first principle model solutions in the target variables

in the available training data and the current measurements from operating well, the performance will

improve by shifting the distributions.

All things considered, it is possible to improve extrapolating capabilities of a neural network-based VFM

by using the methods proposed which can contribute to improving its performance. Whether Method 1 or

2 should be adopted depends on the available training data. There is still room for major improvements.

The results are promising but should be trained and validated by a more diverse data set in terms of

inclinations, trajectories, GOR, and boundary properties. Since this project only considers validation sets

with larger oil and gas flow rates compared to the training set, the performance under different validation

set distributions should also be investigated. Combining the stability of Method 1 and the qualitatively

accurate predictions from Method 2 into an ensemble method can also be beneficial. Moreover, the first

principle models can be advanced to calculate the mismatch more precisely. In conclusion, incorporating

first principle solution results in more explainable and transparent neural networks that could contribute

to making Virtual Flow Metering more accurate, efficient, and reliable.
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List of symbols

Table 16: List of Symbols.

Symbol Description

PBH Bottomhole pressure

TBH Bottomhole temperature

PWHCU Pressure choke upstream

TWHCU Temperature choke upstream

PWHCD Pressure choke downstream

TWHCD Temperature choke downstream

Cop Choke opening

J Cost function

ŷ Predicted value in neural network

wi Weights in neural network

λ Regularization term

MGP Surrogate model

P1 Pressure along streamline

P2 Pressure along streamline

U1 Velocity along streamline

U1 Velocity along streamline

A1 Pipe cross-sectional area

A2 Choke throat area

Cd Discharge coeffecient

ρmix Density of mixture

C Correction factor for Al-Safran choke model

α Hypothetical parameter

n Polytropic gas-expansion exponent

xg Gas quality

νg1 Upstream gas specific volume

Cvg Gas specific heat constant at constant volume

CL Liquid specific-heat constant

R Split ratio

l Pipe axial coordinate

θ Pipe inclination

Umix Mixture velocity
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Dtubing Tubing diameter

g Gravity constant

H Tubing height

ε Relative roughness

Re Reynolds number

PR Reservoir pressure

PB Boundary pressure at flowline

TR Reservoir temperature

TB Boundary temperature at flowline

µoil Viscosity oil

µgas Viscosity gas

Q Volumetric flow rate

List of abbreviations

Table 17: List of abbreviations

Acronym Description

VFM Virtual Flow Metering

NPW No Pressure Wave

MPFM Multiphase Flow Meter

ReLU Rectified Linear Unit

lr Learning rate

SGD Stochastic Gradient Decent

RMSProp Root Mean Square Propagation

ADAM Adaptive Moment Estimation

GOR Gas-Oil Ratio

BH Bottomhole

LM Lower middle

UM Upper middle

CD Choke downstream

CU Choke upstream
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A Compositions

Table 18: Summary for compositions used for creating the PVT tables with a specific GOR.

GOR: 20 GOR: 40 GOR:60 GOR: 80

Nitrogen 0,535 0,41 0,37 0,673

Carbon Dioxide 0,09 0,452 0,352 0,1

Methane 14,67 25,55 26,54 38,64

Ethane 1,82 1,345 5,283 3,563

Propane 1,142 2,13 4,22 3,85

I-Butane 0,66 0,512 1,49 0,554

N-Butane 1,1 2,53 0,93 1,834

I-Pentane 0,78 0,5 0,83 0,565

N-Pentane 0,6 0,356 1,5 0,684

C6 1,53 5,42 1,83 0,992

C7 3,6 1,23 5,11 1,69

C8 5,1 3,67 6,95 2,17

C9 2,2 1,87 3,81 1,74

C10+ 66,173 54,025 40,785 42,945

B Code

Since parts of the code are reused for all the cases, the full code for the Baseline model, as well as the

functions for calculating the first principle models will be presented. The code on Bayesian

hyperparameter optimization builds existing code from GitHub. [Hvass Pedersen, 2018].

B.1 Basic Structure

import pandas as pd

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import collections

from sklearn.preprocessing import StandardScaler
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from sklearn.model_selection import cross_val_score, train_test_split

import pyfas as fa

from scipy.interpolate import interp2d

import math

from scipy.interpolate import griddata

from skopt.plots import plot_histogram, plot_objective_2D

import matplotlib.pyplot as plt

import tensorflow as tf

import numpy as np

import math

import pandas as pd

import tensorflow as tf

from sklearn.preprocessing import StandardScaler

from tensorflow import keras

from tensorflow.python.keras import backend as K

from tensorflow.python.keras.models import Sequential

from tensorflow.python.keras.layers import InputLayer, Input

from tensorflow.python.keras.layers import Reshape, MaxPooling2D

from tensorflow.python.keras.layers import Conv2D, Dense, Flatten

from tensorflow.python.keras.callbacks import TensorBoard

from tensorflow.python.keras.optimizers import Adam

from tensorflow.python.keras.models import load_model

from skopt import gp_minimize, forest_minimize

from skopt.space import Real, Categorical, Integer

from skopt.plots import plot_convergence

from skopt.plots import plot_objective, plot_evaluations

from skopt.utils import use_named_args

import random

import os

from decimal import Decimal

"""

Read data

"""
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df_train = pd.read_csv(’/Users/eier/Documents/Project2019/ProjectTrain2.csv’)

df_val_well1 = pd.read_csv(’/Users/eier/Documents/Project2019/ProjectValidation1.2.csv

↪→ ’)

df_val_well2 = pd.read_csv(’/Users/eier/Documents/Project2019/ProjectValidation2.2.csv

↪→ ’)

"""

Input and output features

"""

Features_x = [’C_op’,

’TemperatureWellbore[K]_logpos25’,

’PressueWellbore[Pa]_logpos25’,

’TemperatureWellbore[K]_logpos990’,

’PressueWellbore[Pa]_logpos990’,

’TemperatureFlowline[K]_logpos10’,

’PressueFlowline[Pa]_logpos10’,

’WellboreAngle[Degrees]’]

Features_y = [’VFRoil[m3/s]’,

’VFRgas[m3/s]’]

"""

Set constant seed to obtain reproducible results

"""

seed_value = 0

os.environ[’PYTHONHASHSEED’]=str(seed_value)

random.seed(seed_value)

np.random.seed(seed_value)
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tf.random.set_seed(seed_value)

"""

Set range for search space

"""

dim_learning_rate = Real(low=1e-15, high=1e-2, prior=’log-uniform’,

name=’learning_rate’)

dim_num_dense_layers = Integer(low=2, high=4, name=’num_dense_layers’)

dim_num_dense_nodes = Integer(low=3, high=10, name=’num_dense_nodes’)

dim_regularization = Real(low = 1e-3, high =1e-1, prior = ’log-uniform’, name = ’

↪→ regularization’)

default_parameters = [1e-10, 2, 5, 0.01] #starting values

dimensions = [dim_learning_rate,

dim_num_dense_layers,

dim_num_dense_nodes,

dim_regularization

]

"""

Initialization of mse

"""

best_mse = math.inf

def log_dir_name(learning_rate, num_dense_layers,

num_dense_nodes, regularization):
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# The dir-name for the TensorBoard log-dir.

s = "./19_logs/lr_{0:.0e}_layers_{1}_nodes_{2}_regularization_{3}/"

# Insert all the hyper-parameters in the dir-name.

log_dir = s.format(learning_rate,

num_dense_layers,

num_dense_nodes,

regularization

)

return log_dir

def create_model(learning_rate, num_dense_layers,

num_dense_nodes, regularization):

"""

Hyper-parameters:

learning_rate: Learning-rate for the optimizer.

num_dense_layers: Number of dense layers.

num_dense_nodes: Number of nodes in each dense layer.

Regularization: Regularization

"""

# Reset the network graphs for results reproducability in Keras

N = 17 #Seed number

np.random.seed(N)

random.seed(N)

#session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,

# inter_op_parallelism_threads=1)

tf.random.set_seed(N)

K.clear_session()

#sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)

#K.set_session(sess)
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model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Flatten(input_shape = [input_shape]))

tf.get_logger().setLevel(’WARNING’)

# Add fully-connected / dense layers.

# The number of layers is a hyper-parameter we want to optimize.

for i in range(num_dense_layers):

# Name of the layer. This is not really necessary

# because Keras should give them unique names.

name = ’layer_dense_{0}’.format(i+1)

# Add the dense / fully-connected layer to the model.

# This has two hyper-parameters we want to optimize:

# The number of nodes and the activation function.

model.add(Dense(num_dense_nodes,

kernel_regularizer=tf.keras.regularizers.l2(regularization), #

↪→ Should I optimize the regularization rate?

activation=tf.nn.relu,

kernel_initializer=keras.initializers.glorot_uniform(seed=16),

name=name))

# Last fully-connected

model.add(tf.keras.layers.Dense(1))

# Use the Adam method for training the network.

# We want to find the best learning-rate for the Adam method.

optimizer = tf.keras.optimizers.RMSprop(lr = learning_rate, momentum=0.9)

# In Keras we need to compile the model so it can be trained.

model.compile(optimizer=optimizer,

loss=’mse’,

metrics=[’mse’])

return model
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def add_noise(np_array):

"""

Add noise from standard distribution

"""

np.random.seed(seed_value)

error = 0.01

std = error/2

return np_array+np_array*np.random.normal(0,1,len(np_array))*std

def add_noise_dataset(x,y):

"""

Add noise to each column

"""

for feature in x.columns:

x[feature] = add_noise(x[feature])

for feature in y.columns:

y[feature] = add_noise(y[feature])

return x,y

def scale_inverse(pred, scaler):

"""

Inverse transform

"""

inverse = scaler.inverse_transform(pred)

return inverse

def hyperparameter_optimization(x_train, y_train, validation_data, path):

@use_named_args(dimensions=dimensions)

def fitness(learning_rate, num_dense_layers,

num_dense_nodes, regularization):
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"""

Hyper-parameters:

learning_rate: Learning-rate for the optimizer.

num_dense_layers: Number of dense layers.

num_dense_nodes: Number of nodes in each dense layer.

activation: Activation function for all layers.

"""

#Print the hyper-parameters.

print(’learning␣rate:␣{0:.1e}’.format(learning_rate))

print(’num_dense_layers:’, num_dense_layers)

print(’num_dense_nodes:’, num_dense_nodes)

print(’regularization:’, regularization)

print()

model = create_model(learning_rate=learning_rate,

num_dense_layers=num_dense_layers,

num_dense_nodes=num_dense_nodes,

regularization=regularization)

#weights = model.get_weights()

log_dir = log_dir_name(learning_rate, num_dense_layers,

num_dense_nodes, regularization)

callback_log = TensorBoard(

log_dir=log_dir,

histogram_freq=0,

write_graph=True,

write_grads=False,

write_images=False)
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history = model.fit(x=x_train,

y=y_train,

epochs=1,

validation_data=validation_data,

callbacks=[callback_log],

verbose = 0

)

global best_mse

mse = history.history[’mse’][-1]

print(’MSE:␣’ + str(mse))

if mse < best_mse: #update is mse decreases

model.save(path)

best_mse = mse

print(’best_mse␣update:␣’ + str(best_mse))

print()

print()

print()

print()

del model

K.clear_session()

return mse

search_result = gp_minimize(func=fitness,

dimensions=dimensions,
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acq_func=’EI’, # Expected Improvement.

n_calls=30,

x0=default_parameters,

random_state = 17

)

global best_mse #Reset initialization

best_mse = math.inf

return search_result

"""

Initialize scalers

"""

scaler_oil = StandardScaler(copy=True, with_mean=True, with_std=True)

scaler_gas = StandardScaler(copy=True, with_mean=True, with_std=True)

scaler_x = StandardScaler(copy=True, with_mean=True, with_std=True)

class Train:

"""

Class for initiailization of traning set

Fit scaler

"""

def __init__(self,df):

df = df.copy()

x = df.filter(Features_x, axis=1)

y = df.filter(Features_y, axis=1)

x, y = add_noise_dataset(x,y)

self.x = x.values
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self.y_oil = y.values[:,0]

self.y_gas = y.values[:,1]

global scaler_oil

global scaler_gas

global scaler_x

scaler_oil.fit(self.y_oil.reshape(-1, 1))

scaler_gas.fit(self.y_gas.reshape(-1, 1))

scaler_x.fit(self.x)

self.y_oil_scaled = scaler_oil.transform(self.y_oil.reshape(-1,1))

self.y_gas_scaled = scaler_gas.transform(self.y_gas.reshape(-1,1))

self.x_scaled = scaler_x.transform(self.x)

class Validation:

"""

Class for initiailization of validation set

"""

def __init__(self, df, path_model_oil, path_model_gas):

df = df.copy()

self.path_model_oil = path_model_oil

self.path_model_gas = path_model_gas

x = df.filter(Features_x, axis=1)

y = df.filter(Features_y, axis=1)

x, y = add_noise_dataset(x,y)

self.x = x.values

self.y_oil = y.values[:,0]
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self.y_gas = y.values[:,1]

self.y_oil_scaled = scaler_oil.transform(self.y_oil.reshape(-1,1))

self.y_gas_scaled = scaler_gas.transform(self.y_gas.reshape(-1,1))

self.x_scaled = scaler_x.transform(self.x)

self.validation_data_gas = (self.x_scaled, self.y_gas_scaled)

self.validation_data_oil = (self.x_scaled, self.y_oil_scaled)

self.search_result_oil = None

self.search_result_gas = None

train = Train(df_train)

well1 = Validation(df_val_well1, ’Baseline_well1_oil.h5’, ’Baseline_well1_gas.h5’)

well2 = Validation(df_val_well2, ’Baseline_well2_oil.h5’, ’Baseline_well2_gas.h5’)

input_shape = len(train.x[0])

"""

Tune four neural networks with bayesian hyperparameter optimization

"""

well1.search_result_oil = hyperparameter_optimization(x_train = train.x_scaled,

y_train = train.y_oil_scaled,

validation_data = well1.

↪→ validation_data_oil,

path = well1.path_model_oil)
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well1.search_result_gas = hyperparameter_optimization(x_train = train.x_scaled,

y_train = train.y_gas_scaled,

validation_data = well1.

↪→ validation_data_gas,

path = well1.path_model_gas)

well2.search_result_oil = hyperparameter_optimization(x_train = train.x_scaled,

y_train = train.y_oil_scaled,

validation_data = well2.

↪→ validation_data_oil,

path = well2.path_model_oil)

well2.search_result_gas = hyperparameter_optimization(x_train = train.x_scaled,

y_train = train.y_gas_scaled,

validation_data = well2.

↪→ validation_data_gas,

path = well2.path_model_gas)

class CustomCallback(keras.callbacks.Callback):

"""

Custom Callback for early stopping

Saves model if accuracy improves

"""

def __init__(self, validation_data, path):

self.x_val, self.y_val = validation_data

self.path = path
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def on_train_begin(self, logs=None):

predictions = self.model.predict(self.x_val)

self.best_mse = ((np.array(self.y_val)-np.array(predictions))**2).mean()

def on_epoch_end(self, batch,epoch, logs={}):

predictions = self.model.predict(self.x_val)

mse = ((np.array(self.y_val)-np.array(predictions))**2).mean()

if mse < self.best_mse:

self.best_mse = mse

self.model.save(self.path)

print(’epoch:␣’ + str(epoch) + ’mse␣improved:␣’ + str(self.best_mse))

"""

Initialize Custom Callbacks

"""

callback_well1_oil = CustomCallback(well1.validation_data_oil, well1.path_model_oil)

callback_well1_gas = CustomCallback(well1.validation_data_gas, well1.path_model_gas)

callback_well2_oil = CustomCallback(well2.validation_data_oil, well2.path_model_oil)

callback_well2_gas = CustomCallback(well2.validation_data_gas, well2.path_model_gas)

"""

Load saved models from Bayesian Hyperparameter tuning

"""

model_oil_well1 = load_model(well1.path_model_oil)

model_gas_well1 = load_model(well1.path_model_gas)

model_oil_well2 = load_model(well2.path_model_oil)

model_gas_well2 = load_model(well2.path_model_gas)

"""

Fit the models with early stopping

"""

model_oil_well1.fit(train.x_scaled,

train.y_oil_scaled,
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epochs=20,

verbose=0,

callbacks=[callback_well1_oil])

model_gas_well1.fit(train.x_scaled,

train.y_gas_scaled,

epochs=20,

verbose=0,

callbacks=[callback_well1_gas])

model_oil_well2.fit(train.x_scaled,

train.y_oil_scaled,

epochs=20,

verbose=1,

callbacks=[callback_well2_oil])

model_gas_well2.fit(train.x_scaled,

train.y_gas_scaled,

epochs=20,

verbose=0,

callbacks=[callback_well2_gas])

model_oil_well1 = load_model(well1.path_model_oil)

model_gas_well1 = load_model(well1.path_model_gas)

model_oil_well2 = load_model(well2.path_model_oil)

model_gas_well2 = load_model(well2.path_model_gas)

"""

Predictions

"""
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predictions_oil_well1 = model_oil_well1.predict(well1.x_scaled)

predictions_gas_well1 = model_gas_well1.predict(well1.x_scaled)

predictions_oil_well2 = model_oil_well2.predict(well2.x_scaled)

predictions_gas_well2 = model_gas_well2.predict(well2.x_scaled)

pred_oil_well1 = scale_inverse(predictions_oil_well1, scaler_oil)

pred_gas_well1 = scale_inverse(predictions_gas_well1, scaler_gas)

pred_oil_well2 = scale_inverse(predictions_oil_well2, scaler_oil)

pred_gas_well2 = scale_inverse(predictions_gas_well2, scaler_gas)

"""

Calculate mean squared error

"""

mse_oil_well1 = ((np.array(well1.y_oil)-np.array(pred_oil_well1.ravel()))**2).mean()

mse_gas_well1 = ((np.array(well1.y_gas)-np.array(pred_gas_well1.ravel()))**2).mean()

mse_oil_well2 = ((np.array(well2.y_oil)-np.array(pred_oil_well2.ravel()))**2).mean()

mse_gas_well2 = ((np.array(well2.y_gas)-np.array(pred_gas_well2.ravel()))**2).mean()

### Validation set: well 1

"""

Plot Results for validation set 1

"""

plt.subplot(2, 1, 1)

plt.plot(pred_oil_well1[:500], label = ’Predicted␣rate’, color = ’black’)

plt.plot(well1.y_oil[:500],label = ’True␣rate’, color = ’g’)

plt.legend(loc = ’upper␣right’)

plt.ylabel("Oil␣production[m3/s]", fontsize=15)

plt.title("Oil␣predictions,␣mse:␣" + "{:.4E}".format(Decimal(mse_oil_well1)), fontsize

↪→ =25)

plt.subplots_adjust(top=1.5, right=1.5)

plt.xticks(fontsize=20)

plt.yticks(fontsize=15)
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plt.subplot(2, 1, 2)

plt.plot(pred_gas_well1[:500], label = ’Predicted␣rate’, color = ’black’)

plt.plot(well1.y_gas[:500], label = ’True␣rate’, color = ’g’)

plt.legend(loc = ’upper␣right’)

plt.xlabel("Time␣[h]", fontsize = 15)

plt.ylabel("Gas␣production[m3/s]", fontsize = 15)

plt.title("Gas␣predictions,␣mse:␣" + "{:.4E}".format(Decimal(mse_gas_well1)), fontsize

↪→ = 25)

plt.tight_layout()

plt.xticks(fontsize=20)

plt.yticks(fontsize=15)

plt.subplots_adjust(top=1.5, right=2.5)

plt.savefig(’BaselineWell1.eps’, format=’eps’, bbox_inches=’tight’)

"""

Plot Results for validation set 2

"""

plt.subplot(2, 1, 1)

plt.plot(pred_oil_well2[:500], label = ’Predicted␣rate’, color = ’black’)

plt.plot(well2.y_oil[:500],label = ’True␣rate’, color = ’g’)

plt.legend(loc = ’upper␣right’)

plt.ylabel("Oil␣production[m3/s]", fontsize = 15)

plt.title("Oil␣predictions,␣mse:␣" + "{:.4E}".format(Decimal(mse_oil_well2)), fontsize

↪→ =25)

plt.xticks(fontsize=20)

plt.yticks(fontsize=15)

plt.subplot(2, 1, 2)

plt.plot(pred_gas_well2[:500], label = ’Predicted␣rate’, color = ’black’)

plt.plot(well2.y_gas[:500], label = ’True␣rate’, color = ’g’)

plt.legend(loc = ’upper␣right’)
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plt.xlabel("Time␣[h]", fontsize = 15)

plt.ylabel("Gas␣production[m3/s]", fontsize = 15)

plt.title("Gas␣predictions,␣mse:␣" + "{:.4E}".format(Decimal(mse_gas_well2)), fontsize

↪→ =25)

plt.tight_layout()

plt.xticks(fontsize=20)

plt.yticks(fontsize=15)

plt.subplots_adjust(top=1.5, right=2)

plt.savefig(’BaselineWell2.eps’, format=’eps’,bbox_inches=’tight’)

B.2 Bernoulli choke model

The code below was used to calculate the flow rates for oil and gas with Bernoulli choke model.

import pandas as pd

import pyfas as fa

import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import interp2d

import math

from scipy.interpolate import griddata

import time

class ChokeBernoulli:

def Qchoke(self, Pwhcu, Pwhcd, Twhcu, Twhcd, C_op):

Pwh = (Pwhcu+Pwhcd)/2

Twhcu = Twhcu-273.15

Twhcd = Twhcd-273.15

Twh = (Twhcu+Twhcd)/2

D = 0.189

A1 = math.pi*(D/2)**2
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rho_oil = self.rho_oil_ip(Pwh, Twh)

rho_gas = self.rho_gas_ip(Pwh, Twh)

rho_mix = (rho_oil + rho_gas)/2

x_gas = self.x_gas_ip(Pwhcd, Twhcd)

Qchokemix = C_op*A1*math.sqrt(2*(Pwhcu-Pwhcd)/(rho_mix*(1/C_op**2 - 1)))

vf_gas = 1/(1+(rho_gas/rho_oil)*(1/x_gas-1))

vf_oil = 1/(1+(rho_oil/rho_gas)*(1/(1-x_gas)-1))

QchokeGas = float(Qchokemix*vf_gas)

QchokeOil = float(Qchokemix*vf_oil)

return QchokeOil, QchokeGas

def __init__(self, PVTtable):

PVTtable.export_all()

Temperature_raw = PVTtable.data.T[’TM’].values[0]

Pressure_raw = PVTtable.data.T[’PT’].values[0]

x_gas_raw = PVTtable.data.T[’RS’].values[0]

x_gas_values = np.array(x_gas_raw).flatten()

self.x_gas_ip = interp2d(Pressure_raw, Temperature_raw, x_gas_values)

rho_oil_raw = PVTtable.data.T[’ROHL’].values[0] #Density liquid

rho_gas_raw = PVTtable.data.T[’ROG’].values[0] #Density gas

rho_oil_values = np.array(rho_oil_raw).flatten()

rho_gas_values = np.array(rho_gas_raw).flatten()

self.rho_oil_ip = interp2d(Pressure_raw, Temperature_raw, rho_oil_values)

self.rho_gas_ip = interp2d(Pressure_raw, Temperature_raw, rho_gas_values)
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B.3 Al-Safran choke model

The code below was used to calculate the flow rates for oil and gas with Al-Safran choke model.

import pandas as pd

import pyfas as fa

import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import interp2d

import math

from scipy.interpolate import griddata

from scipy.optimize import root

PVTtable = fa.Tab(’/Users/eier/Documents/Project2019/PVTGOR100IP.tab’)

df_train = pd.read_csv(’/Users/eier/Documents/Project2019/ProjectTrain2.csv’)

class AlSafran:

def properties(self, Pwhcd, Twhcd, Pwhcu, Twhcu, C_op): #[Pa], [K], [Pa], [K], [-]

#Convert from K to C

Twhcd = Twhcd - 273.15

Twhcu = Twhcu - 273.15

#Define average wellhead pressure and temperature[Pa],[C]

Pwh = (Pwhcu+Pwhcd)/2

Twh = (Twhcu+Twhcd)/2

#Average densities over choke[kg/m3]

self.rho_oil = self.rho_oil_ip(Pwh, Twh)

self.rho_gas = self.rho_gas_ip(Pwh, Twh)

#Average viscosity over choke[Pa s]
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self.viscosity_oil = self.viscosity_oil_ip(Pwh, Twh)

self.viscosity_gas = self.viscosity_gas_ip(Pwh, Twh)

#Average heat capacities

self.Cp_gas = self.Cp_gas_ip(Pwh, Twh)

self.Cp_oil = self.Cp_oil_ip(Pwh, Twh)

self.Cv_gas = self.cv_from_cp(self.Cp_gas)

#heat capacity ratio

self.k = self.Cp_gas/self.Cv_gas

#specific volume gas upstream

rho_gas_up = self.rho_gas_ip(Pwhcu, Twh)

self.specific_volume_gas = 1/rho_gas_up

#specific volume oil

self.specific_volume_oil = 1/self.rho_oil

#static mass fraction gas

self.x_gas = self.x_gas_ip(Pwh, Twh)

#used as initial guess for gas quality

self.x_gas_quality = self.x_gas

#Calculating the choke flow based pressure, temperature and choke opening

def Qchoke_it(self, Pwhcd, Twhcd, Pwhcu, Twhcu, C_op):

self.n = self.polytropic_exponent()

self.R_subcritical = self.slip_ratio_subcritical()

self.R_critical = self.slip_ratio_critical()

self.alpha = self.alpha_ratio()

self.rc = self.rcritical()
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Cd = 0.75

C = 2000*Cd**2

A1 = math.pi*(0.189/2)**2

A2 = A1*C_op

m2 = C*A2**2*Pwhcu*(self.alpha*(1-self.rc) +

self.n/(self.n-1)*(1-self.rc**((self.n-1)/self.n)))/(self.x_gas_quality*self.

↪→ spe

cific_volume_gas*(self.rc**(-1/self.n) + self.alpha)**2*(self.x_gas_quality +

1/self.R_critical*(1-self.x_gas_quality)))

m = math.sqrt(m2)

m_gas = m*self.x_gas_quality

m_oil = m*(1-self.x_gas_quality)

Q_gas = m_gas/self.rho_gas

Q_oil = m_oil/self.rho_oil

vgas = Q_gas/A2

voil = Q_oil/A2

return Q_oil, Q_gas, voil, vgas

def Qchoke(self, Pwhcd, Twhcd, Pwhcu, Twhcu, C_op):

#initialize the parameters

self.properties(Pwhcd, Twhcd, Pwhcu, Twhcu, C_op)

#initialize Qgas, Qoil, and velocities

Q_oil, Q_gas, voil, vgas = self.Qchoke_it(Pwhcd, Twhcd, Pwhcu, Twhcu, C_op)

#calculate gas quality from velocity

self.x_gas_quality = vgas*self.x_gas_quality/(vgas*self.x_gas_quality + voil
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↪→ *(1-self.x_gas_quality))

#initialize mass fraction

x_gas_prev = self.x_gas

error = math.inf

while(error > 0.00001):

Q_oil, Q_gas, voil, vgas = self.Qchoke_it(Pwhcd, Twhcd, Pwhcu, Twhcu, C_op)

self.x_gas_quality = vgas*self.x_gas/(vgas*self.x_gas + voil*(1-self.x_gas)

↪→ )

#until gas quality has converged

error = abs(self.x_gas-x_gas_prev)

x_gas_prev = self.x_gas_quality

return Q_oil,Q_gas

def slip_ratio_subcritical(self):

a0 = 1

a1 = 1

a2 = -0.83

a3 = 0

R = a0*((1-self.x_gas_quality)/self.x_gas_quality)**(a1-1)*(self.rho_oil/self.

↪→ rho_gas)**(a2+1)*(self.viscosity_oil/self.viscosity_gas)**(a3)

return R

def slip_ratio_critical(self):

R = math.sqrt(1+self.x_gas_quality*(self.rho_oil/self.rho_gas -1))*(1+0.6*math.

↪→ exp(-5*self.x_gas_quality))

return R
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def alpha_ratio(self):

alpha = self.R_critical*(1-self.x_gas_quality)*self.specific_volume_oil/(self.

↪→ x_gas_quality*self.specific_volume_gas)

return alpha

def cv_from_cp(self,Cp): #For gas

R = 8.314472 #[J/(mol*K)]

Mm = 16.042/1000 #[kg/mol] Assume we have most methane, molar mass = 16.024

R_m = R*(1/Mm) #[J/(kg*K)]

Cv = Cp - R_m

return Cv

#calculate polytropic exponent

def polytropic_exponent(self):

self.Cp_gas = self.Cp_gas/1000

self.Cp_oil = self.Cp_oil/1000

self.Cv_gas = self.Cv_gas/1000

n = (self.x_gas_quality*self.k*self.Cv_gas + (1-self.x_gas_quality)*self.Cp_oil

↪→ )/(self.x_gas_quality*self.Cv_gas + (1-self.x_gas_quality)*self.Cp_oil)

return n

#calculate critical pressure ratio

def f_r(self,x):

return ((self.alpha*(1-x) + self.n/(self.n-1))/(self.n/(self.n-1) + self.n

↪→ /2*(1+self.alpha*x**(1/self.n))**2))**(self.n/(self.n-1))-x

def rcritical(self):

sol = root(self.f_r, 0.5)

self.rc = float(sol.x)

return self.rc

def __init__(self,PVTtable):
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PVTtable.export_all()

Temperature_raw = PVTtable.data.T[’TM’].values[0]

Pressure_raw = PVTtable.data.T[’PT’].values[0]

x_gas_raw = PVTtable.data.T[’RS’].values[0]

x_gas_raw = np.array(x_gas_raw)

x_gas_values = x_gas_raw.flatten()

self.x_gas_ip = interp2d(Pressure_raw, Temperature_raw, x_gas_values)

rho_oil_raw = PVTtable.data.T[’ROHL’].values[0] #Density liquid

rho_gas_raw = PVTtable.data.T[’ROG’].values[0] #Density gas

rho_oil_values = np.array(rho_oil_raw).flatten()

rho_gas_values = np.array(rho_gas_raw).flatten()

self.rho_oil_ip = interp2d(Pressure_raw, Temperature_raw, rho_oil_values)

self.rho_gas_ip = interp2d(Pressure_raw, Temperature_raw, rho_gas_values)

viscosity_oil_raw = PVTtable.data.T[’VISHL’].values[0]

viscosity_gas_raw = PVTtable.data.T[’VISG’].values[0]

viscosity_oil_values = np.array(viscosity_oil_raw).flatten()

viscosity_gas_values = np.array(viscosity_gas_raw).flatten()

self.viscosity_oil_ip = interp2d(Pressure_raw, Temperature_raw,

↪→ viscosity_oil_values)

self.viscosity_gas_ip = interp2d(Pressure_raw, Temperature_raw,

↪→ viscosity_gas_values)

Cp_gas_raw = PVTtable.data.T[’CPG’].values[0]

Cp_oil_raw = PVTtable.data.T[’CPHL’].values[0]

Cp_gas_values = np.array(Cp_gas_raw).flatten()

Cp_oil_values = np.array(Cp_oil_raw).flatten()

self.Cp_gas_ip = interp2d(Pressure_raw, Temperature_raw, Cp_gas_values)

self.Cp_oil_ip = interp2d(Pressure_raw, Temperature_raw, Cp_oil_values)
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B.4 ”No pressure wave” tubing equation

The code below was used to calculate the flow rates for oil and gas with ”No-pressure-wave” tubing

equation.

import pandas as pd

import pyfas as fa

import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import interp2d

import math

from scipy.interpolate import griddata

from scipy.optimize import root

PVTtable = fa.Tab(’/Users/eier/Documents/Project2019/PVTGOR100IP.tab’)

PVTtable.export_all()

class QtubingNPW:

def Qtubing(self, Pbh, Tbh, Pwh, Twh, length, theta):

rho_oil_wh = self.rho_oil_ip(Pwh, Twh)

rho_gas_wh = self.rho_gas_ip(Pwh, Twh)

rho_oil_bh = self.rho_oil_ip(Pbh, Tbh)

rho_gas_bh = self.rho_gas_ip(Pbh, Tbh)

rho_mix_wh = (rho_oil_wh + rho_gas_wh)/2

rho_mix_bh = (rho_oil_bh + rho_gas_bh)/2

self.rho_mix = (rho_mix_wh + rho_mix_bh)/2
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viscosity_oil_wh = self.viscosity_oil_ip(Pwh, Twh)

viscosity_gas_wh = self.viscosity_gas_ip(Pwh, Twh)

viscosity_oil_bh = self.viscosity_oil_ip(Pbh, Tbh)

viscosity_gas_bh = self.viscosity_gas_ip(Pbh, Tbh)

viscosity_mix_wh = (viscosity_oil_wh + viscosity_gas_wh)/2

viscosity_mix_bh = (viscosity_oil_bh + viscosity_gas_bh)/2

self.viscosity_mix = (viscosity_mix_wh + viscosity_mix_bh)/2

self.D = 0.189

self.A = math.pi*(self.D/2)**2

self.length = length

self.H = math.cos(theta*math.pi/180)*length

Q_guess = 1

self.Q_curr = Q_guess

f = self.friction_factor()

error = math.inf

while (error > 0.00001):

Q = self.Q_calc(Pbh, Twh)

error = abs(Q-self.Q_curr)

self.Q_curr = Q

f = self.friction_factor()

return Q

def ff(self,f):

Re = self.rho_mix*self.Q_curr*self.D/(self.viscosity_mix*self.A)

roughness = 0.045
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return (1/math.sqrt(f) + 2*math.log10(roughness/(3.7*self.D) + 2.51/(Re*math.

↪→ sqrt(f))))

def friction_factor(self):

sol_f = root(self.ff, 0.1)

self.f = float(sol_f.x)

return self.f

def Q_calc(self, Pbh, Pwh):

g = 9.81

Qtm = math.sqrt((Pbh - Pwh - self.rho_mix*g*self.H)*math.pi**2*self.D**5/(8*

↪→ self.f*self.length*self.rho_mix))

return Qtm

def __init__(self, PVTtable):

PVTtable.export_all()

Temperature_raw = PVTtable.data.T[’TM’].values[0]

Pressure_raw = PVTtable.data.T[’PT’].values[0]

x_gas_raw = PVTtable.data.T[’RS’].values[0]

x_gas_raw = np.array(x_gas_raw)

x_gas_values = x_gas_raw.flatten()

self.x_gas_ip = interp2d(Pressure_raw, Temperature_raw, x_gas_values)

rho_oil_raw = PVTtable.data.T[’ROHL’].values[0] #Density liquid

rho_gas_raw = PVTtable.data.T[’ROG’].values[0] #Density gas

rho_oil_values = np.array(rho_oil_raw).flatten()

rho_gas_values = np.array(rho_gas_raw).flatten()

self.rho_oil_ip = interp2d(Pressure_raw, Temperature_raw, rho_oil_values)

self.rho_gas_ip = interp2d(Pressure_raw, Temperature_raw, rho_gas_values)
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viscosity_oil_raw = PVTtable.data.T[’VISHL’].values[0]

viscosity_gas_raw = PVTtable.data.T[’VISG’].values[0]

viscosity_oil_values = np.array(viscosity_oil_raw).flatten()

viscosity_gas_values = np.array(viscosity_gas_raw).flatten()

self.viscosity_oil_ip = interp2d(Pressure_raw, Temperature_raw,

↪→ viscosity_oil_values)

self.viscosity_gas_ip = interp2d(Pressure_raw, Temperature_raw,

↪→ viscosity_gas_values)
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