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Chapter 1. Introduction 

The share of energy being generated from renewable sources are on the rise, with forecasts 

estimating  an expansion by another 50% between 2019 and 2024 as per the International Energy 

Agency [1]. Integration of an increasing propotion of renewables pose challenges to the grid 

operators due to their intermittent nature and uncertanity of production profiles. This issue is 

well illustrated using the California Independent System Operator (CAISO) Duck Chart shown 

in Figure 1-1, which shows the potential of photovoltaics to provide more energy than can be 

used by the system [2]. This tearmed as overgeneration risk, which occurs when conventional 

dispatchable resources cannot be backed down further to accommodate the supply of Variable 

Generation (VG).  

 

Figure 1-1: The California Duck Chart [2] 
 

A relatively simple solution to the Over Generation risk is Curtailment, where the system 

operator would decrease the output from some of these VG’ sources to below what it would 

normally produce. Wile curtailment is a relatively simple technical solution, it has the obvious 

undesirable effect of reducing the environmental and economial benefits offered by these 

renewable sources of energy. To enable greater integration of renewables into the energy mix, 

the electricity grid system needs additional flexibility, which can be achieved through various 

mechanisms like – Changes in operational practices, Institutional changes, Improved forecasting 

for renewable energy production and Storage among many others [3].  
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We focus our attention to energy storage as an enabler in the integration problem. There are 

many different kinds of energy storage, each with their pros and cons with no single technology 

emerging as a clear winner as to be universally applicable. A comprehensive review of the 

various technologies suitable for grid level energy storage can be found in [4].  

Central Themes 

Any energy storage system would operate in a dynamic fashion, charging up during periods of 

excess supply and discharging in periods of excess demand. Due to the dynamic nature of the 

process along with the uncertanities of future demand and supply profiles, problems related to 

the Optimal Capacity requirement for storage and of ensuring optimal operation are of immense 

interest.  

Motivated by these, we try and explore these in the following two main parts in this report 

 Part 1 – deals with the Operation Problem which explores the question – for a given 

dynamic process, what is the optimal control actions that can minimize some specified 

Operational objectives. 

 Part 2 – deals with the Design Problem which explores the question – given some 

information about uncertanities in the future, what is the Optimal Design decision we can 

take to minimize some specified Design objective.  

 

We explore these questions here in the context of a Thermal Energy Storage (TES) System, but 

wish to highlight that the concepts discussed or the approach followed is applicable to process 

sytems in general and is agnostic in terms of applicability to different energy storage 

technologies.    
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Chapter 2. Modelling Two Tank Thermal Energy Storage System 

We start by building a simple two tank TES system to explore the optimal operation of such an 

energy storage system when presented with a varying supply and demand profiles due to specific 

cooling and heating requirements of some process plants in a industrial cluster.   

2.1. Topology 

The two tank TES system stores energy as sensible heat of a TES fluid. In the topology presented 

in Figure 2-1, the supplier is a source of time varying thermal energy represented by the stream 

wth flow qSup. The supplier provides the stream at a temperature TSup_s and requires the stream 

returned at temperature TSup_r. The supplier stream can be cooled by transferring heat to the TES 

through heat exchanger Hex_Sup and can be further cooled by a cooling water system by duty 

QDump. Similarly, the Consumer side has a time varying thermal energy need represented by the 

stream with flow qCon. This stream is provided at temperature TCon_s and needs to be returned at 

temperature TCon_r. The consumer stream is heated by the TES system through heat exchanger 

Hex_Con and can be further heated by an electric heater by duty QPeak.  

To simplify our analysis, the supply and return temperatures of the supplier and consumer are 

assumed constant and the duty variations are represented by variations in flow qSup and qCon. This 

simplifying assumption is realistic for the case of suppliers and consumers are industrial plants 

with Temperature specifications for their process streams, but can be relaxed in future work to 

better represent the integration of a TES system as a means of energy storage in other energy 

markets.  

TSup_s 100 Deg C 

TSup_r 40 Deg C 

TCon_s 10 Deg C 

TCon_r 70 Deg C 

Table 2-1: Constant Temperatures assumed in the model 

TES system is charged by heating the TES stream with flow qc through Hex_Sup and storing the 

hot TES fluid in tank TES_Hot. All tanks are considered to be well mixed and the temperature in 

the hot tank is Th. There is loss of heat to ambient from the hot tank at the rate of QLoss_H which is 

assumed propotional to the temperature in the tank. TES system discharges energy by releasing 

energy from stream qh through Hex_Con and storing the cold TES fluid in tank TES_Cold. 
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Figure 2-1: Schematic of the Two Tank TES System 

 

In the model, QDump is used when the supplier stream is not cooled to the return specification by 

the TES, which happens if there is not sufficient driving force across the heat exchanger. 

Similarly, QPeak is used when consumer stream is not not heated to retun specification by the 

TES. The usage of QPeak and QDump has cost of CDump and CPeak associated with them to represent 

costs associated with using external utilities in the case of an industrial cluster.    

2.2. Model Equations 

To model the TES system in Figure 2-1, we need to model the heat exchangers Hex_Sup and 

Hex_Con. The duty transferred for an ideal conter current heat exchanger is given as 

LMTDQ UA T  . The Log Mean Temperature Difference (LMTD) causes issues in iterative 

equation solving schemes due to the indeterminate form of the logatithmic function and 

undefined derivatives at intermediate solver values [5]. Various approximations of LMTD are 

used in practice during design as described by Paterson [5], Underwood [6] or Chen [7].  

A widely accepted approach to model the dynamic behaviour of heat exchangers is to use cell 

based dynamic models where a simple heat exchange cell is defined as two perfectly stirred 

tanks, exchanging heat only with each other through a dividing wall [8]. A review of the 

important model features for the dynamics of heat exchangers by  Mathisen can be found in [9]. 

We approximate the heat exchangers as a series of thermally coupled Continously Stirred Tanks 

(details of discretization and identitfiers for new states in Appendix A1.a), with the heat 

Supplier Consumer

QLoss_H

QPeak

Tc

Th

TSup_r

TSup_s

qSup

qc

qh

Tc_e

Hex-Sup Hex-Con

TES_Cold

TES_Hot

Vc

Vh

QDump TCon_s

qCon

TCon_rTCon_e

Th_eTSup_e
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exchangers modelled as n cells in series (nCell = 3). We write the mass and energy balance for 

the Two Tank TES system in Appendix A1, where the relevant assumptions considered are also 

described during modelling. We get the set of Ordinary Differential Equations (2.8) to (2.8) 

below in consistent units.      

 

Energy Balance across the Heat Exchangers Hex_Sup and Hex_Con, we get,  

   

   

up_ (1) up

up_ up_ (1) up_ (1) _ (3)

up _

up_ (2) up

up_ (1) up_ (2) up_ (2) _ (2)

up _

up_ (3) up

up_ (2) u

S e S Cell Cell
S s S e S e c e

Cell S Cell P Sup

S e S Cell Cell
S e S e S e c e

Cell S CSTR P Sup

S e S

S e S

Cell

dT q h A
T T T T

dt V V C

dT q h A
T T T T

dt V V C

dT q
T T

dt V





   

   

    p_ (3) up_ (3) _ (1)

up _

Cell Cell
e S e c e

S Cell P Sup

h A
T T

V C
 

 
 

(2.1) 

   

   

 

_ (1)

_ (1) sup_ (3) _ (1)

_

_ (2)

_ (1) _ (2) sup_ (2) _ (2)

_

_ (3)

_ (2) _ (3) sup_

_

c e c Cell Cell
c c e e c e

Cell c Cell P c

c e c Cell Cell
c e c e e c e

Cell c Cell P c

c e c Cell Cell
c e c e e

Cell c Cell P c

dT q h A
T T T T

dt V V C

dT q h A
T T T T

dt V V C

dT q h A
T T T

dt V V C







   

   

    (1) _ (3)c eT

 
 

(2.2) 

   

   

 

_ (1)

_ (1) _ (1) _ (3)

_

_ (2)

_ (1) _ (2) _ (2) _ (2)

_

_ (3)
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_
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Cell h Cell P h

h e h Cell Cell
h e h e h e Con e

Cell h Cell P h
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h e h e h e

Cell h Cell P h

dT q h A
T T T T

dt V V C

dT q h A
T T T T

dt V V C

dT q h A
T T T

dt V V C







   

   

    ) _ (1)Con eT

 
 

(2.3) 

   
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_ (1)

_ _ (1) _ (3) _ (1)

_

_ (2)

_ (1) _ (2) _ (2) _ (2)

_

_ (3)

_ (2)

Con e Con Cell Cell
Con s Con e h e Con e

Cell Con Cell P Con

Con e Con Cell Cell
Con e Con e h e Con e

Cell Con Cell P Con

Con e Con
Con e Co

Cell

dT q h A
T T T T

dt V V C

dT q h A
T T T T

dt V V C

dT q
T T

dt V





   

   

    _ (3) _ (1) _ (3)

_

Cell Cell
n e h e Con e

Con Cell P Con

h A
T T

V C
 

 (2.4) 
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The mass and energy balance in the tanks, we get, 

  _
c h

h e c

c

dT q
T T

dt V
    (2.5) 

 
 _ n _ tan

_

_

hot ta k hot k h ambh c
c e h

h h TES p TES

U A T TdT q
T T

dt V V C


     (2.6) 

c
h c

dV
q q

dt
   (2.7) 

h
c h

dV
q q

dt
   (2.8) 

 

Similarly, for the Supplier and Consumer Temperature constraints that need to be satisfied, we 

get the constraints, 

up _ _ _ _ DumpS Sup p Sup Sup r Sup Sup p Sup Sup eq C T q C T Q  
 

 
(2.9) 

_ _ _ _DumpCon Con p Con Con e Con Con p Con Con rq C T Q q C T    (2.10) 

 

In the model, we have the 16 state variables 

up_ (1/2/3) _ (1/2/3) _ (1/2/3) _ (1/2/3)

T

S e c h c e h e Con e c hx T T T T T T V V     (2.11) 

 

the 4 input variables  

T

Dump Peak c hu Q Q q q     (2.12) 

 

And the 2 time varying parameters, which are givens to the system 

T

Sup Conp q q     (2.13) 

 

Other fixed parameters used in the model are given in Appendix A1.c.  

2.3. Model Analysis 

We check the model developed in the section above for any errors, by simulating it with some 

simple input profiles. The TES is assumed to be at steady state for the first value of Supply and 

demand flows at the beginning of the simulation. The total inventory is chosen such that it could 
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be accomodated in a single tank. Since the levels in the tank do not have any steady state effect, 

the initial inventory in the hot tank is taken as 150 m3 with the remaining inventory in the cold 

tank so that TES always starts at the same initial charge to enable a fair comparison between 

different cases. In this chapter, we assume there is no heat loss from the hot tank to first build an 

intutive understanding of the system before introducing further complexities.    

Steady State 

A TES system operates in a cyclic mode, but here we simulate the model with steady state values 

to check for any errors during model development. We provide steady state inputs  

 0 503.87 503.87 60 60
T

u   (2.14) 

 

corresponding to variables in the order presented in equation (2.12) and observe the model 

response for 48 hours with a dt of 1 hour. Inputs qc and qh are held constant at 60 m3/hr as shown 

in Figure 2-2. 

 

Figure 2-2 : Steady State Input Profile– qc and qh 

 

We observe the response of Vc and Vh in Figure 2-3, which do not vary from the initial state.  
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Figure 2-3 : Steady State response –Vc and Vh 

 

Response in temperatures are also in Figure 2-4, which also as can be seen to not deviate from 

the initial state.  

  

  

Figure 2-4 : Steady State response – Temperatures 

For ease of understanding, we have followed the convention of plotting the relatively hot stream 

properties in red while the relatively cold stream properties are plotted in blue. For example –  

While plotting tank volumes, the relatively hot stream property Vh  is in red and the relatively 

cold stream property Vc is in blue. Similarly, while plotting temperatures around heat 
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exchangers, the relatively hot stream properties - TSup_s, TSup_r, Th and Tc_e  are in in red while the 

relatively cold stream properties – TCon_s, TCon_e, Tc and Th_e  are in blue. 

Open Loop Step Tests 

We make a step change in qc as in Figure 2-5 to observe the response in all the states.  

 

Figure 2-5 : Input profile - Step change in qc 

 

 

Figure 2-6 : Step response –Vc and Vh 
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As expected, we see the integrating response in tank volumes in Figure 2-6. Since we have 

increased the cold side flow of Hex_Sup, we see a first order response in hot side temperature 

TSup_e. Since there is more cold flow, Tc_e reduces, which leads to drop in hot tank temperature 

Th. Although the flow of hot side in Hex_Con has not changed, due to the drop in temperature Th 

of the hot side, we see a drop in the cold side exit temperature TCon_e and also hot side exit 

temperature Th_e. The temperature response to the step change in qc is shown in Figure 2-7.  

  

Figure 2-7 : Step response – Temperatures 

2.4. The need for Optimization 

The operation of the TES system is cyclic in nature - Charging during periods of excess thermal 

energy supply and Discharging during periods of insufficient supply. We consider a simple 

diurnal system which charges during the day and discharges during night. A comprehensive 

review of various types of TES systems and their operations can be found in [10].  

Our objective is to satisfy the supplyier and consumer temperature requirements with minimum 

reliance on QDump and QPeak while being within flow and volume constraints in the TES. The 

primary operations decisions at any time t are the flows qc(t) and qh(t), with QDump(t) and QPeak(t) 

used to achieve further cooling/ heating of the supplier/ consumer streams not achieved by the 

TES. These decisions are not very intutive due to the complex coupled nature of how the primary 

decision variables have an impact on all the states as demonstrated in Section 2.3.  

As an example, suppose we choose a low qc, we will have a high exit temperature Tc_e 

(Approaches TSup_s when qc tends to zero), but we will end up using larger QPeak since we are not 

transferring much heat to the TES. On the other extreme, if we try to drive QPeak to zero, we risk 
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having large qc which would risk filling the hot tank at low temperature. A similar argument can 

be made for the decision of qh on the consumer side.  

Furthermore, since we consider heat loss from the hot tank, completely filling the hot tank early 

in the day has the adverse effect of larger heat loss for longer and ending up with a low 

temperature Th during the night as compared to if we had decided to charge the TES towards the 

later part of the day.  

Since we wish to deal with a wide variety of Supplier and Consumer profiles, we will have 

different and switching active constraints. Hence we formulate an optimization problem to 

ensure optimality in operation under all possible cases. Furthermore, the optimization problem 

lets us expand us to include variations in the cost of QDump and QPeak and more importantly to 

deal with uncertanities in the future Supplier and Consumer Profiles through robust and 

stochastic formulations [11] of the optimization problem.     
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Chapter 3. Open Loop Optimization 

In the previous chapter, we built a dynamic model for the two tank TES system and put forward 

the need for a dynamic Optimal Control Problem (OCP). The general form of an OCP is,  

          
0

( ), ( )min ( ( ), ( ))d  
ft

t t
t

t t tx u x u  (3.1.a) 

.s t   
.

( ) ( ( ), ( ), ( ))t t t tx F x u p  (3.1.b) 

 ( ( ), ( ), ( )) 0t t t g x u p  (3.1.c) 

  0 tt x x  (3.1.d) 

 , x u  (3.1.e) 

 

where ( ) xnx t  are the states, ( ) unu t   is the control inputs and ( ) pn
p t   is the model 

parameters and disturbances. ODE of the process model is F : xn  × un × pn
 to  xn . 

To solve this as a standard optimization problem, we discretize it as a finite dimensional 

Nonlinear Programming Problem (NLP) divided as N equally spaced sampling intervals. The 

discretization can be performed using various approaches like single shooting, Multiple shooting 

or Direct Collocation which is better described in Chapters 9 and 10 of Biegler [12]. Then we get 

the OCP as a standard NLP of the form,  

  
1

,
0

min ,
k k

N

k k
k




x u x u    (3.2.a) 

.s t   1 , ,k k k k x f x u p   k   (3.2.b) 

  , , 0k k k g x u p   k   (3.2.c) 

 
0 tx x    (3.2.d) 

 ,k k x u   k   (3.2.e) 

 

where the discretized process model is f : xn
 × un

× pn
 to  xn

. 

3.1. TES Optimal Control Problem 

The objective function of the OCP for the two tank TES system can be defined as the total OPEX 

during the control horizon which needs to be minimizes. Mathematically, this can be shown as  

 
1

,
0

( ) ( ) ( ) ( )min
k k dump Dump peak Peak

N

k

k Q k c k Q kc




x u  (3.3) 
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Where cdump(k) and cpeak(k) are the costs for using QDump and QPeak respectively, which could 

vary with time (We consider them constant here to keep the discussion simple). 

We use multiple shooting approach to discretize the problem here since the model equations are 

fairly nonlinear in the state variables, and would be poorly conditioned to be effectively solved 

using a sequential strategy like Single shooting. We solve the OCP in MATLAB using the 

CasADi symbolic framework [13], which makes our code implementation simple and liks well 

into available Nonlinear solvers like IPOPT [14]. The Matlab source code for the implemetation 

of the OCP can be found in Appendix A3.c. We discuss the solution of the OCP with an 

illustrative case below.  

3.2. Optimal Control Problem : Illustrative Case 

Let us consider a simple profile for heat supply and demad (represented as flows of supplier and 

consumer flows under constant battery limit temperatures in our case) as shown in Figure 3-1 for 

2 days. We can see that there is excess supply during the first 24 hours which equals the shortfall 

in supply during the last 24 hours. We expect the TES to charge during day 1 and discharge 

completely during day 2, but are unsure of the optimal profile of qc and qh to achieve this.  

 

Figure 3-1 : Illustrative case - Supply/ Demand profile 
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Assuming the TES to be initially at the optimal steady state corresponding to the first value of 

Supply and demand flows with the inventory in the hot tank at 150 m3, we solve the OCP and 

get the profile for qc and qh as shown in Figure 3-2.   

 

Figure 3-2 : Illustrative case – OCP Solution - imput profile 

 

We can see from Figure 3-3 that the TES is charging up during the first day (represented by the 

build up of volume in the hot tank) and discharging completely during the second day.  

 

Figure 3-3 : Illustrative case – TES tank volume profile 
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Even though total supply and demand for thermal energy is equal, we can see that we still rely on 

both external cooling and heating utilities as seen in Figure 3-4. This is due to the parameters of 

the TES which are already decided during design (TES Tank Volume and Heat Exchanger Area 

in our case) and the nonlinear impact these have on the TES system to store and transfer energy.  

 

Figure 3-4 : Illustrative case - External utilties usage profile 

 

The importance of Energy Quality for TES  

With a fixed area for the heat exchangers, if we try to reduce QDump by flowing higher qc, we 

would need a higher capacity of for the hot tank to store this volume. Even if we had a large 

enough tank to accommodate this extra flow of qc to drive QDump to zero, the exit temperature of 

the TES Fluid from Hex_Sup (Tc_e) would be lower than earlier. This would result in a colder 

storage temperature Th in the hot tank. A lower Th reduces the ability of the TES to transfer 

energy to the consumer stream across Hex_Con, which would result in a larger dependence on 

QPeak to ensure the required return temperature for the consumer is met. This issue clearly 

demonstrates the importance of the quality of energy stored (Temperature of TES fluid in hot 

tank) along with the quantity of energy stored (total amount of Duty stored) in the TES. The 

quality of energy stored is improved with a larger heat exchanger area (with Tc_e reaching TSup_s 

when area approaches infinity) and the maximum quantity with the capacity of the tank.  
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It is impractical to assume an infinite area for the heat exchanger or capacity for the tanks, and 

we will discuss how these design parameters could be optimally chosen in Part 2 of the report – 

The Design Problem.    

3.3. Optimal Control Problem : Realistic Case 

We have seen how even for a simple Supply/ Demand profile as considered in the previous 

section, the choice of the optimal control profiles are not simple. We now demonstrate the 

solution of the OCP for a more realistic profile.  

We started our discussion with the motivation of integrating renewable sources of energy into the 

electricity grid and the concept of the California Duck chart. So letus consider the profiles for 

renewables and the total load from the duck curve to represent QSupply and QDemand profiles in our 

thermal case. We scale the original data points and shift the QSupply profile up to match the total 

daily demand as shown in Figure 3-5.  We could consider this case similar to the Concentrated 

Solar Thermal Plant integrated with TES system as presented by Kody Powell in [15].  

 

Figure 3-5 : Realistic case – Supply/ Demand profile 

 

We observe a similar pattern of charging and discharging cycles in the solution of the OCP in 

Figure 3-6and Figure 3-7.  
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Figure 3-6 : Realistic case – OCP Solution - imput profile 

 

 

Figure 3-7 : Realistic case – TES tank volume profile 

 

Similarly, we see from Figure 3-8 that the entire available duty from the supplier cannot be 

transferred and there is still dependence on external cooling and heating utilities as described in 

the earlier case. 
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Figure 3-8 : Realistic case - External utilties usage profile 

3.4. Discussion and Further Improvements 

In Part 1of this work, we have tried to address the Operations problem for a TES system with a 

nonlinear model and by solving an Optimal Control Problem to arrive at an optimal input 

trajectory. We could extend this work further to better allign ourselves with the goal of 

integrating intermittent renewable sources of energy into the electricity grid by,   

Optimal Control Under Uncertanities 

Currently we have solved the control problem assuming perfect information of the future supply 

and demand profiles. These forecasts of future profiles are never known with certanity and even 

more important when we deal with renewables which are even more dependant on future weather 

conditions. Hence we could include implement the solution in a closed loop fashion with a 

Robust or Stochastic formulation of the MPC (depending on our tolerance to any constraint 

violations). Our problem is well suited for a Multistage Scenario based formulation, which is 

considered to be a more promising alternative for dynamic optimization under uncertanity [11].  

Linking TES to Electricity Markets    

Our current formulation is tailored to a case of thermally integrating process plants in an 

industrial cluster with TES as an intermediary. External utilities are imported to satisfy the 

demands and the objective was to minimize total cost of imported utilities. We could extend this 

system to link the TES to the electricity markets and participate in arbitrage based on uncertanity 

information of future demand and supply. 
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Chapter 4. Optmal Design Problem 

In the previous section, we saw the case of optimal operation without any uncertanities present. 

The Volume of the TES Tanks (Vh_max and Vc_max) and the area of the heat exchangers 

transferring heat to/ from the TES were fixed and assumed to be given. These parameters are 

chosen during the design of the plant and affect the operation of the TES plant. In this section, 

we focus on how these parameters are chosen by the designers. We first start with a simplified 

case of optimal design without any uncertanity and will extend the problem to handle 

uncertainities in the next chapter.  

A simple objective function for the designer can be described to minimize the total cost during 

the lifetime of the plan for a fixed production profile. The costs manly can be split as initial 

Capital costs (CCAPEX) and total Lifetime Operating costs (COPEX) which represents the total 

operating cost for the lifetime of the plant.  Armed with a basic operating profile of the plant for 

the design life, the objective for the optimal design problem can be thus stated as   

 

opex 
min

capex CAPEX OPEXx x C C  (4.1) 

 

Where the xcapex represents variables chosen by the designer (in our example - the volume of the 

tank and exchanger area) and xopex represents all the variables chosen for optimal operation (in 

our example - the TES flows and import of external utilities). Typically, the design life of 

chemical plants can be 20 years or more. These are highly simplifying assumptions and actual 

costing and project evaluation will account for inflation and other discounting factors to 

represent the net present value of costs, which we have ignored for simplicity.   

We would be tempted to use the operations model developed in the previous section and 

including the design parameters also as variables while including the capital costs term into the 

objective of the OCP. Since the design problem is simulated for the entire design life of the 

plant, solving the nonlinear optimal control problem directly becomes somputationaly 

intractable. 

We explore the option of developing a simplified linear Design model which can be effectively 

solved for the entire design life in this report.  
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4.1. Design Model 

We formulate a simplified model based on duties for the TES system as shown in Figure 4-1.  

 

Figure 4-1: Design Model 

 

Similar to the earlier case, we have the Supplier, which has the need to remove a given duty 

QSupply which is achieved by transferring to the TES (Qtes_in) or rejected using a cold utility 

(QDump). The consumer has a given duty demand (QDemand) which can be satisfied by energy from 

the TES (Qtes_out) or by an eternal hot utility (QPeak). The charge of the TES is represented as Etes 

which must be below the maximum capacity of the TES denoted as CAPtes. The rate of heat 

transferred to/ from the TES is limited by the maximum power of the TES, denoted as POWtes.  

The design parameters of interest in the actual TES plant (Volume of the TES tank and the Area 

of the heat exchangers) are representated using CAPtes and POWtes in the simplified linear model. 

The relationship between the design parameters for the actual TES and the simplified design 

model is described in more detail below. 

Linking CAPtes and Tank Volume (Vtes_max) 

The maximum energy stored in the TES system depends on the total enthalpy change of the TES 

fluid between full charged and fully discharged states. From the two tank TES model, we can see 

this equals _testes tes tes PCAP V C T   where T   is the operating temperature window. 

Considering T  to be 20 Deg C and property values for water, we get the relationship between 

the Volume and the Capacity of TES in the design model as,  

 

( 3) ( )43.06m MWh

tes tesV CAP  (4.2) 

 

QSupply
ETES

Qtes,in Qtes,out QDemand

QDump

QPeak

ConsumerSupplier

QLoss
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Linking POWtes and Area of Exchangers 

The maximum power rating POWtes corresponds to the maximum duty transferred across the 

heat exchanger to/ from the TES given by 
Hex LMTDQ UA T  . The ability of the heat exchanger to 

transfer energy thus depends on the 
LMTDT  which depends on the Temperatures of the hot and 

cold streams around the heat exchanger. These temperatures in turn depend on the flowrate of the 

hot and cold side streams in the heat exchanger as shown in Chapter 2. Hence, we cannot find a 

direct relationship between the heat exchanger area without accounting for the flowrates which 

are not considering in the design model. We can instead find an upper estimate of area required, 

which occurs when the driving force is at its minimum. It is standard engineering practice to take 

the lowest approach temperature in an exchanger to be between 10-15 Degrees during design. 

We consider the lowest approach temperature here as 15 Degrees, and the lowest LMTD then 

(occurs when the hot and cold Temperature profiles are parallel to each other) is 15 Degree C. 

Substituting properties for water, we can then find the relationship between Area of the 

exchanger and Power of TES in the design model as,  

( 2) ( )60.24m MW

Hex tesA POW  (4.3) 

 

We can read this equation as, the maximum energy that an exchanger of area 60.24 m
2
 can 

transfer is 1 MW. During operations however, higher driving forces are available by increasing 

the TES flow and the exchanger would be able to deliver more than this limit. We take the highly 

conservative approach of assuming this limit as the maximum power constraint for the TES in 

the design problem formulation. In the operations case such a limit would translates to artifically 

restricting flow of qc/ qh to limit the transfer  of energy to/ from the TES less than POWtes.   

This is a a highly conservative approach for operations which is being considered during design 

and the resultant area of exchanger arrived at from design would be much higher than needed for 

optimal operation. 

Estimating Capital Cost (CCAPEX) and Operating cost (COPEX) 

The operating cost is assumed similar to the operations problem with a linear cost model on 

usage of external utilities with costs cpeak(t) and cdump(t). But since we define COPEX as the 

operating cost for the entire lifetime of the plant, we have 
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0

( ) ( )
N

OPEX peak Peak dump Dump

t

C c Q t c Q t


   (4.4) 

 

which is summed over the design life of the plant, typically in years.  

We linearize the total purchased equipment cost curves as provided by Sinnott and Towler in 

[16], so that our problem can retain the linear form, and hence we can make use of efficient LP 

solvers for solving the large problem being formulated.  Following the factorial method for 

converting the total purchased cost to total capital cost for the tank and heat exchanger, we get 

the total investment as,  

   2017)_( 82767 12875 11184 35490USD

CAPEX tes tesC CAP POW     (4.5) 

 

The exact details of the purchased equipment cost curves and the factorial method for capital 

cost estimation used in this case are provided in Appendix A2.a.  

4.2. Optimal Design without Uncertainity 

We start the optimal design problem under the simple case where the future profile is perfectly 

known. Then the optimal design problem can be written down as,  

 
opex 

min
capex CAPEX OPEXx x C C  (4.6.a) 

s.t.   tes 0CAP    (4.6.b) 

 tes 0POW    (4.6.c) 

 tes tes tes loss( ) ( ) ( ) ( )oin utE t Q t Q t Q t     (4.6.d) 

 Peak Peak,max0 ( )Q t Q    (4.6.e) 

 ,max0 ( )Dump DumpQ t Q   (4.6.f) 

 tes0 ( )in

tesQ t POW    (4.6.g) 

 tes tes0 ( )outQ t POW    (4.6.h) 

 tes tes0 ( )E t CAP    (4.6.i) 

 

Where COPEX and CCAPEX are defined as in Equations (4.4) and (4.5). Variables are defined as,  

 CAPEX tes tesx CAP POW
 

 (4.6.j) 

( ) ( ) ( ) ( )opex Dump Peak tesx t Q t Q t E t     1....t N  (4.6.k) 
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And the constraints represent the rate of change of energy stored in the TES from the energy 

balance from Figure 4-1 and corresponding limits on maximum Capacity and Power of the TES.  

Illustrative Case 

We define an illustrative example where the profile given for the 1 day as shown in Figure 4-2 is 

repeated for the design life of 20 years for the plant. The daily profile for QSupply is higher than 

the QDemand in first half of the day and lower in the next. The total Supply and Demand energy is 

chosen as equal for simplifying the discussion in this case. The reader is encouraged to take note 

that the duties chosen here are similar to the illustrative case for the operations problem in 

section 3.2 to enable a consistent comparison between Operations and Design cases.  

With the current coefficients chosen, we see that the optimal design is for a TES system with 

CAPtes = 6 MWh and POWtes = 2 MW, as it is cheaper to have the initial capital investment 

rather than an increased operating cost for the design life of 20 years. Figure 4-3 shows the daily 

operation profile where excess energy is charged into the TES and discharged when the demand 

is higher. The optimal power rating is matched with the maximum supply rate as to drive the use 

of QDump to zero.  

 

Figure 4-2 : Illustrative Design - Daily Profile (QSupply, QDemand) 
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Figure 4-3 : Illustrative Design - TES Daily Operation 
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Chapter 5. Optimal Design Under Uncertainities 

In this chapter we now expand the deterministic case from the previous chapter to handle 

uncertanities in the future profiles of QSupply and QDemand.  

5.1. Two Stage Linear Stochastic Program with Recourse 

We assume that information of future uncertanity is known and can be represented using a finite 

set of discrete scenarios. We do not explore the issues of scenario generation in this work, but 

assume that a finite set of scenarios S is provided, each with probability pj where 1j

j S

p


 . 

During actual operation of the plant a particular scenario would be  realized, where we can take 

the operating variables in the linear design model as the recourse action for that scenario. This 

assumption is valid since during actual operations, we expect the corresponding input variables 

in the operations model (qc, qh and resultind QDump and QPeak) to be manipulated by a closed loop 

implementation of the Optimal Control Problem we developed in Part 1 of this report (NMPC)  

to minimize the COPEX, if we do not expect uncertanity in the OCP horizon. In this case, our 

optimal design problem can be described as a two stage linear stochastic program with recourse. 

A classical two stage linear stochastic program with recourse is defined as 

 
1

min ( )
S

SP

s s
x

s

z c x p Q x


 
 

(5.1.a) 

s.t.  Ax b  (5.1.b) 

 
1nx 
 (5.1.c) 

where for s = 1, . . . , S 

 
 def 

( ) min
s

s s s
y

Q x q y

  

 (5.1.d) 

s.t.  s s s sW y h T x 
  

(5.1.e) 

 
2n

sy 
  

(5.1.f) 

 

Here the vector x represents the first stage decision variable which are decisions that need to be 

taken without full information of some random variable. In our case, it represents the design 

decisions of CAPtes and POWtes we need to take without full information of which scenario is 

going to be realized during operation of the plant. In the second stage, for a given realization s, 
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the second stage problem data qs, Ws, hs and Ts becomes known. In our case, the problem is of 

fixed recourse form since Ws is the constant for all scenarios. The second stage variables ys are 

chosen such that the second stage objective function (5.1.d) is minimized subject to the second 

stage constraints (5.1.e) and (5.1.f). We wish to highlight the fact that there is only a single value 

for the first stage variable x, but each scenario has it’s corresponding second stage recourse 

variable ys. The reader is directed to Chapters 1 and 3 in [17] for a more extensive discussion of 

the Two stage linear Stochastic Programs.  

5.2. TES Design Problem under uncertainity 

We can write our optimal design problem in the two stage linear stochastic program with fixed 

recourse as,  

 
opex ,

1

min
capexx x OPEX s

S

CAP X

s

E sC Cp


   (5.2.a) 

s.t.   tes 0CAP     (5.2.b) 

 tes 0POW     (5.2.c) 

 
in

tes, tes, , loss,( ) ( ) ( ) ( )out

s s tes s sE t Q t Q t Q t      (5.2.d) 

 Peak, Peak,max0 ( )sQ t Q    1, ,s S    (5.2.e) 

 , ,max0 ( )Dump s DumpQ t Q   1, ,s S   (5.2.f) 

 tes, tes0 ( )in

sQ t POW    1, ,s S   (5.2.g) 

 tes, tes0 ( )out

sQ t POW    1, ,s S   (5.2.h) 

 tes, tes0 ( )sE t CAP    1, ,s S   (5.2.i) 

 

Where CCAPEX and COPEX are as defined in Equations (4.4) and (4.4). We employ a forward euler 

scheme to discretize the energy balance equation (5.2.d). We demonstrate the problem with an 

illustrative example below.  

Optimal Design : Illustrative Case 

Let us consider a simple example where there are 2 scenarios where the daily profiles for QSupply 

and QDemand are as given in Figure 5-1 and is assumed to repeat daily for the design life of 5 years 

of the plant. Let’s consider scenario 1 is the most probable with p1 = 0.99 and scenario 2 with p2 

= 0.01. In both scenarios, we consider total supply and demand is equal to keep the discussions 

simple. We can see that scenario 2 has a higher variation in the Supply profile.  
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Figure 5-1 : Illustrative Stochastic Design - Daily Profile (QSupply, QDemand) 

 

The optimal design for a deterministic case with only scenario 1 is  60 20capexx  . Similarly, 

the optimal design for a deterministic case with only scenario 2 would be  120 25capexx  , 

which needs a larger COPtes and POWtes due to the larger variation in the Supply profile. In the 

stochsatic solution, we are trying to minimize sum of CCAPEX and the expected value of the 

COPEX. We see the stochastic solution in this case is  60 20capexx  which will be a suboptimal 

choice if scenario 2 would be realized. This is due to the fact that the additional CAPEX of 

building a larger tank would be larger than the reduction in the expected OPEX for scenario 2. 

Hence  60 20capexx   is the optimal solution which minimizes the expected lifetime cost of the 

plant. The operation of the tank in case of both scenarios for the stochastic solution is shown in 

Figure 5-2. When scenario 2 is realized, since the tank is insufficiently sized, and it can be seen 

to be fully discharged at hour 19.  
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Figure 5-2 : Illustrative Stochastic Design - TES Daily Operation 

The solution does seems trivial in this case, but in a real cases where there are multiple scenarios 

with non trivial probabilities provided, the two stage formulation provides us the optimal 

decision to take with the known information of uncertanity.  

We demonstrate this case with an application of this approach to the design of a TES system 

using scenarios generated from the data set from a distric heating plant in northern Norway.  

Optimal Design : Industrial Case  

An industrial TES syestem with one supplier and one consumer as described in Section 4.1 is 

considered. Hourly data for the year of 2017 was obtained for a district heating company in 

Northern Norway, from which we extract equivalent profiles for QSupply and QDemand to our TES 

design model and is plotted in Figure 5-3. We can see that there is a seasonal variation in the 

thermal demand with lower heating demands during summer months while the supply of thermal 

energy is nearly stable.  

During the winter months, the Supply and Demand profiles frequently cross each other and the 

installation of a TES system would help reduce the dependence on external utilities. A 

representative profile for a winter week is shown in Figure 5-4, and we can see that a TES would 

be able to charge during periods of excess supply and dispatch it during periods of shortfall, thus 

reducing import of electricity.  

There are also variations in the electricity prices as shown in Figure 5-4, and a TES would be 

able to take advantage of storing energy during periods of low electricity prices and dispatch it 
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during periods of higher electricity prices to minimize the operating costs. Since no information 

was available, the prices for heat dumping is considered to be 1/10
th

 of the peak heating prices.  

 

Figure 5-3 : Indutry Year Data 

 

We consider 13 representative scenarios to account for the uncertanity in profiles for QSupply, 

QDemand and QPeak_cost, in which the weekly profiles are assumed to repeat for the design life of 5 

years. The adequacy of these scenarios to represent the reality is not considered in detail here, as 

scenario generation is not the main focus of our study. Assuming equal probability for each 

scenario, arriving at the optimal design decision is not a trivial task, and hence demonstrates the 

usefulness of the stochastic formulation we developed. 

The solution for the Stochastic problem gives us the maximum capacity and power of the 

required TES as  92.2 21.83capexx  .  The Optimal recourse actions in the case of Scenario 5 is 

shown in Figure 5-5 and Figure 5-6. We can also see that it is optimal at times to conserve the 

charge in the TES during periods of low electricity prices and later dispatch it during periods of 

higher electricity prices, as is the case in day 5 in Figure 5-6.   
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Figure 5-4 : Representative Weekly data – Supply and Demand Profiles 

 

 

Figure 5-5 : Recourse Action for scenario 5 
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Figure 5-6 : Recourse Action for scenario 5 

 

5.3. Discussion and Further Improvements 

In Part 2 of this work, we have tried to address the design problem for a TES System with a 

linear approximation of the actual design problem assuming a finite set of scenarios are provided 

which represent the uncertanity in parameters. This approach could be further improved by 

attention along the following major areas,  

Selection of Scenarios 

Currently we have assumed that the set of scenarios are given to us, and not much focus was put 

on ensuring that these scenarios do accurately represent the uncertanities. We could employ 

Monte Carlo based sampling methods or other data driven methods to build the representative 

scenario set when historical data is available as reference, ensuring that the number of scenarios 

do not increase exponentially with the number of uncertain parameters.  

Relaxing linear approximations in Objective Function 

Our current formulation of the objective function consists of  linear approximation of the Capital 

cost estimation. We could relax this linear approximation with more representative costing 

relationships available in literature if we allow the objective function to be nonlinear. We could 
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also quickly account future operating costs in the objective with their Net Present Values to have 

a more realistic representation of the decision making process that is considered during design.  

Relaxing the linear approximations in the Model 

The current attempt at developing the linear approxiamtion for the nonlinear process gives us an 

upper limit for the exchanger area required. If we could formulate and solve the design problem 

in terms of flows and temperatures, we can arrive at an exact solution. But as discussed in 

Chapter 4, the introduction of Temperatures and Flows make the model nonlinear and solution of 

this problem for the required time scales for design becomes computationally intractable. We 

could explore efficient decomposition strategies to reduce the computational effort or even 

reformulate the problem in a block seperable form with only minor deviations from the optimal 

solution in future work.    
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A1. Two Tank TES Model 

 

A1.a. Cell Model Approximation of Heat Exchangers 

The Cell model approximation for modelling the heat exchangers is presented here,   

 

Figure A 1-1: Cell model approximation for modelling Heat Exchanger 
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The Hot stream enters from the bottom while the Cold from th top and numbered from entry to 

exit. The total Area and volume of the exchanger tube and shell sides are equally distributed 

among the nCells. The exit temperature of the exchanger is the temperature of the last cell and 

hence the Hot and Cold exit temperatures from the exchanger is referenced as THot(nCell)  and 

TCold(nCell). 

The duty transferred from the hot side to the cold side in the k
th

 Cell can be calculated as 

 ( 1 ) ( )k Cell hot nCell k cold kQ hA T T    1.....k nCell  (A1.1) 

 

Therefore, the change of temperature in the k
th

 Cell can be written as 

 ( 1 ) ( )( )

( ) _

hot nCell k cold kcold k

cold Cell k P cold

hA T TdT

dt V C

  
  1.....k nCell  (A1.2) 

 ( 1 ) ( )( 1 )

( 1 ) _

hot nCell k cold khot nCell k

hot Cell nCell k P hot

hA T TdT

dt V C

  

 


   1.....k nCell  (A1.3) 

 

A1.b. Mass and Energy Balances 

With the approximation of Heat Exchangers as Cells with nCell = 3, we can write the mass and 

Energy balance equations for 

Energy Balance equations in Hex_Sup 

 

For the kth Cell element ( 1.....k nCell  ), we have  

 
 up _ up_ ( ) up

up _ up_ ( 1) up_ ( ) ( )
3600

S Cell P Sup S e k S

S P Sup S e k S e k k

d V C T q
C T T Q

dt


     (A1.4) 

 
 _ _ ( )

_ _ ( 1) _ ( ) ( )
3600

c Cell P c c e k c
c P c c e k c e k k

d V C T q
C T T Q

dt


     (A1.5) 

 

Where _ (0)Sup eT  is _Sup sT  and _ (0)c eT  is cT  

Energy Balance equations in Hex_Con 

For the kth Cell element ( 1.....k nCell  ), we have  
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 
 _ _ ( )

_ _ ( 1) _ ( )
3600

h Cell P h h e k h
h P h h e k h e k k

d V C T q
C T T Q

dt


     (A1.6) 

 
 _ _ ( )

_ _ ( 1) _ ( )
3600

Con Cell P Con Con e k Con
Con P Con Con e k Con e k k

d V C T q
C T T Q

dt


     (A1.7) 

 

Where _ (0)h eT  is hT  and _ (0)Con eT  is _Con sT  

Mass and Energy Balance across the storage tanks 

 

3600 3600

c h cdV q q

dt
   (A1.8) 

3600 3600

h c hdV q q

dt
   (A1.9) 

 _

_ _
3600 3600

TES c p TES c h c
TES p TES h e c

d V C T q q
C T T

dt




 
  

 
 (A1.10) 

 _

_ _ _
3600 3600

TES h p TES h c h
TES p TES c e h loss h

d V C T q q
C T T Q

dt




 
   

 
 (A1.11) 

 

Where the heat loss from the hot tank is defined as  

 _ _ n _ tanloss h hot ta k hot k h ambQ U A T T   (A1.12) 

 

With the assumptions of perfect mixing and  combining equations, we get the ODE’s for the 

model in Section Model Equations.  

 

A1.c. Model Parameters 

The constant parameters used in the Two Tank TES Model is defined in the parameters.m file, 

attached in Appendix A3.a below.  
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A2. Design Model 

 

A2.a. Capital Cost Estimation 

The Total Fixed Capital Cost is estimated using the factorial method as described in Towler and 

Sinnot [16]. The total purchase cost was estimated using correlation of the form, 

n

eC a bS   (A2.1) 

 

Where Ce represents the Purchased Equipment Cost in U.S. Gulf Coast basis, January 2006 and 

S is the size parameter for the equipment. The parameters as provided for   

 Storage Tanks : Cone Roof 

S = Volume Value Units Coefficients Value 

High limit 10 m3 a 5700 

Low Limit 8000 m3 b 700 

      n 0.7 

Table A2-1 : Tank Purchased Cost parameters 

 Heat Exchanger : U-tube shell and tube 

S = Area Value Units Coefficients Value 

High limit 10 m2 a 10000 

Low Limit 1000 m2 b 88 

      n 1 

Table A2-2 : Exchanger Purchased Cost parameters 

Since it can be seen from Figure A2-1 and Figure A2-2, the equipment purchased cost is fairly 

linear at the range of capacities of interest, we use a linear best fit to estimate the Purchase cost 

from the capacities.  
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Figure A2-1 : Purchased cost relationship with Tank Volume 

 

 

Figure A2-2 : Purchased cost relationship with Heat Exchanger Area 
 

 ( 2006) 3

Ta

_

n 74001 33.4USD m

kC Vol   (A2.2) 

 ( 2006) 2_ 10000 88USD m

HexC Area   (A2.3) 

The Project fixed Capital cost was estimated from the equipment purchase cost using the 

combined installation factor of 6 recommended for process type of Fluids in [16]. The Capital 

cost data since was available with the basis of 2006 (CEPCI 478.6) , was scaled to 2018 values 

(CEPCI 605.2) using the Chemical Engineering Plant Cost index.   

    
      

    

Cost index in year A
Cost in year A Cost in year B

Cost index in year B
  (A2.4) 
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A3. Source Codes – Operations Model 

A3.a. Parameters.m 

Defenition of all constant parameters used,  

global nCSTR; 

 

%Supply parameters 

    Tsup_s = 100;       % Deg C 

    Tsup_r = 40;        % Deg C 

    rho_sup = 1000;     % kg/m3 

    CP_sup = 3.05558;   % Supplier CP (taken as Thermic fluid) 

    Vhe_sup = 1;        % Supply side Heat exchanger volume 

    hAsup = 1*150/(nCSTR*2);        % Supply Heat exchanger hA 

% Consumer parameters 

    Tcon_s = 10;        % Deg C 

    Tcon_r = 70;        % Deg C 

    rho_con = 1000;     % kg/m3 

    CP_con = 3.05558;   % Consumer CP (taken as Thermic fluid) 

    Vhe_con = 1;        % Supply side Heat exchanger volume 

    hAcon = 1*150/(nCSTR*2);        % Consumer Heat exchanger hA 

% TES Parameters 

    rho_t = 1000;       % Density of TES medium (kg/m3) 

    CP_t = 4.18;        % CP of TES medium 

    Vhe_c = 1;          % Cold side Heat exchanger volume (m3) 

    Vhe_h = 1;          % Hot side Heat exchanger volume (m3) 

 

    Vh_max = 275;       % Maximum hot tank volume (m3) 

    Vc_max = 275;       % Maximum cold tank volume (m3) 

    Vh_min = 25;        % Minimum hot tank volume (m3) 

    Vc_min = 25;        % Minimum cold tank volume (m3) 

 

    vdot_cold_min = 1;      % Minimum cold flow (m3/hr) 

    vdot_hot_min = 1;       % Minimum hot flow (m3/hr) 

    vdot_cold_max = 100;    % Maximum cold flow (m3/hr) 

    vdot_hot_max = 100;     % Maximum cold flow (m3/hr) 

 

% Common Parameters 

    Tamb = 20; 

    UAh = 0;        % Heat loss coefficient of hot tank 

    UAc = 0;        % Heatloss coefficient of cold tank 

 

A3.b. Model_dot.m 

Model equations for state evolution,  

% Ordinary Differential Eqns 

    Thot_in = Tsup_s; 

    Tcold_in = Tc; 

    for i=1:nCSTR 

        x1dot{i} = ((vdot_sup/(3600*Vhe_sup/nCSTR))*(Thot_in-Tsup_e(i))-

(Qsup(i)/(Vhe_sup/nCSTR*rho_sup*CP_sup))); 

        Thot_in = Tsup_e(i); 
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        x4dot{i} = ((vdot_cold/(3600*Vhe_c/nCSTR))*(Tcold_in-Tc_e(i))+(Qsup(nCSTR+1-

i)/(Vhe_c/nCSTR*rho_t*CP_t))); 

        Tcold_in = Tc_e(i); 

    end 

 

    Thot_in = Th; 

    Tcold_in = Tcon_s; 

    for i=1:nCSTR 

        x5dot{i} = ((vdot_hot/(3600*Vhe_h/nCSTR))*(Thot_in-Th_e(i))-

(Qcon(i)/(Vhe_h/nCSTR*rho_t*CP_t))); 

        Thot_in = Th_e(i); 

 

        x6dot{i} = ((vdot_con/(3600*Vhe_con/nCSTR))*(Tcold_in-

Tcon_e(i))+(Qcon(nCSTR+1-i)/(Vhe_con/nCSTR*rho_con*CP_con))); 

        Tcold_in = Tcon_e(i); 

    end 

 

    x2dot = ((vdot_hot/(3600*Vc))*(Th_e(nCSTR)-Tc)-(Qloss_c/(Vc*rho_t*CP_t))); 

    x3dot = ((vdot_cold/(3600*Vh))*(Tc_e(nCSTR)-Th)-(Qloss_h/(Vh*rho_t*CP_t))); 

    x7dot = (vdot_hot - vdot_cold)/3600; 

    x8dot = (vdot_cold - vdot_hot)/3600; 

 

    xdot = 

[vertcat(x1dot{:});x2dot;x3dot;vertcat(x4dot{:});vertcat(x5dot{:});vertcat(x6dot{:});x

7dot;x8dot]; 

end 

 

A3.c. Optimal_Control_Problem.m 

Solving the Optimal Control Problem  

clear; 

close all; 

import casadi.* 

 

global nCSTR N 

nCSTR = 3;      % # of discretizations for Heat Exchangers 

 

T = 2*24*3600;  % Time horizon (seconds) 

N = 2*24;       % number of control intervals 

dt = T/N;       %(seconds) 

 

% Parameters 

parameters      % Loading model Parameters from .m file 
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%% Declare Model Variables 

offset = 1.0; 

% States 

x1 = MX.sym('x1',nCSTR); 

x2 = MX.sym('x2'); 

x3 = MX.sym('x3'); 

x4 = MX.sym('x4',nCSTR); 

x5 = MX.sym('x5',nCSTR); 

x6 = MX.sym('x6',nCSTR); 

x7 = MX.sym('x7'); 

x8 = MX.sym('x8'); 

x = [x1; x2; x3; x4; x5; x6; x7; x8]; 

% x0 = [100*ones(nCSTR,1); 30; 80; 70*ones(nCSTR,1); 30*ones(nCSTR,1); 

20*ones(nCSTR,1); 125; 125]; 

    % x0 from steady state CSTR3 (optimal Steady state) 

    x0 = 

offset.*[81.6480241404674;68.7906188056782;59.7827129139836;47.0439037095066;62.956096

3332679;50.6079206442220;55.6950087389464;62.9560475282138;59.3920793954863;54.3049912

962709;47.0439525006192;28.3519758738163;41.2093812189759;50.2172871181283;(Vh_max+Vh_

min)/2;(Vh_max+Vh_min)/2]; 

x0_min = [Tcon_s*ones(nCSTR,1); Tcon_s; Tcon_s; Tcon_s*ones(nCSTR,1); 

Tcon_s*ones(nCSTR,1); Tcon_s*ones(nCSTR,1); Vc_min; Vh_min]; 

x0_max = [Tsup_s*ones(4*nCSTR + 2,1); Vc_max; Vh_max]; 

 

% Inputs/ Manipulated Variables 

u1 = MX.sym('u1'); 

u2 = MX.sym('u2'); 

u3 = MX.sym('u3'); 

u4 = MX.sym('u4'); 

u = [u1; u2; u3; u4]; 

% u0 = [1273.1583; 1273.1583; 4.3860; 4.3860]; 

    % u0 from steady state (optimal Steady state) 

    u0 = 

offset.*[503.731891660742;503.731891247240;55.4287516160681;55.4287516161166]; 

u0_min = [0.01; 0.01; vdot_cold_min;  vdot_hot_min]; 

u0_max = [1e4; 1e4;  vdot_cold_max;  vdot_hot_max]; 

 

nx = 8+(nCSTR-1)*4; 

nu = 4; 

nz = 0; 

 

%% Supplier and Consumer Profiles 

 

        % Scaled Duck curve profile 

        [vdot_supply, vdot_consumer] = ScaledProfile(N); 

        vdot_consumer = 1.5.*vdot_consumer; 

       % Step change Profile 

%         vdot_supply = [30*ones(N/2,1); 30*ones(N/2,1)];     % m3/hr 

%         vdot_consumer = [30*ones(N/2,1); 30*ones(N/2,1)];   % m3/hr 
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        % Plotting Supplier and Consumer flow profiles 

        tgrid = linspace(0, N, N); 

        figure 

        stairs(tgrid, vdot_supply, 'r'); 

        hold on; 

        stairs(tgrid, vdot_consumer, 'b'); 

        ylim([0 50]); xlabel('time in hours'); ylabel('Flow in m3/hr') 

        legend('vdot_ supply','vdot_ consumer' ) 

 

        QDump_noTES = rho_sup*CP_sup*(Tsup_s-Tsup_r)/3600.*vdot_supply; 

        QPeak_noTES = rho_con*CP_con*(Tcon_r-Tcon_s)/3600.*vdot_consumer; 

 

% Fixed Parameters (Passed as Casadi Variables) 

% Used in Optimal SS and Integrator Defenition 

vdot_sup = MX.sym('vdot_sup'); 

vdot_con = MX.sym('vdot_con'); 

vdot_p = [vdot_sup; vdot_con]; 

vdot_p0 = [vdot_supply(1);vdot_consumer(1)]; 

 

[xdot] = Model_dot(x, u, vdot_p); 

% Objective term 

L = u1 + u2; 

 

    % Finding Optimal steady state 

%     [x0, u0] = Optimal_SteadyState(x0, u0, vdot_p0 ) 

 

%% Integrator 

 

% CVODES from the SUNDIALS suite 

  dae = struct('x',x,'p',[u;vdot_p],'ode',xdot,'quad',L); 

  opts = struct('tf',dt); 

  F = integrator('F', 'cvodes', dae, opts); 

 

% Evaluate at a test point 

Fk = F('x0',x0,'p',[u0;vdot_p0]); 

 

% NLP 

w={}; 

w0 = []; 

lbw = []; 

ubw = []; 
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J = 0; 

g={}; 

lbg = []; 

ubg = []; 

% "Lift" initial conditions 

Xk = MX.sym('X0', 4*nCSTR+4); 

w = {w{:}, Xk}; 

lbw = [lbw; x0]; 

ubw = [ubw; x0]; 

w0 = [w0; x0]; 

 

% Formulate the NLP 

 

for k=0:N-1 

    % New NLP variable for control (MV's) 

    Uk = MX.sym(['U_' num2str(k)],4); 

    w = {w{:}, Uk}; 

    lbw = [lbw; u0_min]; 

    ubw = [ubw; u0_max]; 

    w0 = [w0;  u0]; 

 

    % Integrate till the end of the interval 

    Fk = F('x0',Xk,'p', [Uk; vdot_supply(k+1);vdot_consumer(k+1)]); 

 

    Xk_end = Fk.xf; 

    J=J+Fk.qf; 

 

    % New NLP variable for state at end of interval 

    Xk = MX.sym(['X_' num2str(k+1)], 4*nCSTR+4); 

    w = [w, {Xk}]; 

    lbw = [lbw; x0_min]; 

    ubw = [ubw;  x0_max]; 

    w0 = [w0; x0]; 

 

    % Add shooting gap -> State equality constraint 

    g = {g{:}, Xk_end-Xk}; 

    lbg = [lbg; x0-x0]; 

    ubg = [ubg; x0-x0]; 

 

    % Additional constraints (approach temp in each CSTR) 

    for i=1:nCSTR 

    g = {g{:}, [(Xk(i)-Xk(2*nCSTR+3-i)), (Xk(2*nCSTR+2+i)-Xk(4*nCSTR+3-i))]'}; 

    lbg = [lbg; 0; 0]; 

    ubg = [ubg;  inf; inf]; 

    end 
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    g = {g{:},[ vdot_supply(k+1)/3600*rho_sup*CP_sup*(Tsup_r - Xk(nCSTR)) + Uk(1), 

vdot_consumer(k+1)/3600*rho_con*CP_con*(Xk(4*nCSTR+2) - Tcon_r) + Uk(2) ]'}; 

    lbg = [lbg; [0 0]']; 

    ubg = [ubg;  [inf inf]']; 

 

end 

%% NLP Solver 

opts = struct; 

opts.ipopt.max_iter = 1000; 

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:})); 

solver = nlpsol('solver', 'ipopt', prob,opts); 

 

% Solve the NLP 

sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw, ... 

             'lbg', lbg, 'ubg', ubg); 

 

w_opt = full(sol.x); 

optcost = full(sol.f) 

Cumul_cost0 = (u0(1) + u0(2))*T 

 

%% Calculating Profiles for Plots 

 

x_opt = []; 

u_opt = []; 

for k=0:N-1 

    x_opt = [x_opt, w_opt(  ((nx+nu+nz)*k+ 1) : ((nx+nu+nz)*k + nx)  )]; 

    u_opt = [u_opt, w_opt(  ((nx+nu+nz)*k+ nx+1) : ((nx+nu+nz)*k + nx+nu)  )]; 

end 

 

%% Plots 

tgrid = linspace(0, N, N); 

 

% Plotting State Profiles 

% Plotting Temperatures 

figure 

plot(tgrid, x_opt(nCSTR,:), '--'); 

hold on; 

plot(tgrid, x_opt(nCSTR+1,:), '-'); 

hold on; 

plot(tgrid, x_opt(nCSTR+2,:), '-'); 

hold on; 
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plot(tgrid, x_opt(2*nCSTR+2,:), '-'); 

hold on; 

plot(tgrid, x_opt(3*nCSTR+2,:), '-'); 

hold on; 

plot(tgrid, x_opt(4*nCSTR+2,:), '-'); 

xlabel('time in hours'); ylabel('Temp in Deg C') 

legend('Tsup_e','Tc','Th','Tc_e','Th_e','Tcon_e') 

% Plotting Tank Levels 

figure 

plot(tgrid, x_opt(4*nCSTR+3,:), 'b--'); 

hold on; 

plot(tgrid, x_opt(4*nCSTR+4,:), 'r-'); 

xlabel('time in hours'); ylabel('Volume in m3');  ylim([Vh_min Vh_max]) 

legend('Vc', 'Vh') 

 

% Plotting MV's 

% Plotting Utility Loads 

figure 

stairs(tgrid, u_opt(1,:), 'r') 

hold on 

stairs(tgrid, u_opt(2,:), 'b') 

hold on 

stairs(tgrid, QDump_noTES, 'r-.') 

hold on; 

stairs(tgrid, QPeak_noTES, 'b-.') 

xlabel('time in hours'); ylabel('Duty in kJ'); 

legend('Q Dump', 'Q Peak', 'QSupply', 'QConsumer') 

% Plotting TES Flows 

figure 

stairs(tgrid, u_opt(3,:), 'b-.') 

hold on 

stairs(tgrid, u_opt(4,:), 'r-.') 

xlabel('time in hours'); ylabel('Flow in m3/hr'); ylim([vdot_hot_min vdot_hot_max]); 

legend('q_c', 'q_h') 

 

 

        figure 

        plot(tgrid, x_opt(nCSTR,:),'r'); 

        hold on; 

        plot(tgrid, x_opt(nCSTR-1,:),'r-.'); 

        hold on; 

        plot(tgrid, x_opt(nCSTR-2,:),'r:'); 

        hold on 

        plot(tgrid, x_opt(2*nCSTR+2,:), 'b:'); 

        hold on; 

        plot(tgrid, x_opt(2*nCSTR+2-1,:), 'b-.'); 

        hold on; 

        plot(tgrid, x_opt(2*nCSTR+2-2,:), 'b'); 

        hold on; 
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        xlabel('time in hours'); ylabel('Temperature in Deg C'); title('Supplier HEx 

Profiles') 

        legend('Tsup_e 3','2','1', '3','2','Tc_ e 1') 

 

        figure 

        plot(tgrid, x_opt(3*nCSTR+2,:),'r:'); 

        hold on; 

        plot(tgrid, x_opt(3*nCSTR+2-1,:),'r-.'); 

        hold on; 

        plot(tgrid, x_opt(3*nCSTR+2-2,:),'r'); 

        hold on 

        plot(tgrid, x_opt(4*nCSTR+2,:), 'b'); 

        hold on; 

        plot(tgrid, x_opt(4*nCSTR+2-1,:), 'b-.'); 

        hold on; 

        plot(tgrid, x_opt(4*nCSTR+2-2,:), 'b:'); 

        hold on; 

        xlabel('time in hours'); ylabel('Temperature in Deg C'); title('Consumer HEx 

Profiles') 

        legend('3','2','Th_e 1','Tcon_e 3','2','1') 
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A4. Source Codes – Design  Model 

A4.a. Parameters.m 

Constant Parameters used in the model.  

% CAPEX Coefficients 

c1_eTES = 12875 ; % USD/(MWh) Unit cost of Tank Capacity 

c1_pTES = 35490 ; % USD/(MW) Unit cost of Tank Power 

 

c0_eTES = 82767  ; % USD/(MWh) Constant term for Tank cost 

c0_pTES = 11184  ; % USD/(MW) Constant term for HEx cost 

 

% Heat Loss from Tank 

beta = 0 ; %  Heat loss coefficient 

 

% Max limits 

eTES_max =   inf ; % 

pTES_max = inf ; % 

QDump_max  = inf ; % 

QPeak_max = inf ; % 

 

% Initial Conditions/ Guesses 

eTES0  = 1 ; % 

pTES0  = 1 ; % 

 

A4.b. Two_Stage_Stochastic_Program.m 

Solving the Two Stage Stochastic Problem in extensive form.  

clear 

close all; 

import cplex.* 

 

Day_sim = 1;                        % Length of each scenario in Days 

NDays = 1;                        % Total Number of days in data file 

Tsim = 24*Day_sim; 

dt = 1; 

N = Tsim/dt; 

S = floor(NDays/Day_sim);          % Number of Scenarios 

prob_s = 1/S*ones(S,1); 

% prob_s = [0.99; 0.01] 

run_time = []; 

 

% Import Parameters 
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parameters; 

 

 

QSupply = zeros(N,S); 

QDemand = zeros(N,S); 

% Generate New Data 

tic 

[QSupply, QDemand, QDump_cost, QPeak_cost] = GenerateProfile(N, S); 

t = toc; 

run_time{1,1} = ['Generate Profile_', num2str(t)]; 

 

Days_plot = [linspace(1,24,24)',linspace(1,24,24)']; 

 

    %         % Save QDemand, QSupply, QPeak_cost to .mat file for later use 

    %         save('test24X5.mat','QDemand') 

    %         save('test24X5.mat','QSupply', '-append') 

    %         save('test24X5.mat','QPeak_cost', '-append') 

 

 

QDump0 = 0; 

QPeak0 = 0; 

ETES0 = 0; 

tic 

TESprob = optimproblem; 

%Declaring Variables 

eTES = optimvar('eTES',1, 'LowerBound', 0, 'UpperBound', eTES_max); 

pTES = optimvar('pTES',1, 'LowerBound', 0, 'UpperBound', pTES_max); 

 

QDump = optimvar('QDump',N,S, 'LowerBound',0, 'UpperBound', QDump_max); 

QPeak = optimvar('QPeak',N,S, 'LowerBound',0, 'UpperBound', QPeak_max); 

ETES = optimvar('ETES',N,S, 'LowerBound',0); 

 

CAPEX = c1_eTES*eTES + c1_pTES*pTES ; 

OPEX_norm = 0; 

for s = 1:S 

    OPEX_norm = OPEX_norm + 365*20*prob_s(s)*sum(QDump_cost(:,s).*QDump(:,s) 

+QPeak_cost(:,s).*QPeak(:,s));  % Factor Updated for 1 year Design Life 

%     OPEX_norm = OPEX_norm + 52*1*prob_s(s)*sum(QDump_cost(:,s).*QDump(:,s) + 

QPeak_cost(:,s).*QPeak(:,s));  % Factor Updated for 1 year Design Life 
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end 

 

TESprob.Objective = CAPEX + OPEX_norm; 

 

% Include Constraints 

TESprob.Constraints.TESin_min_cons = QSupply(:,:) - QDump(:,:) >= 0 ; 

TESprob.Constraints.TESout_min_cons = QDemand(:,:) - QPeak(:,:) >= 0 ; 

TESprob.Constraints.TESin_max_cons = QSupply(:,:) - QDump(:,:) <= pTES ; 

TESprob.Constraints.TESout_max_cons = QDemand(:,:) - QPeak(:,:) <= pTES ; 

 

TESprob.Constraints.ETES_max_cons = ETES <= eTES*ones(N,S) ; 

 

    % ETES Evolution Constraints 

    cons_ETES_evol = optimconstr(N,S); 

 

    cons_ETES_evol(1,:) = ETES(1,:) - ETES0 == QSupply(1,:) - QDump(1,:) -

(QDemand(1,:) - QPeak(1,:)) - beta*ETES(1,:); 

    for k = 2:N 

        cons_ETES_evol(k,:) = ETES(k,:) - ETES(k-1,:) == QSupply(k,:) - QDump(k,:) -

(QDemand(k,:) - QPeak(k,:)) - beta*ETES(k,:); 

    end 

 

TESprob.Constraints.ETES_evol_cons = cons_ETES_evol; 

 

t = toc; 

run_time{2,1} = ['Define Problem_', num2str(t)]; 

 
%% Solving Large LP 

 

% Converting to Matrix form 

tic 

TESproblem = prob2struct(TESprob); 

t = toc; 

run_time{4,1} = ['Large LP Generate Matrix_', num2str(t)]; 

 

% Solving using CPLEX 

tic 

options = cplexoptimset; 

 

opt_sol = cplexlp(TESproblem.f, TESproblem.Aineq, TESproblem.bineq, TESproblem.Aeq, 

TESproblem.beq, TESproblem.lb, TESproblem.ub); 

t = toc; 

run_time{5,1} = ['Large LP Solve_', num2str(t)]; 

 

 

% Variables in Order :- ETES, QDump, QPeak, eTES, pTES 

% ideTES = varindex(TESprob,'eTES') 

% idpTES = varindex(TESprob,'pTES') 

ideTES = size(TESproblem.ub, 1) - 1; 

idpTES = size(TESproblem.ub, 1); 
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for s = 1:S 

opt_ETES(:,s) = opt_sol( N*(s-1) + 1 : N*s); 

opt_QDump(:,s) = opt_sol( N*S+ N*(s-1) + 1 : N*S + N*s); 

opt_QPeak(:,s) = opt_sol( 2*N*S+ N*(s-1) + 1 : 2*N*S + N*s); 

end 

 

% run_time 

opt_x = [opt_sol(ideTES); opt_sol(idpTES)] 

opt_vol_area = opt_x.*[1000*3600/62760; 1000000/(18.2*850)]    % Converting eTES and 

pTES to volume and area 

 

%% Plotting 

plot_scenario_start = 1; 

plot_scenario_end = 1; 

 

for s = plot_scenario_start:plot_scenario_end 

 

fig1 = figure; %%Supply, Demand and Prices 

 

    subplot(2,1,1); 

    plot(Days_plot(:,1), QSupply(:,s), 'r'); 

    hold on; 

    plot(Days_plot(:,1), QDemand(:,s),'b'); 

    legend('QSupply', 'QDemand'); xlabel('Days'); ylabel('Energy in MW'); 

    title("Scenario " + s); 

 

    subplot(2,1,2); 

    plot(Days_plot(:,1), QPeak_cost(:,s),'r'); 

    legend('QPeak_ cost'); xlabel('Days'); ylabel('QPeak_ cost in USD/MWh'); 

 

 

fig2 = figure; 

 

    subplot(2,1,1); 

    plot(Days_plot(:,1), QSupply(:,s),'r'); 

    hold on; 

    plot(Days_plot(:,1), QSupply(:,s) - opt_QDump(:,s),'b'); 

    legend('QSupply', 'Qtes,in'); xlabel('Days'); ylabel('Energy in MW'); 

    title("Scenario " + s); 

 

    subplot(2,1,2); 

    plot(Days_plot(:,1), QDemand(:,s),'b'); 

    hold on; 
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    plot(Days_plot(:,1), QDemand(:,s) - opt_QPeak(:,s),'r'); 

    legend('QDemand', 'Qtes,out'); xlabel('Days'); ylabel('Energy in MW'); 

 

fig3 = figure; 

 

    subplot(2,1,1); 

    plot(Days_plot(:,1), opt_ETES(:,s),'c'); 

    legend('Etes'); xlabel('Time in Hours'); ylabel('Etes in MWh'); 

    ylim([0,15]); 

    title("Etes Scenario " + s); 

 

    subplot(2,1,2); 

    plot(Days_plot(:,1), QSupply(:,s) - opt_QDump(:,s),'r'); 

    hold on 

    plot(Days_plot(:,1), QDemand(:,s) - opt_QPeak(:,s),'b'); 

    legend('Qtes,in', 'Qtes,out'); xlabel('Time in Hours'); ylabel('Energy in MW'); 

 

    iptwindowalign(fig1,'right',fig2,'left'); 

    iptwindowalign(fig1,'bottom',fig2,'top'); 

    iptwindowalign(fig1,'left',fig3,'right'); 

end 

 

 

 

if eTES_max == 0 

    c0_eTES = 0; 

end 

 

 

opt_CAPEX = TESproblem.f(end-1:end)'*opt_sol(end-1:end) + c0_eTES + c0_pTES 

opt_OPEX = TESproblem.f(1:end-2)'*opt_sol(1:end-2) 
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