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Abstract

This project aims to model erosion of a choke in a gas lifted well network with the use of data
driven models to be able to do better maintenance optimization in the oil and gas industry.
Modelling of erosion is important to determine when subsea equipment fails, which is a big
expense for the oil and gas industry. However, modelling erosion is very complex as the flow
in the pipelines consists of multiple phases with different flow regimes. Much research has been
done on this field, but most of the previous models are inaccurate. Firstly, a model for three
separate wells combined with a riser was created. This was done by using an existing model
for a gas lifted well network and including an erosion model into the model of the gas lifted
well network. Secondly, a model predictive control (MPC) was made to control the erosion in
each well with the goal of maximizing oil production while keeping the erosion of the choke
in each well below a certain threshold. The response from the MPC gives the indication that
this type of controller can be used to control erosion. Lastly, data driven models such as ARX,
ARMAX and OE models were created to make accurate models for erosion. The results from
using data driven models show that all of the models can be used to model erosion. Further
research should look into applying the data driven models into the controller and then test it
with an experiment to further validate that it is possible to use data driven models for control
purposes of erosion.
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ṁp Sand rate kgs−1

γ Relation between particle diameter and diameter of choke -

γc Relative critical particle diameter -

µ Dynamic viscosity kgm−1 s−1

ρ Density kgm−3

ρa Density of the gas in the annulus kgm−3

ρo Density of the oil kgm−3

ρp Density of sand particles kgm−3

ρs Weighting for slack variable -

ρw Density of the mixture in the tubing kgm−3

A Dimensionless constant -

Ag Area of the annulus m2

Ag Effective gallery area m2

Ap Area of pipe m2

Ar Cross-sectional area of piping over the injection point m2

At Area exposed to erosion m2

Aw Cross-sectional area of piping under the injection point m2

C1 Model geometry factor -

Civ Valve constant for the injection valve -

Cpc Valve constant for the production valve -

Cunit Unit conversion factor mmm−1

D Length from cage and choke body m

dp Sand particle diameter m

E Erosion mm

ER Erosion rate mmyr−1

G Particle size correction factor -

g Gravitational constant ms−2



GF Geometry factor -

GOR Gas-oil ratio -

H Height of gallery m

Hr Height of tubing under the injection point m

Hw Height of tubing above the injection point m

K Material erosion constant -

La Length of annulus m

Lw Length of piping over the injection point m

Lbh Length of piping under the injection point m

M Weighting matrix for collocation points -

mga Mass of gas in the annulus kg

mgt Mass of gas in the tubing kg

mot Mass of oil in the tubing kg

Mmg Molar mass of the gas gmol−1

MSE Mean square error -

N Number of observations -

n Velocity exponent -

na Number of previous values of the outputs -

nb Number of previous values of the inputs -

nc Number of previous values of the errors -

n f Number of previous values of the noise free outputs -

nk Dead time -

np Number of parameters -

NRMSE Normalized root mean square error -

p Pressure bar

pa Pressure in the annulus Pa

pbh Pressure at the bottom hole Pa

pm Pressure in the manifold Pa

pr Pressure in the reservoir Pa

pwh Pressure in the wellhead Pa



pwi Pressure at the injection point Pa

PI Reservoir productivity index -

Q Volumetric flow m3 s−1

R Gas constant JK−1 mol−1

r Radius of curvature m

R∆u Weighting matrix for regularization term in MPC -

s(t) Slack term in MPC -

T Temperature K

Ta Temperature in the annulus K

tm Input horizon -

tp Prediction horizon -

Tw Temperature in the tubing K

Up Characteristic impact velocity ms−1

umax Maximum value of the input kgs−1

umin Minimum value of the input kgs−1

V Superficial velocity ms−1

Va Volume of the annulus m3

w Mass rate kgs−1

wgl Gas lift injection rate kgs−1

wiv Mass flow rate of gas from the annulus to the tubing kgs−1

wpc Mass flow rate of through the production choke kgs−1

wpg Mass flow rate of produced gas kgs−1

wpo Mass flow rate of produced oil kgs−1

wrg Mass flow rate of gas from the reservoir kgs−1

wro Mass flow rate of oil from the reservoir kgs−1



1 Introduction
Erosion is a known problem in the oil and gas industry as it requires the industry to do maintenance
and production stops. Having accurate and precise models of erosion would open for control of
erosion to reduce production stops as well as maintenance costs.

There has previously been work done on modelling erosion and especially at The University of
Tulsa, where Chen made a procedure for estimating erosion in elbows in multiphase flows [1]
and Mazumder made a mechanistic model to predict sand erosion in multiphase flow in elbows
[2]. Most of the previous work does not look at erosion in chokes, but DNV-GL wrote a recom-
mended practise for erosion in chokes and valves [3]. By having accurate predictions of erosion,
it is possible to save maintenance cost by including the models in a control framework such as a
model predictive control (MPC) to control the erosion rate. It is thus possible to do maintenance
optimization with the goal of saving maintenance costs.

Although there has been much effort to try to model erosion, the resulting models are inaccurate
due to the complexity of the problem. The erosion rate is a function of many different parameters
such as the bulk properties, particle properties and target material properties. The current models
are mostly created with partially calculations based on fluid dynamics and experimental results.
By doing system identification with data driven models it is possible to make models solely based
on experimental data. These types of models utilizes weightings calculated from the experimental
data together with previous recorded data to predict the erosion. There is a whole family of data
driven models, but in this work the focus will be on ARX, ARMAX and OE models.

This project thesis consists of several parts, where the first one is modelling the erosion of a choke
within a gas lift well system with 3 wells with different parameters. The second part will be on
creating a model predictive controller to control the system with the model found in the first part
with the purpose to maximize production of oil while keeping the erosion of the choke in each well
below a threshold. The last part will be on system identification, where the purpose is to identify
a data driven model and parameters related to the model for each well, which again can be used to
predict the erosion in the first part.

2 Erosion
Subsea equipment is prone to both chemical and mechanical wear. There are several mechanisms
connected to both chemical and mechanical wear such as corrosion, sand erosion and corrosion-
erosion. Previous work show that erosion due to sand particles is a big problem related to failure in
subsea equipment [4]. Oil and gas wells produce sand to some extent. Sand screens can be used to
prevent some of the sand, although it is not enough to prevent erosion due to sand particles. This
thesis will only be looking at sand erosion, as sand erosion is one of the biggest issues related to
corrosion and erosion in subsea equipment.

In Fig. 1 an example of how erosion of ductile materials such as most metals happen is shown. In
(a) the particle and the ductile material is shown before impact. The particle will hit the ductile
material and form a crater and material will be accumulated such as shown in (b). When another
particle hits the accumulated material, it will transfer some of its kinetic energy and remove some

1



Figure 1: Visual representation showing erosion of ductile materials [4].

of the ductile material as shown in (b) and (c). As this happens multiple times, the indent caused
by the particles will become larger.

Sand erosion is a function of many parameters. When the particles hit a target material, some of
its kinetic energy will be transferred to the target material, thus making the target material subject
to erosion. The size of the sand particles will have an effect on the erosion rate as the bigger the
particles are, the more kinetic energy the particles will have and more energy is transferred. The
mass flow rate of the sand particles will have a significant impact as having a higher mass flow
rate of sand particles will cause more particles to hit the target material, causing a higher grade
of erosion. The shape of the particles will have an impact as round particles cause less erosion
than particles with edges. The angle that the sand particles hit the valve will also have an impact.
Parameters related to the sand particles such as density, size and hardness will also impact the
erosion rate. Another factor that should not be forgotten about is the bulk properties. The gas/liquid
content, the bulk velocity, the viscosity and the density of the fluid will all impact the erosion rate
greatly [4].

3 Modelling Erosion in a Gas Lifted Well Network
Simulating erosion can be valuable method to test models instead of having to do experiments as
experiments are time consuming and often costly. To create a model, good prior knowledge about
the system is required. By including an erosion model in an existing model for a gas lifted well
system, it is possible to simulate the erosion rate of a choke in the gas lift. The modelling is thus
divided in two, where the first part describes the gas lift model and the second part describes the
erosion model for a choke.

3.1 Gas Lift Model
Gas lift is used in wells where the pressure of the reservoir is not enough to drive the oil to the
surface at a sufficient level. By injecting gas into the well through the annulus, the mixture density
of the fluid in the tubing decreases. Thus there is a decrease in the hydrostatic pressure in the bottom
hole. This makes the pressure difference larger and the flow from the reservoir is increased. The
model used to describe the gas lifted well system is based on the model as Krishnamoorthy used for
real-time optimization applied to a gas lifted well system [5]. The model equations are valid for all
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of the wells in the gas lifted well system which consists of three wells, but to simplify, the model
equations for one well is shown. A simplified figure of the gas lift system and the parameters used
in the modelling is shown in Fig. 2.

Figure 2: Simplified figure of the gas lift.

The mass balance for a well is described by the difference between the mass flow rates in and out
of the annulus and tubing for both the gas and the oil.

ṁga = wgl−wiv (1a)
ṁgt = wiv−wpg +wrg (1b)
ṁot = wro−wpo (1c)

Where ṁga describes the change of mass in the annulus with respect to time, ṁgt describes the
change of mass in the tubing with respect to time and ṁot describes the change of mass of oil in the
tubing with respect to time. The gas lift injection rate is described by wgl and wiv denotes the mass
flow rate of gas from the annulus and to the tubing. wpg describes the mass flow rate of produced
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gas while wpo is the mass flow rate of produced oil. wrg describes the mass flow rate of gas from
the reservoir wile wro is the mass flow rate of oil from the reservoir [5].

To get the density of the gas located in the annulus, ρa, the ideal gas law is used. The density of the
mixture of the oil and gas in the tubing, ρw, is given by the total mass of gas and oil in the tubing
after the injection point divided by the total volume of the piping after the injection point.

ρa =
Mmg · pa

Ta ·R
(2a)

ρw =
mgt +mot−ρo ·Lbh ·Abh

Lw ·Aw
(2b)

Mmg describes the molar mass of the gas, while R denotes the gas constant. pa and Ta are the
pressure and the temperature in the annulus, respectively. The density of the oil is given by ρo. Lbh,
Abh, Lw and Aw describes the length and cross-sectional area of the piping in the well before and
after the injection point for the gas lift system.

To get the pressures in the annulus, pa, and the pressure in the wellhead, the ideal gas law is once
again used. The pressure in the injection point, pwi, and the pressure in the bottom hole, pbh, are
calculated from the hydrostatic pressure.

pa = mga

[
Ta ·R

Va ·Mmg
+

g ·La

La ·Aa

]
(3a)

pwh =
Tw ·R
Mmg

[
mgt

Lw ·Aw +Lbh ·Abh− mot
ρo

]
(3b)

pwi = pwh +
g

Aw ·Lw
(mot +mgt−ρo ·Lbh ·Abh) ·Hw (3c)

pbh = pwi +ρw ·g ·Hbh (3d)

Where mga is the mass of gas in the annulus, Va is the volume of the annulus, g is the gravitational
constant and Aa is the cross-sectional area of the annulus. The total length of the annulus is given
by La. The temperature inside of the tubing is given by Tw. mgt and mot describes the mass of gas
and oil in the tubing. Hw describes the height of the tubing above the injection point for the gas lift
while Hbh is the height of the tubing after the injection point for the gas lift [5].

The mass flow rate from the annulus to the tubing, wiw, and the total production mass flow rate,
wpc, can be calculated by valve equations. The produced oil and gas, wpg and wpo are calculated
from mass ratios of oil and gas in the tubing and the total production. The mass flow rate of oil,
wro, is given by the difference in pressure of the reservoir and bottom hole pressure. The mass flow
rate of gas from the reservoir, wrg, is calculated from the mass flow of gas from the reservoir and
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the GOR.

wiv =Civ ·
√

ρa max(0, pai− pwi) (4a)

wpc =Cpc ·
√

ρw max(0, pwh− pm) (4b)

wpg = wpc ·
mgt

mgt +mot
(4c)

wpo = wpc ·
mot

mgt +mot
(4d)

wro = PI · (pr− pbh) (4e)
wrg = GOR ·wro (4f)

Where wpc represents the mass flow rate through the production choke. Civ and Cpc are valve con-
stants for the injection valve and the valve that controls the production. pm and pr describes the
pressure in the manifold and the pressure of the reservoir, respectively [5]. The reservoir produc-
tivity index is given by PI and is used to describe the reservoirs potential to produce oil and gas.
The gas-oil ratio is denoted by GOR. Both the PI and the GOR are model parameters.

3.2 Erosion Model
The erosion model is based on a choke model from DNV-GL which gives the erosion rate with
an uncertainty of a factor of at least ±3 [3]. Chokes come in many different forms and geometric
layouts which makes it difficult to find a generic model. To get an accurate measurement of the
erosion rate, CFD is usually used in each specific case [3].

r

d

Figure 3: Description of a choke gallery [3].
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An example of an angle style choke is shown in Fig. 3. These types of chokes are prone to erosion
especially if the choke body is much smaller than the piping or the gallery of the choke is small [3].

The characteristic impact velocity of the sand particles is given by:

Up =
3
4

Qm

Ag
(5)

With the effective gallery area given as Ag = 2 ·H ·D where H is the height of the choke gallery
and D is the length from the cage and the choke body. The mixed volumetric flow rate given by
Qm = Qpo +Qpg.

The characteristic impact angle, α , which is the angle that the sand particles hit the choke in radians
is given by:

α = arctan(
1√
2 · r

) (6)

Where r is the radius of curvature which in the case of a choke is described by the radius of the
choke gallery and is also shown in Fig. 3.

F(α) is used to correct the erosion rate for the impact angle and for ductile materials it is given by:

F(α) = 0.6 · [sin(α)+7.2(sin(α)− sin2(α))]0.6 · [1− exp(−20 ·α)] (7)

The relation between the critical particle diameter, dp,c and the length from the cage and choke
body, D, is given by:

dp,c

D
= γc =

{
ρm

ρp[1.88·ln(A)−6.04] , γc < 0.1

0.1, 0≥ γc > 0.1
(8)

Where ρm is the density of the mixture, ρp is the density of the particles and A is a dimensionless
constant given by:

A =
ρ2

m · tan(α) ·Up ·D
ρp ·µm

(9)

The dynamic viscosity of the mixture, µm is calculated by the procedure given in Appendix C under
the assumptions of ideal gas.

The relation between the sand particle diameter and the length from the cage and the choke body is
given by:

γ =
dp

D
(10)
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Where dp is the diameter of the sand particles.

The particle size correction factor is given by:

G =

{
γ

γc
, γ < γc

1, γ ≥ γc
(11)

The area exposed to erosion, At , is given by:

At =
Apipe

sin(α)
(12)

Where Apipe is the area of the pipe.

The erosion rate, ER, is given by:

ER =
dE
dt

=
K ·F(α) ·Un

p

ρt ·At
·G ·C1 ·GF · ṁp ·Cunit (13)

Where E is the erosion in mm, K is the material erosion constant, n is the velocity exponent, ρt is
the density of the material, C1 is a model geometry factor, GF is a geometry factor, ṁp is the mass
sand rate and Cunit is a unit conversion factor. The impact velocity, Up, is given by Eq. (5). The
erosion rate describes how many millimeters of the choke that will erode per second (mms−1). The
variable in the model is Up, while K, F(α), n, ρt , At , G, C1, GF and ṁp are model parameters.

4 Model Predictive Control
By using a model predictive control (MPC) framework, it is possible to control a system such as
the erosion rates of a choke in a gas lift well network. These types of controllers are being used to
great extent due to the capabilities of handling non-linear constraints and disturbances [6].
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Figure 4: Description of a model predictive controller [7].

Figure 4 shows a schematic of an MPC controller. At every time step, the MPC controller will
make a prediction to find the optimal trajectory for the inputs based on the current state of the
system. The prediction horizon can be divided into the input horizon and the output horizon. The
input horizon describes the time period where the controller can change the inputs, while between
the input and output horizon it must keep the input constant. This is used to prevent too aggressive
input moves. At each time step after calculating the set of optimal inputs, the controller will apply
the first control move and then reoptimize.

The objective function is the goal of the controller, which it desires at every time. There exists
several types of objectives for the MPC such as economic controllers or set point controllers where
the ladder is the objective of Fig. 4 which in this case is to keep as close to the reference trajectory
as possible. Often the objective can be to maximize profit or reduce costs. The following objective
function, which is minimized, is used to describe an economic MPC with a regularization term:

Ψ =
∫ tp

0

(
−cost +

1
2

∆u(t)T R∆u∆u(t)
)

dt (14)

Where tp is the prediction horizon. The second term describes a regularization term on the change
in inputs, ∆u. This means that the controller wants to minimize the change of inputs. R∆u is a
tuning parameter which describes the weighting of the regularization term on the original objective
function.

The system consists of both algebraic and differential equations, resulting in a differential-algebraic
equation (DAE) system. These equations must be satisfied at every time step. Therefore, these
equations are used as constraints in the optimization problem. There are also other other limitations
to the system that can be described as inequality constraints. These can be limitations to how large
the change in the input can be, or how large the input in itself can be. In general, the constraints
can be written as [8]:
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ẋ = f (x,z, p,u) (15a)
0 = g(x,z, p,u) (15b)
0≤ h(x,z, p,u) (15c)

Where ẋ describes the set of differential equations, x are the differential states, z is the set of
algebraic states, p are the parameters of the system and u is the input to the system. g is the set of
algebraic constraints and h is the set of inequality constraints.

4.1 Solving Differential Algebraic Systems
To solve differential algebraic equation systems, some possible solutions are to use either a se-
quential or a simultaneous approaches [8]. In sequential approaches such as single shooting, the
equations of the models and the optimization problem are solved sequentially to an accepted level
of tolerance. On the other hand, simultaneous approaches such as multiple shooting or orthogonal
collocation solve the model equations simultaneously with the optimization problem. In general,
the simultaneous approaches will have a lower computational cost than the sequential approaches
[8]. Orthogonal collocation has been chosen as the preferred way of solving the dynamic algebraic
equation system in this thesis for its low computational cost and its accurate results.

Orthogonal collocation on finite elements bases itself on dividing the prediction horizon into finite
elements. Each of these elements are again divided into a given amount of collocation points. A
usual amount of collocation points is three, and is also what is used for this thesis. The set of
differential equations can be written as:

M

ẋ1
ẋ2
ẋ3

=

x1
x2
x3

−
x0

x0
x0

 (16)

Where M is the collocation weighting matrix. The state trajectory can be approximated as:

x(t) = A+Bt +Ct2 +Dt3 (17)

Where t is the placement of the collocation points on the finite element. The derivative of x with
respect to t is given by:

ẋ(t) = B+2Ct +3Dt2 (18)

Inserting Eq. (17) and Eq. (18) into Eq. (16) gives:

M

B+2Ct1 +3Dt2
1

B+2Ct2 +3Dt2
2

B+2Ct3 +3Dt2
3

=

A+Bt +Ct2
1 +Dt3

1
A+Bt +Ct2

2 +Dt3
2

A+Bt +Ct2
3 +Dt3

3

−
x0

x0
x0

 (19)
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Noticing that if A = x0, then:

M

1 2t1 3t2
1

1 2t2 3t2
1

1 2t3 3t3
1

B
C
D

=

t1 t2
1 t3

1
t1 t2

2 t3
2

t1 t2
3 t3

3

B
C
D

 (20)

This yields the following weighting matrix, M:

M =

t1 t2
1 t3

1
t1 t2

2 t3
2

t1 t2
3 t3

3

1 2t1 3t2
1

1 2t2 3t2
1

1 2t3 3t3
1

−1

(21)

Having the weighting matrix, M, it is possible to solve Eq. (16) for every finite element. The posi-
tioning of the collocation points was chosen to be the Gauss-Radau which are given by: [0.1151,
0.6449,1.0000]. By using the Gauss-Radau collocation points there is no need to interpolate at the
end of every finite element as the last collocation point in the Gauss-Radau collocation points is 1.
For intervals that are not between 0 and 1, a scaling parameter h is introduced.

To solve this system for a DAE system, the algebraic constraints, g, must be evaluated at every
collocation point. Substituting Eq. (15a) into Eq. (16) and introducing the scaling parameter, h,
gives:

x1
x2
x3

=

x0
x0
x0

+hM

 f (x1,z1, p1,u1)
f (x2,z2, p2,u2)
f (x3,z3, p3,u3)

 (22)

A constraint on the differential states, x, is enforced within every collocation point and at the end
of every collocation point to ensure that the trajectory for the differential states are continuous.
The objective function is evaluated at the end of every collocation point. The objective function in
Eq. (14) with the constraints given in Eq. (15) and by the use of orthogonal collocation, becomes a
non-linear optimization program. This problem is solved using the IPOPT solver [9].

5 Data Driven Modellling
Data driven models are obtained based on previously recorded data to calculate the weights for
the system. These weights are used together with the history of the current system to calculate a
new prediction of the output. The models that will be discussed in this thesis are auto-regressive
exogenous input (ARX), auto-regressive moving average exogenous input (ARMAX) and output
error (OE) model.

5.1 ARX Model
The ARX model is based on previous measurements of inputs and also outputs. Such structure can
be described by [10]:
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A(q)y(t) = B(q)u(t)+ e(t) (23)

Where q is the shift operator which is used to denote previous or future values. u(t) describes the
inputs and e(t) describes the errors at time t.

Figure 5: The ARX model structure [10].

The structure for the ARX model can also be described by the block diagram shown in Fig. 5. A(q)
and B(q) are a function of the shift operator and given by:

A(q) =
na

∑
k=0

akq−k = a0 +a1q−1 + ...+anaq−na (24)

B(q) =
nb

∑
k=1

bkq−k = b1q−1 +b2q−2 + ...+bnbq−nb (25)

Where a0 = 1. nb and na are tuning parameters that describe how many previous values of the
outputs, y(t), and the inputs, u(t), respectively that will be used when creating the model. nk is a
parameter which describes the dead time, leading to b1, ...,bnk = 0 . It is possible to write the ARX
model as a linear model:

ŷ(t,ν) = φ(t)T
ν (26)

Where ŷ(t,ν) describes the predicted output for a given point in time. φ(t) describes the previous
outputs and inputs, giving φ(t) = [−y(t−1),−y(t−2), ...,−y(t−na),u(t−1),u(t−2), ...,
u(t−nb)]

T . ν describes all the weights of the previous outputs and inputs: ν = [a1,a2, ...,ana,b1,b2, ...,
bnb]

T . Given the total number of observations, N >> max(na,nb), it is possible to make a regressor
matrix or design matrix. Given na ≥ nb, the regressor matrix is given by:
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Φ =


−y(na−1) · · · −y(0) u(na−1) · · · u(na−nb)
−y(na) −y(1) u(na) · · · u(na−nb +1)

−y(na +1)
...

...
...

−y(N−1) · · · −y(N−na) u(N−1) · · · u(N−nb)

 (27)

Thus, it is possible to find the weights, ν , by using an ordinary least squares estimator which gives
the following solution:

ν̂ = (ΦT
Φ)−1

Φ
T y (28)

The procedure for finding the least squares estimator is given in Appendix D.

5.2 ARMAX Model
The ARMAX model is based on previous measurements of the input and output, but also on the
errors from previous measurements. The model structure can be written as [10]:

A(q)y(t) = B(q)u(t)+C(q)e(t) (29)

Figure 6: Structure of the ARMAX model [10].

As for the ARX model, a block diagram can also show the structure of the ARMAX model which
is given in Fig. 6. C(q) is a function of the shift operator, q, and is given by:

C(q) =
nc

∑
k=0

ckq−k = c0 + c1q−1 + c2q−2 + ...+ cncq
−nc (30)
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Where c0 = 1 and nc describes how many previous values of the errors, ε(t), that will be used when
creating the model. Similarly to the ARX model, it is possible to write the ARMAX model as a
linear model.

ŷ(t,ν) = φ(t,ν)T
ν (31)

Where ν = [a1,a2, ...,ana ,b1,b2, ...,bnb,c1,c2, ...,cnc ]
T also includes the weights for the errors and

φ(t,ν) = [−y(t−1),−y(t−2), ..−y(t−na),u(t−1),u(t−2), ...,u(t−nb),ε(t−1,ν),e(t−2,ν),
...,ε(t− nc,ν)]

T . Although, the error terms, ε , are unknown. Usually these errors are substituted
by prediction errors, namely:

ε(t,ν) = y(t,ν)− ŷ(t,ν) (32)

The regressor matrix for na ≥ nb,nc then becomes:

Φ(i) =


y(na−1) · · · y(0) u(na−1) · · · u(na−nb) ε(na−1, ν̂ i−1) · · · ε(na−nc, ν̂

(i−1))

y(na) y(1) u(na) · · · u(na−nb +1) ε(na, ν̂
(i−1)) ε(na−nc, ν̂

(i−1)

y(na +1)
...

...
...

...
...

...
y(N−1) · · · y(N−na) u(N−1) · · · u(N−nb) ε(N−1, ν̂(i−1)) · · · ε(N−nc, ν̂

(i−1)

 (33)

Since the error term is a function of the weights, ν , it is not possible to calculate the weights
directly and an iterative method is thus needed. For the first iteration, i = 0, a least squares solution
is usually used. This gives the same regressor matrix as for the ARX model as shown in Eq. (27)
and ν(0) is calculated by Eq. (28). For further iterations an extended least squares method is used
[10]. In this iteration scheme, the previous iteration gives the prediction error which can be used
for the next iteration. This algorithm is repeated until convergence or until the algorithm reaches its
maximum number of iterations. The following algorithm can be used for finding the weights [10]:

Algorithm 1: Algorithm for calculating the weights of an ARMAX model.
Choose the parameters na,nb and nc;
Given na ≥ nb,nc, define the regressor matrix, Φ(0), as shown in Eq. (27);
Find the weights, ν(0), by finding the least squares estimator as described in Eq. (28);
Calculate the error terms, as: ε = y− ŷ(t,ν(0));
for i= 1:K do

Find the regressor matrix, Φ(i) shown in Eq. (33);
Calculate the weights, ν(i), by the least squares estimator given by Eq. (28);
Update the error terms: ε = y− ŷ(t,ν(i−1));
if convergence then

break;
end

end
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The for-loop will repeat until a chosen maximum number of iterations, K, or until convergence
[10].

5.3 OE Model
In the output error (OE) model, it is assumed that the only noise of the model is white measurement
noise. Thus the model can be defined as [10]:

ξ (t)+ f1ξ (t−1)+ ...+ fn f ξ (t−n f ) = b1u(t−1)+b2u(t−2)+ ...+bnbu(t−nb) (34)

Where ξ (t) = y(t)− e(t) describes the output of the system without noise and f1, ..., fn f is the
weightings for the noise free outputs. This can be rewritten as:

y(t) =
B(q)
F(q)

u(t)+ e(t) = ξ (t)+ e(t) (35)

B(q) is as described in Section 5.2 and F(q) is:

F(q) =
n f

∑
k=0

fkq−k = 1+ f1q−1 + f2q−2 + ...+ fn f q
−n f (36)

Where n f is a tuning parameter. The model structure of the OE model as given in Eq. (35) can also
be written as a block diagram which is shown in Fig. 7.

Figure 7: Structure of the OE model [10].

As seen in Section 5.1 and Section 5.2, this model structure can also be rewritten as a linear model:

ŷ(t,ν) = φ(t,ν)T
ν (37)

Where φ(t,ν) consisting of the inputs and the noise free outputs: φ(t,ν) = [u(t−1),u(t−2), ...,
u(t − nb),ξ (t − 1,ν),ξ (t − 2,ν),ξ (t − n f ,ν)]

T and ν = [b1,b2, ...,bnb, f1, f2, ..., fn f ]
T is a vector

consisting of the weights of the model.

To find the weights, ν , for an OE model, Eq. (35) is first rearranged with setting the noise term to
be v(t) = F(q)e(t) which gives:

F(q)y(t) = B(q)u(t)+F(q)e(t) = B(q)u(t)+ v(t) (38)
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Although the errors, e(t), may not be correlated, the noise term v(t) will still usually be auto-
correlated. This is because v(t) is a moving average since the F(q) term describes previous values
[10]. Due to this fact, there is a correlation between Φ and v giving biased estimates of the least
squares estimator. By setting ŷ(t,ν) = ξ (t,ν), the correlation can be avoided, but this will need
an instrumental variable method which is an iterative method to be solved [10]. With n f ≥ nb, the
instrumental variable is given by:

Z(i) =


ξ (n f −1, ν̂(i−1)) · · · ξ (0, ν̂(i−1)) u(n f −1) · · · u(n f −nb)

ξ (n f , ν̂
(i−1)) ξ (1, ν̂(i−1)) u(n f ) · · · u(n f −nb +1)

ξ (n f +1, ν̂(i−1))
...

...
...

...
...

...
...

ξ (N−1, ν̂(i−1)) · · · ξ (N−n f , ν̂
(i−1)) u(N−1) · · · u(N−nb)

 (39)

Using the least squares estimator, the following result is obtained for the weights of the instrumental
variable:

v̂IV = (ZT Z)−1ZT y (40)

The constant regressor matrix for n f ≥ nb is given by:

Φ =


y(n f −1) · · · y(0) u(n f −1) · · · u(n f −nb)

y(n f ) y(1) u(n f ) · · · u(n f −nb +1)

y(n f +1)
...

...
...

...
y(N−1) · · · y(N−n f ) u(N−1) · · · u(N−nb)

 (41)

As for the ARMAX model, there is need for an iterative method to solve for the weights. The
first iteration of Z(0) is usually done by using least squares method, giving Z(0) = Φ and the least
squares estimator shown in Eq. (28).
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The weights for the OE model can be calculated by the following algorithm:

Algorithm 2: Algorithm for calculating the weights of an OE model.
Choose the parameters nb and n f ;
Define the regressor matrix, Φ, as shown in Eq. (41);
Calculate the weights, ν(0), from the least squares estimator given that Z(0) = Φ;
Calculate the instrumental variables, ξ (t,v(0));
for i=1:K do

Define Z(i), as shown in Eq. (39);
Calculate v(i) from Eq. (40);
Update the instrumental variables, ξ (t,v(i)) ;
if convergence then

break;
end

end

The for-loop will repeat until a chosen maximum number of iterations, K, or until convergence
[10].

5.4 Model Selection
With a lot of tuning parameters, there is also a need fot a criterion to decide upon which model is
the preferred model. There are several criteria that could be used for this. Although a measurement
of prediction error can give an indication whether the model is good or not, there is also a need to
assess the complexity of the model as having a less complex model is preferred. Thus there is a
trade-off between the least complex model and a model that gives the lowest prediction error.

5.4.1 Normalized Root Mean Square Error

The normalized root mean square error (NRMSE) is a measurement of how well the model fits the
test data. Since it is a normalized root, it will also give back a number between −∞ and 1. The
value 1 means that the model fits the test data perfectly and a NRMSE trending to −∞ means that
the fit is bad. The NRMSE is closely related to the mean square error (MSE), although the MSE is
an arbitrary, positive value. The MSE is given by:

MSE =
1
n

n

∑
i=1

(yi− f̂ (xi))
2 (42)

Where n is the number of observations, yi is the true response from the training set for the ith
observation and f̂ (xi) is the predicted response for the ith observation [11]. The mean of the
predicted response is given by ¯̂f = 1

n ∑
n
i=1 f̂ (xi). This gives the following NRMSE:
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NRMSE = 1−

√
∑

n
i=1(yi− f̂ (xi))2√

∑
n
i=1( f̂ (xi)− ¯̂f )2

(43)

5.4.2 AIC and FPE

The Akaike information criterion (AIC) is based on a trade-off between the fit and the complexity
of the model and is given by:

AIC = 2np−2L(ν) (44)

Where L(ν) is the maximum log-likelihood function of the model [12]. np describes how many
parameters that have been estimated. The AIC states that the best model is the model with the
lowest value of AIC.

When the observations are subject to normally distributed errors with constant variance, the maxi-
mum log-likelihood function is given by [13]:

L(ν) =−N
2
(1+ ln(2π)+ ln(

1
N

N

∑
t=1

ε
2
t )) (45)

Where ε are the errors and N is the total number of observations.

Substituting Eq. (45) into Eq. (44) gives:

AIC = N +N ln(2π)+N ln(
1
N

N

∑
t=1

ε
2
t )+2np (46)

Another criteria that is used for model selection is the final prediction error (FPE) which is given
by:

FPE = (
1

2 ·N

N

∑
t=1

ε
2
t ) ·

(
1+ np

N

1− np
N

)
(47)

The FPE describes the variance of the prediction error that is expected when testing the model with
a different data set than the one used for training the model [13]. Thus, a lower FPE will also yield
a better model.

6 Results and Discussion
The results will be divided into two separated parts. The first part will be focusing on making a
model predictive controller to control erosion of the chokes in the gas lifted well system. The goal
of this part is to maximize the total production of oil while keeping the erosion of each production
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choke below a set threshold. The second part will be focused on making data driven models from
simulated data. The goal is to identify whether it is possible to use data driven models to model
erosion and to find the best suited model for this purpose. This thesis will not be looking into
combining the two parts, but this is suggested as a task for future work. It should be noted that
these results are based on an ideal case as the simulated data is used to make the data driven models
in addition to the model for the non linear problem in the MPC.

All of the system simulations were done in MATLAB. The script for simulating the system is
based on the equations of the gas lifted well network as given in Section 3.1 and the erosion model
given in Section 3.2. For integrating the system and for optimization purposes, CasADi was used
[14]. CasADi provides useful tools for nonlinear optimization and is an open-source software. The
IPOPT solver was used to solve the non linear programming problems. All the used scripts in this
thesis can be found on Github: https://github.com/JoachimAgotnes/project_thesis.

Due to the large time scale difference between the erosion rate and the differential equations in
the gas lift model, Eq. (1), the differential equations in the gas lift model were set to be algebraic
equations, meaning that the equations in Eq. (1) can be rewritten as:

0 = wgl−wiv (48a)
0 = wiv−wpg +wrg (48b)
0 = wro−wpo (48c)

This assumption is used throughout the thesis.

6.1 Controlling Erosion in a Gas Lifted Well Network
A model predictive controller for the erosion model in the gas lifted well system was made with
the goal of maximizing the total production of oil while satisfying a constraint on the maximum
allowed erosion for each well. The constraint on the erosion, Emax, is set to a maximum of 2.1 mm
for each well.

The differential equation given in Eq. (13) and the algebraic equations given in Section 3.2 and
Section 3.1 are also constraints for the MPC problem. The optimization problem for the controller
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can be written as:

min
∫ tp

0

(
3

∑
i=1
−w(t)i,po +

1
2

∆u(t)T R∆u∆u(t)+
3

∑
i=1

ρi,ssi(t)

)
dt (49a)

s.t.

dE
dt

=
K ·F(α) ·Un

p

ρt ·At
·G ·C1 ·GF · ṁp ·Cunit t ∈ [0, tp] (49b)

g(x) = 0 t ∈ [0, tp] (49c)
∆u(t) = 0 t ∈ [tm, tp] (49d)
−∆umax ≤ ∆u(t)≤ ∆umax t ∈ [0, tm] (49e)
umin ≤ u(t)≤ umax t ∈ [0, tp] (49f)
0≤ E(t)+ s(t)≤ Emax t ∈ [0, tp] (49g)

Where g(x) describes the algebraic model equations in Section 3.1 and Section 3.2. The last term
in Eq. (49a), si(t), describes a slack term that was added to the objective function given in Eq. (14).
This slack term was also added to the constraint on the erosion. This gives the controller the
opportunity to violate the constraint, but at a high cost for the objective function as the weighting
parameters, as ρ1,s = ρ2,s = ρ3,s = 99999. As the change in the gas lift rate only changes the slope
of the erosion for each well, there will be erosion even at the lowest value of the gas lift rate. When
the controller realizes it may violate the erosion bounds it will try to change the gas lift rate during
the prediction horizon in a way that does not violate this condition. However, it may be impossible
and thus it may enter an infeasible region where the controller can not satisfy the constraint on the
maximum erosion. The slack variable ensures that this region will still give feasible solutions. tm
describes the input horizon, while tp is the prediction horizon and ∆u(t) = u(t)−u(t−1).

The regularization term on ∆u will not have a great impact on the stability of the controller as the
controller is stable by itself. Although the term is not removed in case of further modifications to
the system. The weighting on the regularization, R∆u, was set to be:

R∆u =

1 0 0
0 1 0
0 0 1

 (50)

The method used for solving the differential algebraic equation was orthogonal collocation. The
algebraic equations were implemented as constraints at every collocation point. To ensure flow,
a minimum input of 0.4kgs−1 for the gas lift mass rate was chosen while the upper limit was set
to umax = 2kgs−1 . A conservative value of ∆umax = 0.01kgs−1 was chosen. As each time step
is a day, computational issues are low, and therefore a long prediction horizon of 100 days was
chosen as well as an input horizon of 70 days. Since a change in input only changes the slope of the
erosion, a long prediction horizon is needed for the controller to be able to meet the constraint on
the erosion threshold. After simulating the MPC for 500 days, the following result was obtained:
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Figure 8: MPC with a threshold value of erosion of below 2.1 mm.

From the simulation results as shown in Fig. 8, the controller maximizes the total production of oil
by increasing the gas lift rate as fast as possible only being held back by the limit of ∆umax. When
the gas lift rate is constant at its max limit, the slope of the erosion and the total production of oil
is also constant. When the controller realizes it will violate the constraint on the erosion threshold
it will start decreasing the gas lift rate. As seen in Fig. 9, the second well has the highest extent
of erosion when applying the same input to all the wells. Due to the lower GOR and reservoir
pressure, well 1 will be the least exposed to erosion given the same gas lift rate. This is also why
the gas lift rate is decreased in well 2 first and then well 3. There is no decrease in the gas lift rate
for well 1 as it is not near the threshold. The total production of oil is the highest when the gas lift
rate is at the maximum for all the wells. It decreases when the gas lift rate of well 2 and 3 decreases
towards the end of the simulation. The controller does not violate the constraint on erosion and is
thus successful in keeping the erosion in each well below the set threshold.

It should be noted that there is an error in the simulated response in Fig. 8, as well 3 has a small
decrease in the gas lift rate at around day 400. The gas lift rate in well 3 seems to be dependent
on the gas lift rate in well 2. Due to time limitations of this project, the reasoning behind this error
could not be found, but it should be looked into further.
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6.2 Modelling Erosion with the use of Data Driven Modelling
First a data set was made from simulations of erosion of a choke in a gas lifted well network. The
data set was divided into a training data set and a test data set. The training data was used to train all
the models, while the test set was used to test the model on. When creating a model, it is important
to test on different data to guarantee that the model is not overfitting the training data. If this model
was to be tested on the same set as it was trained on, it is very likely that it would overestimate
the prediction capabilities of the model. The training and test set were made in the same way,
although the changes in input were different. For simplicity, only the training set is described in
the following section.

6.2.1 Simulation Data

The parameters for each well can be found in Table 8 and the riser parameters can be found in
Table 7. The system was modelled with three wells and one riser system. The gas lift rate, wgl , for
each well as the input for the system and the erosion for each choke in each well, E, as the output
measurement. The system was simulated for 500 periods, with each period being 1 day. For the
purpose of identification, two changes to the input were made. The inputs for the training set is
igven in Table 1 and the inputs for the test set is given in Table 2.

Table 1: Gas lift rate, wgl , for the training set.

Period Value

1-150 0.35 kgs−1

151-200 0.50 kgs−1

201-300 0.85 kgs−1

Table 2: Gas lift rate, wgl , for the test set.

Period Value

1-200 0.50 kgs−1

201-350 0.75 kgs−1

351-500 0.25 kgs−1

It is assumed that the degradation of the chokes in the wells do not affect the flow through the
system and that the sand rate, ṁp, is constant. Measurement noise was added to the system as
Gaussian distributed noise with a mean of 0 mm and a standard deviation of 0.01 mm. This value
is although believed to be conservative as a measurement of the erosion with a standard deviation
of 0.01mm may be difficult to obtain.
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Figure 9: Results from simulating erosion with a step change with 3 wells.

As seen from Fig. 9, the erosion rate in each well is almost linear. The change in the gas lift rate,
wgl , changes the slope for all of the wells which can be seen at day 151 and at day 201. An increase
in the gas lift rate, wgl will also increase the pressure in the annulus, increasing the mass flow rate
through both the injection valve and the production valve. A higher mass flow rate through the
production valve of both oil and gas will give an increase in the characteristic impact velocity of
the sand particles onto the valve, causing a higher grade of erosion. The extent of erosion in the
second and third well is much higher than in the first well. Most of the well specific parameters in
Table 8 are the same except the reservoir pressure and the GOR.

Having a lower reservoir pressure will decrease the mass flow rate of both oil and gas from the
reservoir, thus decreasing the produced oil and gas which again leads to a lower grade of erosion.
Having a lower GOR will decrease the ratio of gas and oil. Utilizing that GOR =

Qpg
Qpo

and putting it
into Eq. (53) gives:

Qm = Qpo +Qpg = (1+GOR) ·Qpo (51)

Decreasing the GOR will therefore also decrease the mixed volumetric flow, Qm. Consequently,
also the impact velocity of the sand particles decrease, giving less erosion. A lower GOR means
that the flow will be more dense and have a higher viscosity. For flows with higher density, the
sand particles tend to be carried with the streamlines of the flow, rather than in a straight line as
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for lower density flows [4]. This means that the impact velocity will be lower than for flows with
higher GOR, which are flows that have a higher gas content, meaning a lower density.

Well 1 in Fig. 9 has the lowest erosion over the time horizon which makes sense since it has lower
GOR and reservoir pressure than the two other wells. Well 2 and well 3 have similar extent of
erosion, but due to the higher GOR, the choke of well 2 will erode fast than the choke of well 3.

6.2.2 Data Driven Modelling

Assuming that the flows in the wells different wells do not interact with each other, data driven
models were created for each individual well. All the parameters were varied from 1 to 20, without
the dead time, nk which was varied from 0 to 1. All the models within this segment were created
and tested against the test set, giving a value for the NRMSE.

In order to compare the models, model selection was needed to find the preferred or best model for
each well. The AIC and FPE were used to determine which model was the best for each type of
data driven model for each well.
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Figure 10: Best ARX, ARMAX and OE models for well 1 plotted against the test set. y1 is the
erosion in mm.
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Table 3: Data driven models with lowest AIC and FPE for well 1.

Model type Model selection criteria NRMSE na nb nc n f nk

ARX AIC & FPE 92.80% 9 3 - - 1
ARMAX AIC & FPE 96.04% 12 2 9 - 1

OE AIC & FPE 95.95% - 17 - 16 0
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Figure 11: Best ARX, ARMAX and OE models for well 2 plotted against the test set. y1 is the
erosion in mm

Table 4: Data driven models with lowest AIC and FPE for well 2.

Model type Model selection criteria NRMSE na nb nc n f nk

ARX AIC & FPE 92.05% 7 2 - - 1
ARMAX AIC & FPE 97.15% 15 3 13 - 1

OE AIC & FPE 97.12% - 17 - 18 0
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Figure 12: Best ARX, ARMAX and OE models for well 3 plotted against the test set. y1 is the
erosion in mm

Table 5: Data driven models with lowest AIC and FPE for well 3.

Model type Model selection criteria NRMSE na nb nc n f nk

ARX AIC & FPE 91.98% 9 1 - - 0
ARMAX AIC 97.30% 18 6 20 - 1
ARMAX FPE 97.37% 10 2 10 - 0

OE AIC & FPE 97.33% - 2 - 19 1

In general for all three wells, the ARX is outperformed by both the OE and the ARMAX models.
From looking at the ARX models in Fig. 10, Fig. 11 and Fig. 12, it is possible to see that the model
changes the slope of the erosion in all wells, but fails to do this accurately, thus making the NRMSE
lower. In the plots for the ARMAX and OE models for each well, the models fit the test data very
well.

From comparing Table 3, Table 4 and Table 5 the ARMAX and OE models for each well, it is
obvious that they have a very similar NRMSE. For the ARMAX model in well 3, the AIC and
FPE do not coincide upon which model is the preferred model. Although both the models are have
approximately the same NRMSE, the model which the FPE favors is a simpler model with lower
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values for the parameters, meaning that the model requires less history of the system and fewer
weights have to be calculated. For all these wells, both the ARMAX model and the OE model
could be used with great success. Although there is also a need to check the residual plots to see
if the residuals are autocorrelated with each other or if the residuals are correlated with the inputs.
Although similar plots are made for all of the ARMAX and OE models, only the residual plots
for well 1 will be shown as the plots for the other models in the other wells show no significant
autocorrelation between the residuals or a correlation between the input and the residuals. Since
the ARMAX and OE outperforms the ARX model, the ARX model will not be considered further.
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Figure 13: Residual plot for the ARMAX model for well 1.
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Figure 14: Residual plot for the OE model for well 1

The residual plots in Fig. 13 and Fig. 14 show the autocorrelation of the residuals as well as the
correlation between the inputs and the residuals for lag between -25 and 25. The lag describes how
many steps ahead in time and how many steps back in time the correlations are looked at. The grey
area describes a 99% confidence region. As seen in the residual plot for the ARMAX model given
in Fig. 13, there is only a significant autocorrelation term when the lag is 0, at which point all the
residuals will be autocorrelated with itself. There are no significant correlations between the inputs
and the residuals.

For the residual plot for the OE model given in Fig. 14, there are some autocorrelated residuals
that are significant. Also all of the inputs are significantly correlated with the residuals. Although,
the model was created on data with a known noise component. The noise added to the system had
a constant variance and a mean of 0 mm. This should mean that there should be no correlation
between the residuals and the inputs. Why Fig. 14 shows a significant correlation is not known and
should be looked for further work, but a safe choice is to use the ARMAX model instead of the
OE model for well 1. For well 2 the ARMAX model is chosen as it has a better NRMSE than the
other models. For well 3 the ARMAX model chosen based on FPE is the preferred model as it had
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a higher NRMSE.

7 Conclusion
An economic MPC controller was made with the goal of maximizing the total oil production with
regularization terms and slack variables while keeping the erosion under a certain threshold. The
controller was implemented in MATLAB. The results show that a long prediction horizon is needed
for the controller to be able to adjust the gas lift rate in order to keep below the set threshold as the
change in gas lift rate only changes the slope of the erosion. The controller is successful in keeping
the erosion of all of the wells below the threshold, although more work is needed to make the MPC
work better.

An erosion model for a choke in a gas lifted well system was created for three separate wells
combined in a riser system. Due to a time scale difference, all the differential equations of the gas
lifted well system was set as algebraic equations while keeping the erosion rate as a differential
algebraic equation. Simulations were done using CasADi in MATLAB with simulations lasting for
500 days with sampling time of 1 day. The slope of the erosion was deemed to be almost constant.
When increasing the gas lift rate the slope of the erosion also increased.

Lastly, data driven models were made as an alternative to the phenomenological erosion model.
Model selection was done using AIC and FPE. The ARX model was greatly outperformed by the
ARMAX and OE model, which both performed approximately equally, obtaining an NRMSE of
96% on well 1 and 97% on well 2 and 3. The ARMAX model was preferred for well 1 as the OE
model had autocorrelated residuals and significant correlations between the input and the residuals.
For the other wells, both the ARMAX and OE models had no significant trends in the residual
plots.

There is a lot of further work that should be done on this topic. This thesis covers modelling of
erosion and the use of a model predictive controller to control the erosion, although the model that
was used by the MPC was the plant model. The next step should be to use the data driven model as
the model for the MPC. Further on, making data driven models from experiments and applying this
in a model predictive control framework should be done to further validate that data driven models
can be used in an MPC application to control erosion. There has already been done work to create
this rig, but due to time limits for this thesis it was not able to be used. The setup consists of three
different pipelines. Inside each of these pipelines, a probe is attached together with two cameras per
probe. The flow through the pipelines can be controlled and it also has the possibilities of adding
air and sand to the system. By using the cameras and software to measure the erosion along with a
data driven model could be used in an model predictive controller to control the erosion.
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Appendix

A Parameters for erosion modelling

Table 6: Parameters used for calculating the erosion rate.

Parameter Explanation Value Unit

ρp Density of sand particles 2.5 ·103 kgm−3

C1 Model geometry factor 1.25 -
Cunit Unit conversion factor 1000 mmm−1

D Length from cage and choke body 0.1 m
dp Sand particle diameter 2.5 ·10−4 m
GF Geometry factor 2.0 -
H Height of gallery 0.3 m
K Material erosion constant 2 ·10−9 -

Mmg Molar mass of gas 20 gmol−1

ṁp Sand rate 50 ·10−2 kgs−1

n Velocity exponent 2.6 -
r Radius of curvature 0.2 m

B Parameters for gas lift

Table 7: Parameters used for gas lift model.

Parameter Explanation Value Unit

µo Dynamic viscosity of oil 0.001 Pas
ρo Density of oil 8 ·102 kgm−3

ρro Density of oil in riser 8 ·102 kgm−3

Ar Cross-sectional area of riser 0.0115 m2

Cpr Valve constant for riser valve 0.01 -
Dr Diameter of riser 0.121 m
Hr Height of riser 500 m
Lr Length of riser 500 m
nw Number of wells 3 -
ps Separator pressure 20 bar
T Sampling time 86400 s
Tr Riser temperature 303 K
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Table 8: Well specific parameters used for gas lift model.

Parameter Explanation Well 1 Well 2 Well 3 Unit

Abh Cross-sectional area of well below injection point 0.0115 0.0115 0.0115 m2

Aw Cross-sectional area of well above injection point 0.0115 0.0115 0.0115 m2

Civ Valve constant for injection valve 0.0003 0.0003 0.0003 -
Cpc Valve constant for production valve 0.002 0.002 0.002 -
Da Diameter of annulus 0.189 0.189 0.189 m
Dbh Diameter of well below injection point 0.121 0.121 0.121 m
Dw Diameter of well above injection point 0.121 0.121 0.121 m

GOR Gas oil ratio 0.10 0.12 0.11 -
Ha Height of annulus 1000 1000 1000 m
Hbh Height of tubing below injection point 500 500 500 m
Hw Height of tubing above injection point 1000 1000 1000 m
La Length of annulus 1500 1500 1500 m
Lbh Length of pipe below injection point 500 500 500 m
Lw Length of pipe above injection point 1500 1500 1500 m
pr Reservoir pressure 150 155 160 bar
PI Reservoir productivity index 5 5 5 -
Ta Annulus temperature 301 301 301 K
Tw Well temperature 305 305 305 K

C Calculation of dynamic viscosity of mixture
Under the assumption of ideal gas, the density of the gas, ρg, can be found as a function of the
molar mass, temperature and pressure.

ρg =
pm ·Mmg

R ·Tw
(52)

Where pm is the pressure in the manifold and Tr is the temperature in the riser.

The mixed volumetric flow is the sum of the liquid volumetric flow and the gas volumetric flow.

Qm = Qpo +Qpg =
wpo

ρo
+

wpg

ρg
(53)

Where Qm, Qpo and Qpg is the mixed, oil and gas volumetric flows.

Substituting Eq. (52) into Eq. (53) gives an expression for the mixed volumetric flow:

Qm =
wpo

ρo
+

R ·Tw ·wpg

pwh ·Mmg
(54)

The dynamic viscosity for the mixture, µm, is given by:
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µm =
µo ·Vo +µg ·Vg

Vo +Vg
(55)

Where µo and µg are the dynamic viscosities of the oil and gas.

Vo =
Qpo
Ap

and Vg =
Qpg
Ap

where Vo and Vg is the velocity of oil and gas. Ap is the pipe diameter.

µm =
µo ·Qpo

Qpo +Qpg
+

µg ·Qpg

Qpo +Qpg
(56)

This is further simplified under the assumption that the viscosity of the gas, µg, is much lower than
the viscosity of the liquid, µo.

µm =
µo ·Qpo

Qpo +Qpg
(57)

Substituting Eq. (54) into equation Eq. (57) gives:

µm = µo ·
wpo
ρo

wpo
ρo

+
R·Tw·wpg
pwh·Mmg

(58)

D Least Squares Estimator
Least squares estimation is used to minimize the squared prediction error, where the prediction
error can be written as ε = y−ΦT ν [10].

J(ν) = ε
T · ε (59)

= (y−Φ
T

ν)T (y−φ
T

ν) (60)

= yT y− yT
Φν−ν

T
Φ

T y+ν
T

Φ
T

Φν (61)

= yT y−2ν
T

Φ
T y+ν

T
Φ

T
Φν (62)

Where J(ν) is the cost function which describes the squared prediction error. y is a vector de-
scribing observed measurements and Φ is the regressor matrix. ν describes the weightings of, for
instance, an ARX model. Minimizing the cost function gives:

∂J(ν)
∂ν

= 0 =−2ν
T y+2Φ

T
Φν (63)

As ΦT Φ is a symmetric matrix, it can also be inverted. Solving Eq. (63) for the weights, νm gives
the following prediction:
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ν̂ = (ΦT
Φ)−1

Φ
T y (64)
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