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Abstract

The aim of this project was to derive a model for a simple thermal energy storage system that
consists of at least one supplier, one consumer, a storage unit, a direct heating source which is
cheap and an expensive emergency heating source from the external market. This was done for
a two plant system and four plant system. After obtaining the model and validating it through
simulation tests, it was used for dynamic optimisation calculations focusing on control. The
simulation tests showed that disturbances that occur in the supply side did have a reduced
effect in the consumer side. This implies that the energy storage will ensure a steady supply
to the consumer regardless of source unavailability at certain periods. The buffer action of
the energy storage was clearly seen and the responses to disturbances and step changes in
inputs from steady state, suggested that the model is valid. Then a scenario was formulated
only for the simple two plant system to meet a predicted consumer energy demand while
minimising the total energy cost function. A trade-off exists between purchasing extra energy
to fulfill consumer requirements and using the limited storage efficiently. This resulted into an
optimal control problem which was mathematically formulated, discretised and converted into
a non-linear program using direct collocation method. The nonlinear program was defined
using CasADi and solved by using IPOPT in MATLAB. Open loop optimisation calculations
over a prediction horizon of one day resulted in optimal controls and states that the system
should be operated in. The solution is valid and practical since it ensures that the energy
storage is heated up extra or “fully charged” before a peak demand. A brief discussion on
how model predictive control could be implemented on the system is also done. The report
also mentions how machine learning approaches could be used to improve the control of the
system.
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1 — Introduction

The contemporary world has developed in its entirety due to technological advancement.
Advanced technology has enabled human development in its ability to utilize natural resources
and acquire surplus to basic requirements. Industries are entities that develop this technology
and apply it to convert natural resources into valuable and useful products. While mass
production has been achieved, flooding cheaper and useful products into the market to ease
life, there has been an increased burden to the environment. The demand for raw materials
and energy sources threatens future sustainability [3]. Therefore, current research is focused
on rethinking to develop technology with less environmental footprint [4]. Achieving this
requires continuous improvement of industrial processes for efficient conversion of materials
and replacing high energy processes with optimal ones. Moreover, minimization of waste
products and energy streams is achieved by recycling and energy integration. The urge for
efficient use of resources gave birth to the idea of industrial clusters.

Industrial clusters are a group of plants that are placed in close proximity to easily share
and communicate resources. They are characterized by having common utility supply and
integration of energy and product streams. That is to say one plant may produce main
products, by-products and wastes that are inputs to another plant process. Likewise, some
processes generate surplus energy while others have higher energy demand. Creating a cluster
consisting of a number of such plant processes and integrating them accordingly will result in
greater efficiency of resource utilization. The ideal situation of an industrial cluster is when
each waste stream of a unit is connected to another unit creating an “ecosystem”, and it
becomes an industrial ecosystem [5, 6].

To achieve industrial ecosystem we must aim at utilizing energy and materials, including raw
materials, products or by-products to completely eliminate waste and reduce economic losses.
Industrial clusters are far from becoming ecosystems, but to achieve this, one must design an
optimal and efficient process. Exchange of by-products and waste streams can be easily done
provided the facilities are in close proximity. Efficient thermal energy integration between
plant streams is a challenging task because energy is transferred by temperature differences
between streams. The quality and amount of energy transfer depends on the temperature
of the hottest stream. Therefore, it is more efficient to transfer heat at the hottest point of
the source. Moreover, it is a challenge to meet energy demands at all periods especially at
peak demands. A solution is to have a central energy storage that collects heat from sources
and acts as an energy buffer to supply the sinks. It is also advantageous from a planning
perspective, as it becomes easier when a plant wants to change its process [1].
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2 CHAPTER 1. INTRODUCTION

Energy storage systems consist of at least one plant with surplus energy that acts as a source,
plant(s) with demand (customers) that become heat sinks, an energy storage unit, energy
market where energy can be bought to meet peak demands, a cheaper heating source such as
hot flue gases and also extra sink usually district heating to release heat.

1.1 Motivation

Energy storages are quite beneficial since they provide a buffer to hold and release thermal
energy between energy integrated units. The storage holds thermal energy when the source
streams supply more energy and there is no demand in the sink streams matching it. It then
cools to release the stored energy when the demand in the sinks is much higher and hence
ensuring that process requirements are fulfilled at all times. A common practice in these
systems is to purchase energy externally from the market, for example heating by burning
fossil fuels, which are expensive sources of energy and this has influence on the operation
costs. This strategy creates a need for optimisation of the system, since there is always a
trade-off between costs involved and meeting process requirements at times of low supply or
high demand . It is obviously cheaper to utilize the stored energy first but these storage units
have limitations in the amount they can store. An optimal operation strategy that ensures
cost minimisation without violating operational constraints at any time is required. In order
to operate the storage to meet the energy demands in the system, one requires a model-based
strategy to predict the next best actions that will satisfy system requirements. The benefits
that come with such an optimised system are:

1. Higher peak capacity. This means that the energy storage has extra heating just before
peak demands. Then the system could handle peak demands better.

2. Exploit energy market prices. The system heats extra from the market when the prices
are lower and decides not to at times when it is expensive.

3. Utilize favourable environment conditions: for example heating in the day and cooling
at night [7].

1.2 Objective

The aim of this project is to establish a working dynamic model for a simple energy storage
system which consists of at least two chemical plants that may have varying energy supply
and demand profiles. The model must be used for open loop dynamic optimization and for
model predictive control implementation on the system.

The following are the specific objectives of this project:

1. Study about thermal energy systems, heat exchanger modeling, dynamic optimisation
and model predictive control.

2. Develop a dynamic model for a simple energy system with two plants i.e. a source and
a sink. Extend the model to contain more than two plants.
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3. Perform model simulations to analyse system behaviour and validate them.

4. Open-loop optimisation of a simple two plant system with constant and varying demand
profile

5. Implementation of model-predictive control for the system.

This work was based on ideal scenarios which may resemble practical cases with parameters
that are similar to real processes.

1.3 Report structure

The report has seven other chapters. First, the background theory necessary for modeling,
optimisation and control is covered. Then the assumptions and steps taken to write the
governing equations are listed for two-plant and four-plant system scenarios. The next section
describes the approach used in this work to perform simulations for the systems and simulation
results are shown and discussed. This is followed by the open loop dynamic optimisation
section where the optimal solution computed for the two plant system with varying customer
demand profile is shown and discussed. This followed by a brief discussion on MPC principle
and how it could be implemented to control the system. Finally, a general discussion of the
work is done followed by a conclusion with recommendations for further work.
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2 — Theory

This chapter includes all the necessary background knowledge used in this work. To begin
with a basic knowledge about energy storage and thermal energy storage systems is written.
Then heat transfer modeling in heat exchangers is explained to create a foundation for thermal
energy storage system modeling. Also there is a brief description on dynamic optimisation
and use of direct collocation method to formulate a non-linear program.

2.1 Energy Storage Systems

Energy storage (ES) systems are an important development towards a successful intermittent
energy source in meeting demand. The ES has recently developed to create a significant
impact in modern technology. With the varying availability in renewable energy sources such
as solar power, energy storage plays a huge role in its implementation when availability is
lowest. The ES systems also contribute towards realising efficient environmentally friendly
energy use in many applications including heating and cooling systems in industrial processes.
The benefits associated with use of ES systems are reduced energy costs and consumption,
increased operation flexibility and reliability, reduced equipment size, efficient use of process
equipment, minimal use of fossil fuels and reduced pollutant emissions [8].

In the modern industrial world, abundant and reliable supply of energy is desired. Moreover,
this should be achieved at the minimal costs possible. Usually humanity derives raw energy
from a source through heat release. Even electricity that is favoured as a power source
is produced from generators that are driven by burning fuel directly or indirectly by heated
steam. These heating processes are inefficient and plenty of energy is lost in the waste streams.
A glance on the other side, renewables have a characteristic of unsteady supply. The need
for efficiency, minimising waste energy and ensuring reliable supply of energy to meet peak
demand requirements has elicited investment in energy storage. The energy storage concept is
not only limited to industries but also in centralised cooling and heating systems for households
and buildings. Moreover, the sharp increase in fuel costs - especially fossil fuels - in the
previous decades calls for processes that are efficient and this is possible with energy storage.

5



6 CHAPTER 2. THEORY

2.1.1 Energy Demand

Energy demand in industrial and generally all sectors fluctuates on a time basis. The normal
practice is to have energy supply systems that produce by adapting to the demand at peak
times. This can be termed as external market energy. Peak demands usually were met by
running extra gas turbines or oil generators that add up significantly to the costs due to the
scarcity of fossil fuel resources. Energy storage is an alternative way of meeting peak energy
demands and are flexible to incorporate renewable energy sources and waste energy streams.
The ES strategy based on the sector can be applied as follows:

• Utility: a cheaper utility such as electricity at base load or waste stream such as flue
gases can be used to “charge” the energy storage systems during low demand periods.
The energy stored is released in peak demand times, reducing reliance on purchased
energy from the market.

• Industry: in industries, some plant processes have high temperature waste heat streams
that preheat the storage for use when peak demand arrives.

• Co-generation: when there are several types of energy sources energy storage play a
big role to ensure reliability. For example with energy storage it is possible to combine
thermal energy and solar energy sources to meet energy demands.

2.1.2 Categories of Energy Storage Methods

Energy storage requires a medium that has a capacity to store energy in a certain form.
Due to differences in which energy can be stored there are several energy storage methods.
These methods are classified as mechanical, chemical, biological, magnetic and thermal energy
storage. Thermal energy storage is discussed here, other forms of energy storage are out of
the scope of this work.

2.1.3 Thermal Energy Storage Systems

Thermal energy storage (TES) systems have the ability to store heat to be used at a later
time depending on temperature, time, place, power demand or price conditions. This storage
eliminates the discrepancy between thermal energy supply and demand throughout system
operation. The concept is similar to a battery with a synonymous storage cycle of charging,
storage and discharging processes.

A TES system requires a high energy density storage material, that is high heat capacity
medium. A good heat transfer between it and the heat transfer fluid (HTF) or the supply
and demand streams is desirable. The design should also consider the chemical and mechanical
stability of the storage medium at the thermal storage range of temperature. Moreover, the
most important design criteria as explained in [9] are the operation strategy, the maximum
load needed, the nominal temperature and enthalpy drop, and the integration into the whole
application system.
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Types of TES

TES systems can either be sensible heat storage, latent heat storage or thermochemical heat
storages.

1. Sensible heat storage: Sensible heat storage or heat capacity storage, is done by
altering the temperature of a material without phase change or chemical composition
change. The amount of thermal energy stored in a sensible heat storage is given by
equation 2.1

E =

∫ T

Tref

(
∂H

∂T

)
p,n

dT (2.1)

where E = thermal energy stored, H = enthalpy, T = absolute temperature, Tref =
reference temperature. The equation can be written in form of specific heat capacity at
constant pressure, cp in equation 2.2a

E = m

∫ T

Tref

cp(T ) dT (2.2a)

where

cp(T ) =

(
∂h

∂T

)
p,n

(2.2b)

m = mass of stored material and h is the specific enthalpy

(2.2c)

When the assumption is made that the specific heat capacity is independent of
temperature then it is constant. The energy stored can be written simply as equation
2.3

E = mcp(T − Tref) (2.3)

For solids and liquids, the specific heat capacities at constant volume and constant
pressure are always equal (cp = cv). Therefore from equation 2.2a, the amount of
thermal storage stored in a material due to raising its temperature can be determined.
( [10])

2. Latent heat storage: These storage media store thermal energy in form of their latent
heat during a constant temperature process like phase change. Solid-liquid phase change
is the most common method used. Liquid-gas phase change has the highest latent heat
of phase change but the huge volume change of the storage material is a problem and
hence is not used in general [11]. The thermal energy stored by latent heat can be
expressed as in equation 2.4.
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Figure 2.1: Conceptual ilustration of energy or heat exchange in industrial cluster with heat
exchange and thermal storage. The red lines indicate hot supply water and blue
lines cold return water [1]
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E = mL (2.4)

where m = the mass of stored material and L = latent heat of phase change.

3. Thermochemical heat storage: Thermochemical energy storage is a result of a
high energy chemical reaction that stores energy. The reaction products must be
stored and the heat generated during the reaction must be available when backward
reaction occurs. Therefore, this storage methods involves only reversible reactions. In
the charging process, injected heat is used to drive an endothermic chemical reaction;
the chemical products are later used to restore thermal energy by performing the
reverse (exothermic) reaction [12].

2.2 Heat Transfer Modeling in Heat exchangers

A heat exchanger is a process unit that is used to transfer thermal energy between two fluid
streams without mixing them. The equipment has two parts which are the hold and cold
sides that are separated by a solid and is designed in such a way that the heat transfer area
between the two streams, and hold-up is maximised.

Heat exchangers are important in thermal energy storage systems because they are used
to transfer heat from the source to the heat transfer fluid and storage medium. They are
consequently used to release the heat energy from the storage medium and heat transfer fluid
to the thermal sinks of the system. They are simply fluid cooling and heating equipment.

Heat exchangers can be classified in terms of flow arrangement or type of construction. In
this project, there is minimum focus of the construction design aspects of the heat exchangers
hence flow arrangements will be discussed. Based on flow arrangement, the simplest heat
exchangers with double-pipes according to [13], can be classified as:

• Cross flow heat exchangers: the flow of cold and hot streams are arranged in a way that
one stream flows perpendicular to the other.

• Parallel flow heat exchangers: the cold and hot fluid enter the heat exchanger in the
same end and therefore flow in the same direction.

• Counter-current flow heat exhangers: the cold and hot fluids enter at different ends and
have opposite directed flows.

A common configuration in practice is a shell-and-tube heat exchanger that has a single
shell and tube passes inside the shell. The shell has baffles installed inside to maximise
convective heat transfer by increasing turbulence. In this shell and tube construction, the
flow configuration can not be clearly identified as any of the three discussed above.
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2.2.1 Overall Heat Transfer Coefficient

The heat transfer between the two streams is proportional to the differences in absolute
temperature of the two streams at that point. The constant of proportionality is the total
thermal resistance to heat transfer between the two fluids. This parameter is the overall heat
transfer coefficient which is a function of the convective and conductive fluid properties, and
conductive solid material properties. The determination of this value is important to analyse
heat exchanger performance but is often the most uncertain parameter.

2.2.2 Log Mean Temperature Difference

To model the performance of a heat exchanger one can relate the inlet and outlet temperatures
of exchanging streams, overall heat transfer coefficient and total heat transfer surface area.
This is shown in equation 2.5.

q = UA∆Tm (2.5)

where U = overall heat transfer coefficient, A = heat transfer area and ∆Tm = appropriate
mean temperature difference.

The appropriate mean temperature difference can be found by performing energy balances
across an infinitesimal transfer area and integrating w.r.t the distributed stream temperatures
throughout all the positions (length), assuming parallel flow or counter-current flow. After
some derivation steps in [13,14], the appropriate average temperature difference is a log mean
temperature difference, ∆TLM . Therefore 2.5 can be written as 2.6

q = UA∆TLM (2.6)

where

∆TLM =
∆T2 −∆T1

ln (∆T2/∆T1)
=

∆T1 −∆T2
ln (∆T1/∆T2)

(2.7)

where positions 1 and 2 are the inlet or outlet positions of the double-pipe heat exchanger.

It may be noted that, for the same inlet and outlet temperatures, the LMTD for counter-
current flow surpasses that for parallel flow. Hence, for the same value of U the heat transfer
area A required to satisfy the same heat transfer rate q is smaller for counter-current flow than
for parallel flow arrangements. It is also possible for the outlet stream temperature of the
cold stream to be greater than the outlet temperature of the hot stream in a counter-current
flow setting but never in parallel flow. [13]
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2.2.3 Approximation to the LMTD

The log mean temperature difference is an accurate expression for the mean temperature
difference between the hot and cold streams provided that the overall heat transfer
coefficient is not a function of the position. However, it has been globally accepted that the
logarithmic mean causes inconvenience to chemical engineering programmers. Zavala-Ŕıo et
al [15], Paterson [16] and Chen [17], communicated the difficulties associated with
performing heat exchanger calculations with the log mean function. It is common practice in
iterative equation solving schemes that equality of stream temperatures is assumed as a
starting value. This will result into an indeterminate form of the log mean. Moreover, at
that limit, the derivatives of LMTD (which are needed in Newton iterative methods) are
undefined.

Paterson [16] derived a new expression that overcomes the aforementioned difficulties, to
replace the log mean. The expression is a good enough approximation to LMTD that can
be used in calculations for practical purposes. He obtained the new mean as a weighted
arithmetic mean (linear combination) of geometric mean and arithmetic mean temperature
differences shown in eq. (2.8).

∆TNM ≡
2

3
∆TGM +

1

3
∆TAM ' ∆TLM (2.8)

where

∆TAM ≡
∆T1 + ∆T2

2
(2.9a)

∆TGM ≡
√

∆T1∆T2 (2.9b)

The arithmetic mean is considered a useful approximation for mean temperature difference
in economic analysis but the new mean has refined it for more practical uses.

Underwood [18, 19] and then Chen [17] both derived an approximation that is a weighted
geometric mean of the arithmetic mean and geometric mean. Their new means are a
polynomial of the temperature differences at the ends of the exchanger ∆T1 and ∆T2.

∆T
1/3
UM =

1

2
(∆T

1/3
1 + ∆T

1/3
2 ) (2.10)

∆T 0.3275
CM =

1

2
(∆T 0.3275

1 + ∆T 0.3275
2 ) (2.11)

Generally,

∆Tm =

[
1

2
(∆Tn

1 + ∆Tn
2 )

]1/n
(2.12)

such that the n values will determine the type of approximation used. This has been
summarised in table 2.1.
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Table 2.1: Values of n and their respective approximations

n Approximation (∆Tm)

1 Arithmetic mean (∆TAM )
1
3 Underwood’s mean (∆TUM )
0.3275 Chen’s mean (∆TCM )

2.3 Dynamic Optimisation

A mathematical optimisation problem includes three main parts which are an objective
function, decision variables and constraints. The objective function is a scalar function
which describes the quantity to be minimised or maximised. Decision variables can either be
real numbers, integers or binary numbers. Usually decision variables are vectors of real
numbers. The constraints are divided into equality and inequality constraints. All these
elements together define an optimisation problem. When the objective function or
constraints are non-linear functions then the optimisation problem becomes a non-linear
program (NLP) [20].

min
z∈Rn

f(z) (2.13a)

subject to

ci(z) = 0, i ∈ E (2.13b)

ci(z) ≥ 0, i ∈ I (2.13c)

where, z is the decision variable, E is the equality constraint index set and I is the inequality
constraints index set

Usually optimization problems are stated as minimisation problems. To obtain an optimal
point, either a local or global minimum must satisfy the Karush-Kuhn-Tucker (KKT)
conditions which are conditions for optimality. This has been discussed properly in [21].

Dynamic systems have the property of possessing variables that change in the course of time.
Therefore, dynamic optimisation involves solving for optimal decision variables at every point
in time. In simple words the optimal solution is a function of time. It is vital to perform
dynamic optimisation rather than static optimisation when dynamics have a significant effect
in the systems operating conditions.

The time varying variables of a dynamic system are described by differential equations whose
specific solution is mostly impossible to calculate analytically. Therefore the systeme has to
be converted into a disrete time system where the variables are sampled at discrete points in
time. It is common to have such sample points equally spaced in time. Therefore for example
if there are (nx + nu) decision variables in the system and the time space is discretised into
N intervals then the discretised model has a total of N(nx + nu) decision variables.
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2.4 Direct Collocation

This is a method that is employed to make it possible to solve optimal control problems. The
method converts an optimal control problem to a non-linear problem (NLP) that could be
solved by SQP or interior-point methods. It has been regularly applied in state trajectory
optimisation and parameter optimisation problems or a combination of the two. The ability
of a optimal control problem solver to find a solution is improved when a problem is further
constrained even if it increases the dimensionality. In addition, direct collocation better relates
the states to the augmented objective function. [22]

Collocation method is an approach of solving ordinary differential equations numerically. It is
an implicit variation of Runge-Kutta method [22]. Runge-Kutta allows calculation of states
at each discrete time element by forward integration. In direct collocation, the states are
expressed implicitly as the function of states and their derivatives. The method employs
polynomials to interpolate state variables [23] inside the discrete time element.

2.4.1 Polynomial Interpolation

In the temporal domain {tk,0, . . . , tk,K} ∈ [tk, tk+1] it is possible to express the state trajectory
within a discrete time interval as a function of time points within the interval. The function
used are Lagrange polynomials whose order K depends on the number of points taken inside
the interval.

Pk,1(t) =

K∏
j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R (2.14)

In order to interpolate the state trajectory the linear combination of all these polynomials is
used.

s(θk, t) =

K∑
i=0

θk,iPk,i(t) (2.15)

where

s(θk, tk,j) = θk,j (2.16)

The main idea of collocation method is using eq. (2.15) to interpolate the state trajectory by
adjusting the parameters θk,i and approximate system dynamics (ODE) ẋ = F(x,u). In that
case we obtain K + 1 degrees of freedom per state. The constraints used in collocation are
given by eq. (2.17) and the states xk and inputs uk are degrees of freedom from the NLP.

s(θk, tk) = θk,0 = xk (2.17a)

∂

∂t
s(θk, tk,j) = F(s(θk, tk,j ,uk)), j = 1, . . . ,K (2.17b)
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Figure 2.2: Possible Lagrange polynomials in an interval with 4 interpolation points [2]

Figure 2.3: Interpolated state trajectory as a function of parameters θk,i [2]
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eq. (2.17b) can further be modified to give eq. (2.18)

K∑
i=0

θk,iṖk,i(tk,j) = F(θk,j ,uk) (2.18)

The parameters θk,i can be solve for using Newton method from the constraints at each
collocation point.

2.4.2 Selection of Time Grid

As discussed above, there are many possibilities of selecting collocation points within the
interpolation interval. However, there are proven set of collocation points which deliver an
exact integration solution for any polynomial of order < 2K (Legendre) and < 2K−1 (Radau)
[2].

2.4.3 Error and Stability

Collocation methods are A-stable: They can handle stiff model equations. This implies that
even larger time steps can be used to predict steady state and slow dynamics correctly in the
presence of very fast dynamics [2].

Radau collocation is L-stable: In addition to A-stability, Radau collocation handles
eigenvalues at −∞.

Order of integration error: It depends on K, integration error is O(h2K) for Legendre and
O(h2K−1) for Radau. Runge-Kutta schemes have an order of O(h4). Moreover, the error only
occurs to the end-state (tk) of the integrator but not the intermediate points [2, 24].

2.4.4 NLP Solving with Direct Collocation

Solving and NLP is done by passing the constraints and the objective function through a
solver. Direct collocation approximates the dynamics in intervals and gives constraint
equations for the states and inputs at all collocation points and end-points. The optimal
trajectory is found by solving for all the decision variables such that the objective function is
minimum. The vector of decision variables w is equal to N(nx(K + 1) + nu) where nx is the
number of state variables, nu is the number of input variables and N is the number of
discrete time elements. The NLP is transformed into a form as shown in equation 2.19.
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min
w

Φ(w) (2.19a)

subject to g(w) =



θ0,0 − x0

s(θ0, t1)− θ1,0
F(θ0,i,u0)−

∑K
j=0 θ0,jṖ0,j(t0,i)
...

s(θk, tk+1)− θk+1,0

F(θk,i,uk)−
∑K

j=0 θk,jṖk,j(tk,i)
...


= 0 (2.19b)

where w = {θ0,0, . . . , θ0,K ,u0, . . . , θN−1,K ,uN−1} are the decision variables.

Since, the parameter θi,k are solved together with the optimisation variables xk and uk, then
direct collocation is a fully simultaneous approach. The integration and optimisation actions
are performed together in the NLP solver.

The input is usually chosen piecewise-constant within each discrete time element. Picking a
different input at different collocation times can also be done but is not common and may
cause problems with finding a solution.



3 — Modeling

In this chapter, governing equations for energy storage systems are derived. First, a simple
scenario with two plants where one is a source and another a sink is considered. After
that, dynamics for a system with four plants are derived. These equations are derived from
principles of mass and energy conservation together with assumptions. The equations are
necessary before simulation to investigate the system dynamics, and dynamic optimisation.

3.1 Two Plants Storage System

The topology for a two plant system scenario is shown in figure 3.1. The system is made
of two plants, plant 1 is a thermal source and plant 2 is a thermal sink. The storage tank
contains storage material that is heated up by either heat exchanger 1 consisting of L1 and
R1 sides or flue gas stream from D. It loses heat to plant 2 via heat exhanger 2 consisting of
L2 and R2 and to the surroundings E.

Figure 3.1: Schematic for modeling a two plant thermal storage system

The following assumptions have been taken in order to arrive to a reasonable system model:

17
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1. Source and sink plants (plant 1 and 2) are reservoirs and emanating streams have same
intensive property i.e. the temperature of the stream is a disturbance and only depends
on the plant.

2. Heat exchangers are modeled as a system of two lumps that transfer heat between each
other.

3. Heat losses from heat exchangers are neglected and the overall heat transfer coefficient
is constant i.e. (UA)hex = constant.

4. Storage temperature is uniform throughout the volume. The level of the tank is
controlled at maximum. Therefore, it has a constant volume Vtank.

5. The fluids flowing in each of the streams has a constant specific heat capacity cp.

6. All fluid streams are assumed to have properties of water in the simulations. Density
and specific heat capacity values are equal to those of water.

7. The conventional energy flow direction is from left to right as illustrated in fig. 3.1.

Energy and Mass Balances

Following assumption 1, the sources and sinks have temperatures T1 and T2 respectively that
are not affected by the system dynamics. They will be considered constant or given.

Source:
dH1

dt
= 0, T1 = constant (given) (3.1)

Sink:
dH2

dt
= 0, T2 = constant (given) (3.2)

Lumps:

1. Heat exchanger 1: Starting with the mass balances across the heat exchanger gives
equation 3.3.

d(ρVhex)

dt
= ρq1|L1 − ρqL1|1 (3.3a)

dVhex
dt

= q1|L1 − qL1|1 (3.3b)

While in operation, the heat exchanger is filled with fluid so it is always constant i.e.
dVhex
dt = 0 . Therefore, the inlet and outlet flows of the heat exchanger are equal. For

simplicity, the following notations in eq. (3.4) will be used from now on in this report
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instead.

q1|L1 = qL1|1 = qL1 (3.4a)

qtank|R1 = qR1|tank = qR1 (3.4b)

qtank|L2 = qL2|tank = qL2 (3.4c)

q2|R2 = qR2|2 = qR2 (3.4d)

The outlet temperatures of the left and right side of the heat exchanger 1 (HX-1) are
denoted as TL1 and TR1 respectively. The temperature of all the storage tank’s outlet
streams are equal and denoted as Ttank. Energy is conserved across each side of the heat
exchanger. Starting with the left side L1 the energy conservation equation is eq. (3.5a).

dHL1

dt
=
∑

Hin −
∑

Hout +Qnet −Ws (3.5a)

Adiabatic conditions are assumed and there is no shaft work done by the system i.e.
Qloss = 0 and Ws = 0, then

d(ρcpVhexTL1)

dt
= ρcpqL1T1 − ρcpqL1TL1 −QL1|R1 (3.5b)

ρcpVhex
dTL1

dt
= ρcpqL1(T1 − TL1)−QL1|R1 (3.5c)

(3.5d)

Where QL1|R1 stands for energy transfer rate from lump L1 to R1. Hence, equation for
temperature dynamics of stream qL1 given by equation 3.7.

dTL1
dt

=
1

Vhex

{
qL1(T1 − TL1)−

QL1|R1

ρcp

}
(3.6)

The right side, R1 dynamics can be found with the same steps done in the left side L1
to give equations 3.7.

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

QL1|R1

ρcp

}
(3.7)

2. Heat exchanger 2: The design parameters of every heat exchanger is the same so
the energy balances for the second heat exchanger will result to similar equations with
different variables shown in equation 3.8 and 3.9. The outlet temperatures of the left
and right sides of the heat exchanger 2 (HX-2) are denoted as TL2 and TR2 respectively.

dTL2
dt

=
1

Vhex

{
qL2(Ttank − TL2)−

QL2|R2

ρcp

}
(3.8)
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dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

QL2|R2

ρcp

}
(3.9)

3. Heat transferred from hot to cold side: Heat transfer model between cold and hot
streams in heat exchangers is given by 2.5.

Q = UhexAhex∆Tm (3.10)

where, ∆Tm is the mean temperature difference between the cold and hot streams.
The appropriate value for this is the LMTD, (∆TLM) but a polynomial approximation
is suited for practical purposes instead. These approximations are by Chen ∆TCM ,
Underwood ∆TUM . The ∆Tm can simply be expressed as the differences between the
inlet temperatures of hot and cold sides or as an arithmetic mean ∆TAM . The simple
approximations are suitable for cases when the ratio of flow rates of either streams is
close to 1. Otherwise when one of the flows in very large compared to another then the
approximation becomes very poor.

QL1|R1 = UhexAhex∆Tm,1 and QL2|R2 = UhexAhex∆Tm,2

where,

∆Tn
m,1 = 0.5

[
(T1 − TR1)

n + (TL1 − Ttank)n
]
, n = 1,

1

3
or 0.3275

∆Tn
m,2 = 0.5

[
(TL2 − T2)n + (Ttank − TR2)

n
]
, n = 1,

1

3
or 0.3275

Using the simpler approximation the mean temperature differences can be estimated as
equations 3.11.

∆Tm,1 = T1 − TR1 (3.11a)

∆Tm,2 = Ttank − TR2 (3.11b)

4. Storage tank: Beginning with mass balances we obtain equation 3.12.

d(ρVtank)

dt
= ρqR2 + ρqL2 − ρqR2 − ρqR2 = 0 (3.12)

Energy balance across the tank following the general energy balance equation 3.5a
provided the enthalpies and the net heat flow in equations 3.13 leads up to equation
3.14.

∑
Hin = ρcp(qR1TR1 + qL2TL2) (3.13a)∑

Hout = ρcp(qR1Ttank + qL2Ttank) (3.13b)

Qnet = QD|tank −Qtank|E (3.13c)
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dHtank

dt
= ρcp(qR1(TR1 − Ttank) + qL2(TL2 − Ttank)) +QD|tank −Qtank|E − 0 (3.14)

Let QD|tank = Qtank and Qtank|E = Qloss

dTtank
dt

=
1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

Q−Qloss

ρcp

}
(3.15)

Hence storage tank temperature dynamics.

The following set of ordinary differential equations eq. (3.16) describe the energy system with
two plants.

dTL1
dt

=
1

Vhex

{
qL1(T1 − TL1)−

UhexAhex

ρcp
∆Tm,1

}
(3.16a)

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

UhexAhex

ρcp
∆Tm,1

}
(3.16b)

dTL2
dt

=
1

Vhex

{
qL2(Ttank − TL2)−

UhexAhex

ρcp
∆Tm,2

}
(3.16c)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

UhexAhex

ρcp
∆Tm,2

}
(3.16d)

dTtank
dt

=
1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

1

ρcp
(Q−Qloss)

}
(3.16e)

where,

Qloss = (UA)tank(Ttank − Tsurr) (3.16f)

The two plant energy storage system model in eq. (3.16) contains five ODEs. The variables
in the equations can be classified as follows:

• States (x): there are 5 states variables in the system.

x = {TL1, TR1, TL2, TR2, Ttank} (3.17)

• Inputs (u): there are 5 input variables in the system.

u = {qL1, qR1, qL2, qR2, Qtank} (3.18)

• Disturbances (d): there are at least 3 disturbances in the system.

d = {T1, T2, Tsurr} (3.19)
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• Parameters: the remaining variables are parameters as long as they are constant w.r.t
time. They depend on the design of the system, material properties of the storage fluid
and heat exchanger.

Therefore, the systems model can be written simply as: ẋ = F(x,u,d)

3.2 Four Plant Storage System

A thermal storage system with four plants is illustrated in fig. 3.2. Plant 1 and 3 with
temperatures T1 and T3 are sources while Plant 2 and 4 with temperatures T2 and T4 are
sinks. The system dynamics will be similar to the two plants systems only that there are
more states and inputs. The number of states increases to 9 and the number of control inputs
is also 9. There are a total of 18 variables.

• States (x): there are 9 states variables in the system.

x = {TL1, TR1, TL2, TR2, TL3, TR3, TL4, TR4, Ttank} (3.20)

• Inputs (u): there are 9 input variables in the system.

u = {qL1, qR1, qL2, qR2, qL3, qR3, qL4, qR4, Qtank} (3.21)

• Disturbances (d): there are at least 5 disturbances in the system.

d = {T1, T2, T3, T4, Tsurr} (3.22)

Using the same approach and assumptions as in section 3.1 the system dynamics are listed in
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Figure 3.2: Schematic for modeling a four plant thermal storage system

equations 3.23.

dTL1
dt

=
1

Vhex

{
qL1(T1 − TL1)−

UhexAhex

ρcp
∆Tm,1

}
(3.23a)

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

UhexAhex

ρcp
∆Tm,1

}
(3.23b)

dTL2
dt

=
1

Vhex

{
qL2(Ttank − TL2)−

UhexAhex

ρcp
∆Tm,2

}
(3.23c)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

UhexAhex

ρcp
∆Tm,2

}
(3.23d)

dTL3
dt

=
1

Vhex

{
qL3(T3 − TL3)−

UhexAhex

ρcp
∆Tm,3

}
(3.23e)

dTR3

dt
=

1

Vhex

{
qR3(Ttank − TR3) +

UhexAhex

ρcp
∆Tm,3

}
(3.23f)

dTL4
dt

=
1

Vhex

{
qL4(Ttank − TL4)−

UhexAhex

ρcp
∆Tm,4

}
(3.23g)

dTR4

dt
=

1

Vhex

{
qR4(T4 − TR4) +

UhexAhex

ρcp
∆Tm,4

}
(3.23h)

dTtank
dt

=
1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) + qR3(TR3 − Ttank) (3.23i)

+ qL4(TL4 − Ttank) +
1

ρcp
(Q−Qloss)

}
(3.23j)
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where,

Qloss = (UA)tank(Ttank − Tsurr) (3.23k)



4 — Simulation

This chapter includes the description of the method used to solve the system of ordinary
differential equations (ODEs) for the two plant and four plant energy storage systems.
Simulation plots for all system states are generated to observe their dynamics. A discussion
on the simulation results is done together with the figures.

4.1 Methodology

The system of ODEs could be solved by an integrator for discretised time steps to obtain the
approximate system dynamics. In this project, ode45 and ode15s solvers in MATLAB were
used to solve the differential equations. These are MATLAB functions that allow passing the
system of ODEs and the required time span it should solve in order to obtain the state values
at every time step. There are other ODE solvers in MATLAB such as ode23s that are used
to solve problems with high degree of stiffness. ode45 is a fast ode solver and is enough to
solve these system of equations [25]. The parameters used in the model are approximately
realistic and are listed in table 4.1

Table 4.1: Parameters and values used

Parameter Description Value Units

Uhex Overall heat transfer coefficient for heat exchanger 0.5 kW/m3K
Ahex Heat transfer area for heat exchanger 300 m2

Utank Overall heat loss coefficient for heat exchange 0.05 kW/m3K
Atank Heat loss area for storage tank 1000 m2

Vtank Volume of the tank 100 m3

cp specific heat capacity 4.186 kJ/kgK
ρ density 1000 kg/m3

4.2 Two Plant System Dynamics

The two plant system model equations 3.16 were written in MATLAB, see appendix B.1.1.
Then an integrator (ode45) was used to simulate the system from an initial state until it

25
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arrives at steady state using nominal inputs described in table 4.2. The simulation results
were plotted as shown in figure 4.1. The initial conditions used in the ode solver are random
values. The system will converge from any starting point to its steady state.

Table 4.2: Nominal inputs

Input Symbol Value Units

Volumetric flows qi 0.5 m3/s
Direct tank heating Qtank 5× 103 kW
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Figure 4.1: Two plant simulation to steady state with nominal inputs

Figure 4.1 shows that apart from the tank temperature, all the other states have initial
fast dynamics, that is either a sharp rise or drop in stream temperature followed by slower
dynamics before approaching steady state. These different dynamics appear because the
accumulation in the heat exchanger is accounted for in the model. Since Vhex is smaller
than Vtank consequently the residence time in the storage tank is way higher in comparison
to the former, and in a different time-scale. Therefore, the fast dynamics are due to the
heat exchanger accumulation followed by the storage tank accumulation dynamics which are
slower. The steady state values for the system are shown in table 4.3. The steady state values
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at nominal inputs were used as initial values before introducing step changes in the volumetric
flows and direct tank heating to test the behaviour of the model.

Table 4.3: Steady state temperatures for two plant system

State TL1 TR1 TL2 TR2 Ttank
◦C 93.07 68.14 63.12 23.09 66.21

4.2.1 Step Test in Volumetric Flows

The system is simulated at steady state before introducing a step in the value of all volumetric
flows. The step change was introduced in both directions and the plots of the response in the
system states can be seen in figure 4.2.

When q is increased there is an increase in temperature of hot side streams of the heat
exchangers and a decrease in the cold side streams. In other words, the mean temperature
difference across the heat exchanger increases with increased stream flows. This is because
since there is no change in the source and sink temperatures the amount of thermal energy
that can be transferred is the same, so in order to keep that constant the mean temperature
difference must increase. This implies that the temperature of the coldest stream from plant
2 will drop however, the thermal energy will be supplied at the same rate.

When q is decreased there is an decrease in temperature of hot side streams of the heat
exchangers and an increase in the cold side streams. This is a consequence of a decrease in
the mean temperature difference across the heat exchangers. This is because since there is
no change in the source and sink temperatures the amount of thermal energy that can be
transferred is the same, so in order to keep that constant the mean temperature difference
must increase. It implies that the temperature of the coldest stream from plant 2 will increase.
However, the thermal energy will be supplied at the same rate.

The storage tank temperature increases when the flows are low. This is expected because the
rate of energy transferred from the tank depends on the rate of storage fluid that is used to
heat the demand streams. At higher flows the rate of heat lost from the storage fluid is higher
thus resulting to a drop in the storage tank temperature. The drop is not as large as the rise
because of the effect of direct heating (Qtank).

4.2.2 Step Test in Direct Tank Heating

Another input that could be manipulated is direct heating Qtank. Simulations were done
where a step change in Qtank was introduced from steady state and results plotted as shown
in fig. 4.3.

Figure 4.3 shows step changes where Qtank is increased and decreased. It can be seen that in
all states, direct heating has a positive effect. This is expected since by injecting extra energy
externally then the sink streams will be heated extra as well and the source streams would
not lose heat to the tank to maintain a higher temperature.
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Figure 4.2: Step test with fast and slow fluid flows (qi = 0.9m3/s and qi = 0.1m3/s )
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Figure 4.3: Step test in direct heating (Qtank = 104kW and Qtank = 103kW)
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4.2.3 Step Test in Source Temperature

It is interesting to observe what happens when suddenly the supply has a lower heating
potential. A drop in T1 is introduced in the system after steady state operation and the
simulation plots are shown in 4.4
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Figure 4.4: Step change in T1 for two plant system (∆T1 = −20◦C)

It is evident that the drop in temperature of the source has a greater effect on the temperature
of the streams in heat exhanger HX-1 than in those of heat exchanger HX-2. The simulations
show that there is a 20◦C drop in TL1 but only a 0.6◦C drop in TR2. This shows that even
if the source supply changes, the consumer will still receive an almost steady supply with
very little effect on the quality. The storage acts as a buffer to smoothen the effect of the
disturbance in the source.

4.3 Four Plant System Dynamics

The simulation of the four plant system describe by equation 3.23 was also done. Source
temperatures T1 and T3 were assumed as 90◦C and 60◦C respectively. The sink temperatures
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T2 and T4 were set as 5◦C and 20◦C respectively.

Figure 4.5: Four plant system simulation with nominal inputs

It can be seen in figure 4.5 that the dynamics of four plant system are similar to that of a
two plant system. The difference is the steady state values of the system. The steady state
tank temperature is slightly lower compared to the two plant case when provided with the
same amount of direct heating. This is expected and it is due to an increased number of sinks
which cool (“discharge”) the storage tank streams faster.

From initially steady state operation, a positive and negative step in temperature of plant 1
was introduced. The negative step in T1 caused a drop in all stream temperatures because the
drop in temperature of the source implies less thermal energy available to be transferred to
the sinks (see fig. 4.6). In addition, the effect of the temperature drop is significantly reduced
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at the sink streams TR4 and TR2, similar to what was observed in a two plant system . A
positive step in T1 causes a rise in temperature of all the streams and in the same way, the
effect is significantly reduced at the sinks.
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Figure 4.6: Four plant system simulation with step in T1

The simulation plots with step test in the inputs and disturbances of the two plant and four
plant system models show expected responses. This means that they are correct
representations of the systems and can be used for system analysis, dynamic optimisation
and control purposes.



5 — Open Loop Optimisation

In this chapter, an optimisation scenario is considered when there is a required thermal energy
demand in the sink that must be satisfied by the energy storage system. The consumer’s
energy demand must be satisfied by manipulating the stream flows and direct tank heating.
Only when necessary, at peak demands, the system may purchase energy from an expensive
external source. The trade-off between the use of stored thermal energy and purchase is
described by minimising a cost function. A non-linear program solver is used to solve the
optimisation problem once over a prediction horizon of 24 hours to obtain an optimal control
strategy with the associated optimal state trajectories. The location of energy demand and
external peak supply from market for a simple two plant system is illustrated in figure 5.1.

Figure 5.1: Illustration of a plant thermal storage system with demand on plant 2 and extra
peak supply from market

5.1 The Optimal Control Problem

The objective is to control the system over a certain demand period, called prediction horizon,
in order to ensure that the cost of purchasing energy from market is minimised while satisfying
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consumer demand at all times. The objective can be mathematically presented as an objective
function in eq. (5.1).

φ(x,u) = pTQtank + pMQM (5.1a)

min
(x,u)

φ(x,u) (5.1b)

where pT is the unit cost of direct tank heating, pM is the unit price of energy purchased
from the market. In this particular case we wish to penalise QM and favour Qtank. Hence,
pM must be much greater than pT .

The economic objective in 5.1 is subjected to constraints that limit the search domain for the
solution. The constraints include:

1. Equality constraints: The states and controls are related by the system dynamic model
and they can not violate it. The model of the system is an equality constraint in this
optimal problem.

ẋ = g(x,u,d) (5.2)

2. Inequality constraints: These are relaxed conditions that the system must satisfy. They
include:

(a) State bounds: The system is assumed to have a storage fluid with properties of
water. Therefore, in this case it assumed that the storage fluid does not exceed a
temperature of 200 ◦C and does not go below zero. The tank temperature is not
allowed to go below 30 ◦C. Hence eq. (5.3).


0
0
0
0
30

 ≤

TL1
TR1

TL2
TR2

Ttank

 ≤


200
200
200
200
150

 (5.3)

(b) Input bounds: The manipulated variables have limits to which they can be changed.
In a practical case one would want to avoid having an optimal solution above or
below a MV saturation limit range. In this scenario the flows can be adjusted
between 0 and 1 m3/s and Qtank cannot exceed 5× 103 kW. Hence eq. (5.4).
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(c) Consumer demand satisfaction: The scenario assumes that a customer requires a
specified amount of energy at a specific time. If the demand profile is constant
then the demand is independent of time. However, it is almost always the case
that there is a varying demand in the sink which are usually periodic - depending
on the time of the day or season of the year. In this case, a varying demand was
considered assuming that it is periodic over a single day of operation. Therefore,
the consumer stream must be heated enough by the storage to satisfy the demand.
If the storage is not enough to cater the needs of the customer, energy is purchased
from the market. It is strictly desired at any time t we must have eq. (5.5) satisfied.

Qdemand(t) = QM + ρcpqR2(TR2 − T2) (5.5)

But the equation eq. (5.5) is a very hard constraint. IPOPT solver will encounter
problems to find the optimal solution because of that. Implementing the energy
demand constraint as eq. (5.6) helps IPOPT by widening the search area. It does
not affect the solution since eq. (5.6) remains active at optimal solution to ensure
feasibility.

Qdemand(t)− [QM + ρcpqR2(TR2 − T2)] ≤ 0 (5.6)

5.2 Results for Open Loop Optimisation with Periodic
Demand

The OCP was transformed into a non-linear program (NLP) using direct collocation. The time
grid selected for collocation points is Radau order 3. The reasons of using direct collocation
are mentioned in section 2.4. Since there are ODEs as constraints, CasADi [26] was used
to easily write them in MATLAB. After listing all constraints for the NLP, it was passed
through an NLP solver IPOPT [27], to find an optimal solution. The iterations converged to
an optimal solution. The MATLAB code used for optimisation is included in appendix B.1.3.

The demand profile for consumer plant 2 considered over the prediction horizon is shown in
fig. 5.2. It has a period of 1 day (24 h) and has a peak demand of 9000 kW and lowest demand
of 1000 kW. The mean energy demand is about 5000 kW. This is a typical consumer energy
demand profile that there is one point in the day that it is highest and it varies throughout
the day to cycle back to the peak demand after a constant time interval [28].

IPOPT was able to find an optimal solution to the problem. The source code for optimisation
is in appendix B.1.3. The optimal states trajectory and optimal inputs were obtained and
plotted against the horizon time in figure 5.3 and 5.5 respectively.

From the optimal states trajectory in fig. 5.3 it is observed that at the beginning of the
prediction horizon the tank is heated up and its temperature rises to match the high demand
at that point in time. After that Ttank remains constant before cooling because it does not
need to maintain a high temperature when approaching the point of lowest demand.

As the time of lowest demand t = 12 h approaches the tank temperature rises. This is due
to very small flow of the sink stream qR2 at that point. It can be seen at this time there is a
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Figure 5.2: Periodic demand profile for plant 2
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temperature pinch point across all heat exchangers and therefore the cooling rate from tank
outlet stream is very low resulting in a rise of temperature.

Past the 12 hour mark the tank cools down because the demand starts rising again to another
peak. However, before the peak is reached the tank is heated up and its temperature rises so
that it is prepared to satisfy the peak demand.

The states trajectory does not violate laws of thermodynamics thus the optimal solution is
physically correct. The stream temperatures in the heat exchangers do not ”cross-over” at
any point. It is only at the pinch point when the heat capacity of stream R2 is very low
compared to L2 that the temperatures are very close approaching each other but TR2 never
crosses above Ttank. So as to see this clearly, a zoomed plot at that pinch point is shown
in fig. 5.4. The Underwood mean approximation does not allow temperature crossover even
at large ratio between the heat exchanger flow streams. Use of arithmetic mean gives poor
results as the optimal solution has temperature crossover (see optimisation with arithmetic
mean in appendix A.2).
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Figure 5.4: Illustration of temperature pinch point without crossover in heat exchangers
with Underwood mean

From the optimal inputs in fig. 5.5 it is seen that the flows qL1 and qR1 remain at a maximum
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value of 1 m3/s throughout the time horizon. This is because there are no constraints in the
supply side and it desired to extract as much heat as possible from the source that coud be
stored in the tank.

qL2 and Qtank both start at their maximum limits to satisfy the peak demand at the beginning.
After that both start decreasing as the demand drops significantly. qL2 decreases slightly as
the demand starts to drop but as Qtank decreses significantly, qL2 rises again in order to ensure
that the energy demand requirement is met.

qR2 which is the flow stream from the consumer starts at maximum as well before dropping to
a very low flow when the demand is lowest. At the 12 hour mark qL2 is about 0.004955m3/s
which is comparatively lower. This is because the flow is still large enough to satisfy the
consumer requirements at that time. Thereafter, when the demand is approaching another
peak, qL2 rises back to maximum.

Extra direct tank heating (Qtank) is zero when the demand is lowest but it rises to maximum
before an expected peak demand in order to heat the storage tank enough to prepare for peak
period.

The system purchases extra energy from the market only when the demand stream flow qR2,
and Qtank are at their maximum limits and still more energy is required to meet demand.
Therefore, QM is highest at the peak demand time but quickly drops to zero as the demand
decreases.

The optimal solution found for the two plant system is practical because the system is operated
to always satisfy the demand at that point in time with minimum cost. The system also uses
the thermal storage to its advantage and decides on the optimal way to heat the tank in
the predetermined time horizon so as to make sure a future expected demand requirement is
met. However, the control inputs from open loop optimization can not be implemented to
efficiently control the system because:

• There are always deviations in the model from the real system. Open loop optimisation
is based entirely on the model calculations but it is clear that no model is perfect. This
model has been derived from a number of assumptions which do not exactly hold in a
real case. Therefore, after some time of operation there will be significant deviations
and the plant would be far from an optimal state resulting to losses.

• The demand profile is an uncertain and there is some degree of randomness. It is not
sufficient to assume a fixed demand profile as done in this simple case study.

A more practical control strategy will be to obtain plant measurement feedback that identifies
the states at fixed intervals within the horizon, and then reoptimise the open loop problem
using feedback values as initial guesses to account for the model imperfections. In this case
the prediction horizon becomes a moving horizon, moving forward after every reoptimisation
loop. This control strategy is known as the model-predictive control (MPC) strategy.



6 — Model Predictive Control

In the previous chapter, dynamic optimisation was performed on a discretised model within a
fixed time horizon without measurement feedback feedback from the system. It was an open
loop optimisation problem, where the solution is calculated once at time t = 0 and the optimal
inputs solution found are implemented throughout the prediction horizon. An alternative is
to include feedback, that is closed loop optimisation where the optimal solution is recalculated
at every time step. It is known as the model predictive control (MPC) principle. This chapter
describes how MPC principle can be implemented in the simple case of a two plant thermal
storage system.

6.1 The MPC Algorithm

The MPC strategy is described by Mayne [29] as:

Model predictive control is a form of control in which the current control action
is obtained by solving, at each sampling instant, a finite horizon open loop
optimal control problem, using the current state of the plant as the initial state;
the optimization yields an optimal control sequence and the first control in this
sequence is applied to the plant.

The basic MPC algorithm is shown in table 6.1. It must be noted that once an optimal solution
for the first step is found, the prediction horizon for the next optimisation calculations will
shift one step forward. Therefore, for the simple two plant system the same optimal problem
eq. (5.1) is solved over and over again at each time step [20].

Table 6.1: Basic MPC algorithm [20]

Algorithm: State feedback MPC procedure

for t = 0, 1, 2, . . . do
Get the current state xt.
Solve a dynamic optimization problem on the prediction horizon from t to
t+N with xt as initial condition
Apply the first control move ut from the solution above.

end for
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This case involves a non-linear program is solved in every time step the problem is specifically
known as a nonlinear MPC or NMPC optimisation problem. The idea of implementation for
the two plant system is to obtain the current state from a “simulator plant”. The simulator
plant is the ODE system but with some Gaussian measurement noise in the states. This
noise will model the similar deviations that are expected from a real system. Then the
“plant” is simulated for one time step and the final value is set as the initial condition for
the optimisation computations in the next interval. It is also possible to have the simple
model with mean temperature difference as the difference of the inlet stream temperatures
and obtain reasonable optimal operation. The implementation of this idea to the energy
storage system is at an infant stage and concrete results on NMPC have not been covered in
this report. However it is planned to be done in the future regarding this project.



7 — Discussion

Included in this chapter is a general discussion about the work that has been done. Some
issues that occured while conducting the project work have been explained. Suggestions on
future work and possible improvements of results have been highlighted.

7.1 Issues with initial guess to IPOPT

The optimisation solver IPOPT employs iterative interior-point algorithms which require an
initial guess or starting point from which its starts to search for the optimal point. The
selection of a starting point is usually not trivial, at least not in this project. The system
model had the mean temperature difference term as an nth root polynomial - Underwood
approximation which is highly non-linear. Some starting points would cause errors since
CasADi can not evaluate the derivatives at those points. A good initial point would be the
nominal or steady state values calculated from the model which is feasible and will avoid
complex roots in computations.

7.2 Improvement of the Optimal Problem

The optimal control problem defined in eq. (5.1) is based on the linear cost function of
purchased inputs. The optimal solution allows very large and sudden movements in the
volumetric flows which may not be desired in operation. A way to avoid such control moves
would be to include the flow terms in the objective and penalise them.

7.3 Further work on MPC Implementation

MPC control as discussed in chapter 6 is a more reliable approach since it includes feedback
and will account for the model imperfections. Implementation of NMPC is recommended as
a further step towards dynamic optimal control of the system. The real plant can be replaced
by the accurate model which includes the Underwood mean approximation plus Gaussian
noise while the optimiser can solve the model with a simple temperature difference between
the two input streams of the heat exchangers.
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7.4 Machine Learning Approaches

The parameters of the system keep changing with time. For example the heat transfer
coefficients will change to time due to fouling conditions and stream quality. On top of that,
the consumer demand profile is uncertain. Machine learning approaches could be applied to
“learn” about the consumer behaviour from previous data and generate better demand
profile predictions for the prediction horizons. It could also be used to adjust the changing
system model parameters to obtain better predictions or even simpler models.

7.5 Other Practical Scenarios

More work could be done with systems that have more than one source and more than one
sink. For example a scenario with two supplier but one has an availability constraint. Such
a scenario is practical with renewable energy sources such as solar energy. Solar heating is
available only in the day time and therefore it has a periodic supply profile.

For the case of two sinks it would be interesting to see how a control system could be designed
to prioritize consumers based on their importance. Supply of energy to some plants could
be given up quite easily because their processes are not critical. Another criteria would be
meeting demands of a consumer whose process generates more profit.



8 — Conclusion

To begin with, a dynamic model for a two plant and four plant thermal energy storage
system has been found. The heat exchanger mean temperature difference has been
approximated using Underwood or Chen new mean. After simulation of the models with
nominal inputs using ode15s function in MATLAB, the steady-state values for the system
were obtained. From the steady-state, step responses from step changes in the inputs and
disturbance variables were generated to check validity of the model. The simulation results
showed the buffer action of the storage, that it ensured the consumer had minimal effect due
to changes in the supply side. The model behaves as expected of the system and is suitable
for optimisation calculations.

An optimisation scenario of two plant system with an expected energy demand profile has
been investigated. The objective was to satisfy consumer energy demands at all times in the
prediction horizon using the least cost possible. The decision variables has included the states
and the inputs. The problem was discretised by direct collocation method and written in
CasADi. The optimal solution to the dynamic control problem was found using an IPOPT
solver in MATLAB. However, special care must be taken in selecting an initial guess for the
optimiser in order to converge to the optimal solution. Not all initial conditions will give an
optimal solution. The use of Underwood approximation in the model creates a high degree of
non-linearity in the problem. I suggest the use of steady state values from model simulations
as initial conditions.

The open loop optimisation of the system suggests a control sequence where the tank heats up
before demand peaks to prepare for expected consumer requirements. The optimal operation
allows the system to purchase extra energy from the market when the cheap heating source has
reached maximum limit without satisfying demand. Moreover, when the demand is lowest, the
energy stored in the tank is enough to satisfy the consumer. It might be possible to implement
NMPC control strategy on the energy storage system which has feedback that will reduce the
effect of model imperfections. On top of that, machine learning is a promising approach
towards better forecasts of consumer demand and correcting system model parameters.
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A — Simulation data

A.1 Steady state values

The following table summarises the steady state values when the system inputs are set to their
high and low values one at a time. Where qlow = 0.1m3/s, qhigh = 0.9m3/s, Qlow

tank = 103kW,

Qhigh
tank = 104kW. The nominal values are defined in section 4.2.

Table A.1: Steady state values from two plant system simulations

x Nom qlow qhigh Qlow
tank Qhigh

tank

TL1 93.07 93.89 87.91 92.26 94.09
TR1 68.14 67.10 75.21 56.83 82.28
TL2 63.12 64.23 55.42 51.81 77.26
TR2 23.09 21.76 32.69 22.28 24.10
Ttank 65.99 66.21 68.11 54.09 81.37

A.2 Open loop optimisation using arithmetic mean

This is an extra case done when n = 1 that the mean temperature difference in the heat
exchanger becomes an arithemtic mean. Using the same demand requirements as in section 5.2
open loop optimisation calculations were done and the optimal solution found. The optimal
states trajectory is shown in fig. A.1 and the optimal inputs are in fig. A.2. The optimal
state trajectory is not physically possible because the outlet of the cold stream in HX-2 TR2

cannot be hotter than the inlet of the cold stream Ttank. This crossover violates the laws
of thermodynamics and therefore the solution provided when arithmetic mean is used is not
acceptable.

It can be seen that this crossover starts when the demand approaches it lowest. The flow of
the cold stream R2 is decreasing to 0.002m3/s which is very low compared to the exchanging
hot stream L2. The ratio between the two heat capacities of the hot and cold streams become
very large and therefore the arithmetic mean is no longer suitable.
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Figure A.1: Optimal state trajectory using arithmetic mean approximation
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B — Source codes

B.1 Two plant dynamics

B.1.1 ODE function

1 function dxdt = twoPlantModel(~,x,p)
% Model for an energy storage system with two plants

3 % a heat supplier and consumer, a storage tank and external heating.
%========================================================================

5 % Author: Zawadi Mdoe
% Date: September 2018

7 %========================================================================
% Description of the states:

9 % T_L1 = x(1)
% T_R1 = x(2)

11 % T_L2 = x(3)
% T_R2 = x(4)

13 % T_tank = x(5)
%=======================================================================

15 %% Assignment of inputs and disturbances
% Input variables u's

17 q_L1 = p(1);
q_R1 = p(2);

19 q_L2 = p(3);
q_R2 = p(4);

21 Q = p(5);

23 % Distubances d's
T1 = p(6);

25 T2 = p(7);

27 % Design and physical parameters
V_hex = p(8);

29 V_tank = p(9);
U = p(10);

31 A_hex = p(11);
rho = p(12);

33 cp = p(13);
h_s = p(14);

35 A_tank = p(15);
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T_s = p(16);
37 n = p(17);

39 %% ODEs
dxdt = zeros(5,1);

41

dxdt(1) = (1/V_hex)*(q_L1*(T1-x(1)) - sign(T1-x(5))...
43 *(U*A_hex*0.5ˆ(1/n)/(rho*cp))*((abs(T1-x(2)))ˆn + ...

(abs(x(1)-x(5)))ˆn)ˆ(1/n));
45

dxdt(2) = (1/V_hex)*(q_R1*(x(5)-x(2)) + sign(T1-x(5))...
47 *(U*A_hex*0.5ˆ(1/n)/(rho*cp))*((abs(T1-x(2)))ˆn + ...

(abs(x(1)-x(5)))ˆn)ˆ(1/n));
49

dxdt(3) = (1/V_hex)*(q_L2*(x(5)-x(3)) - sign(x(5)-T2)...
51 *(U*A_hex*0.5ˆ(1/n)/(rho*cp))*((abs(x(3)-T2))ˆn + ...

(abs(x(5)-x(4)))ˆn)ˆ(1/n));
53

dxdt(4) = (1/V_hex)*(q_R2*(T2-x(4)) + sign(x(5)-T2)*...
55 (U*A_hex*0.5ˆ(1/n)/(rho*cp))*((abs(x(3)-T2))ˆn + ...

(abs(x(5)-x(4)))ˆn)ˆ(1/n));
57

dxdt(5) = (1/V_tank)*(q_R1*(x(2)-x(5)) + q_L2*(x(3)-x(5)) ...
59 + (Q-h_s*A_tank*(x(5)-T_s))/(rho*cp));

61 end

B.1.2 Simulation script

% TWO PLANT ENERGY STORAGE SYSTEM WITH STEP TEST
2 % ==================================================================

% Script for simulation of energy storage system with two plants
4 % with a supplier and consumer, a storage tank and external heating.

%===================================================================
6 % Author: Zawadi N. Mdoe

% Date: September 2018
8 %===================================================================

clear all;
10 clc;

12 %% Declaration of model parameters
V_hex = 0.5; %Heat exchanger volume (shell or tube side) [mˆ3]

14 V_tank = 100; %Storage tank volume [mˆ3]
U_hex = 0.5; %Overall heat transfer coefficient [kW/mˆ2K]

16 A_hex = 300; %Heat transfer area [mˆ2]
rho= 1000; %Density [kg/mˆ3]

18 cp = 4.186; %Specific heat capacity of fluid [kJ/kgK]
h_s = 0.050; %Heat loss coefficient [kW/mˆ2K]

20 n = 0.3275; %Index (either 1,1/3 or 0.3275)
T_s = 15; %Ambient temperature [C]

22 A_tank =1000; %Tank heat loss area [mˆ2]

24 %% Initialize disturbances
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T1 = 95; %Source temperature [C]
26 T2 = 20; %Sink Temperature [C]

28 T1_step = -20; %Step disturbance in T1 [C]

30 %% Initilize inputs
q_L1 = 0.5; %[mˆ3/s]

32 q_R1 = 0.5; %[mˆ3/s]
q_L2 = 0.5; %[mˆ3/s]

34 q_R2 = 0.5; %[mˆ3/s]
Q = 5e3; %[kW]

36

p1 = [q_L1 q_R1 q_L2 q_R2 Q T1 T2 V_hex V_tank ...
38 U_hex A_hex rho cp h_s A_tank T_s n];

40 %% Time controls
t_final = 6*3600; %[sec]

42 t_step = 10000; %[sec]

44 %% Initial values for states
x0 = [80 60 45 30 50];

46

%% Introducing a time step in T1
48 T1_2 = T1 + T1_step;

p2 = [q_L1 q_R1 q_L2 q_R2 Q T1_2 T2 V_hex V_tank U_hex ...
50 A_hex rho cp h_s A_tank T_s n];

52 %% Solving the system of ODEs using ode45
tspan = [0 t_step]; % simulation timespan

54 [t1,x1] = ode45(@(t,x) twoPlantModel(t,x,p1), tspan, x0);
trows = size(t1,1); % number of rows of the time vector

56

% after the step is applied
58 tspan = [0 t_final-t_step];

x0 = x1(trows,:);
60 [t2,x2] = ode45(@(t,x) twoPlantModel(t,x,p2), tspan, x0);

62 t2 = t2 + t_step; % time offsetting

64 % concatenation to obtain final output
t = vertcat(t1,t2); %building time vector

66 x = vertcat(x1,x2); %building states vector
t = t/3600; %conversion from seconds to hours

68

%% Plotting results
70 figure(1)

subplot(321)
72 plot(t,x(:,1),'r-')

ylabel('T_{L1} (\circC)')
74 grid on

76 subplot(322)
plot(t,x(:,2),'r-')

78 ylabel('T_{R1} (\circC)')
grid on

80



58 APPENDIX B. SOURCE CODES

subplot(323)
82 plot(t,x(:,3),'b-')

ylabel('T_{L2} (\circC)')
84 grid on

86 subplot(324)
plot(t,x(:,4),'b-')

88 xlabel('time (h)')
ylabel('T_{R2} (\circC)')

90 grid on

92 subplot(325)
plot(t,x(:,5),'g-')

94 xlabel('time (h)')
ylabel('T_{tank} (\circC)')

96 grid on

B.1.3 Open loop optimisation

% An implementation of direct collocation to open loop
2 % dynamic optimisation of a two plant

% Energy Storage System using CasADi
4 %% VARIABLE DEMAND!!!

% Note: Convergence of solution depends on the starting values x_init!
6 %=========================================================================

% Author: Zawadi Mdoe
8 % Date: October 2018

% ========================================================================
10 clear all;

clc;
12

addpath(...
14 'C:\Users\Zawadi Mdoe\Desktop\Matlab\casadi-windows-matlabR2016a-v3.4.5')

import casadi.*
16

%% Collocation settings
18

% Degree of interpolating polynomial
20 d = 3;

22 % Get collocation points
tau_root = [0 collocation_points(d, 'radau')]; %can be 'legendre'

24

% Coefficients of the collocation equation
26 C = zeros(d+1,d+1);

28 % Coefficients of the continuity equation
D = zeros(d+1, 1);

30

% Coefficients of the quadrature function
32 B = zeros(d+1, 1);

34 % Construct polynomial basis
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for j=1:d+1
36 % Construct Lagrange polynomials to get the polynomial basis

% at the collocation point
38 coeff = 1;

for r=1:d+1
40 if r ~= j

coeff = conv(coeff, [1, -tau_root(r)]);
42 coeff = coeff / (tau_root(j)-tau_root(r));

end
44 end

% Evaluate the polynomial at the final time to get the
46 % coefficients of the continuity equation

D(j) = polyval(coeff, 1.0);
48

% Evaluate the time derivative of the polynomial at all collocation
50 % points to get the coefficients of the continuity equation

pder = polyder(coeff);
52 for r=1:d+1

C(j,r) = polyval(pder, tau_root(r));
54 end

56 % Evaluate the integral of the polynomial to get the coefficients
% of the quadrature function

58 pint = polyint(coeff);
B(j) = polyval(pint, 1.0);

60 end

62 %% Initialization of model parameters
V_hex = 0.5; %Heat exchanger volume (shell or tube side) [mˆ3]

64 V_tank = 100; %Storage tank volume [mˆ3]
U_hex = 0.50; %Overall heat transfer coefficient [kW/mˆ2K]

66 A_hex = 300; %Heat transfer area [mˆ2]
rho= 1000; %Density [kg/mˆ3]

68 cp = 4.186; %Specific heat capacity of fluid [kJ/kgK]
h_s = 0.050; %Heat loss coefficient [kW/mˆ2K]

70 n = 1/3; %Approximation index
A_tank =1000; %Tank heat loss area [mˆ2]

72 Pm =1000e-6; %Price of market energy source
Pt =5e-6; %Price of cheap heating from flue gas

74 Q_demand_0 = 5000; %Mean demand [kW]

76 %% Initialize Disturbances (Boundary conditions)
T1 = 95; %Plant 1 temperature (source)[degC]

78 T2 = 20; %Plant 2 temperature (sink)[degC]
T_s = 15; %Ambient temperature [degC]

80

%% Variable Bounds
82

%Upper bounds
84 T_L1ub = 200;

T_R1ub = 200;
86 T_L2ub = 200;

T_R2ub = 200;
88 T_tankub = 100;

q_L1ub = 1;
90 q_R1ub = 1;
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q_L2ub = 1;
92 q_R2ub = 1;

Qub = 5000;
94 Qmub = Inf;

96 %Lower bounds
T_L1lb = 0;

98 T_R1lb = 0;
T_L2lb = 0;

100 T_R2lb = 0;
T_tanklb = 30;

102 q_L1lb = 0;
q_R1lb = 0;

104 q_L2lb = 0;
q_R2lb = 0;

106 Q_tanklb = 0;
Qmlb = 0;

108

%Create bound vectors
110 xub = vertcat(T_L1ub, T_R1ub, T_L2ub, T_R2ub, T_tankub);

xlb = vertcat(T_L1lb, T_R1lb, T_L2lb, T_R2lb, T_tanklb);
112 uub = vertcat(q_L1ub, q_R1ub, q_L2ub, q_R2ub, Qub, Qmub);

ulb = vertcat(q_L1lb, q_R1lb, q_L2lb, q_R2lb, Q_tanklb, Qmlb);
114

%% Initial conditions
116 x_init = [80; 60; 40;30; 50]; %[85; 75; 55;45; 65]; %[50; 40; 20; 10; 30];

u_init = [0.5;0.5;0.5;0.5; 5000; 0];
118

%% Time horizon
120 T = 24*60*60; %Time horizon for optimization

122 %% State and Input variables
nx = 5; %number of state variables

124 nu = 6; %number of controls

126 % Declare model variables
x1 = SX.sym('x1');

128 x2 = SX.sym('x2');
x3 = SX.sym('x3');

130 x4 = SX.sym('x4');
x5 = SX.sym('x5');

132 x = [x1; x2; x3; x4; x5];
u1 = SX.sym('u1');

134 u2 = SX.sym('u2');
u3 = SX.sym('u3');

136 u4 = SX.sym('u4');
u5 = SX.sym('u5');

138 u6 = SX.sym('u6');
u = [u1; u2; u3; u4; u5; u6];

140

%% Model equations
142 xdot = [(1/V_hex)*(u1*(T1-x1) - (U_hex*A_hex*0.5ˆ(1/n)/(rho*cp))*...

((T1-x2)ˆn + (x1-x5)ˆn)ˆ(1/n));
144

(1/V_hex)*(u2*(x5-x2) + (U_hex*A_hex*0.5ˆ(1/n)/(rho*cp))*(...
146 (T1-x2)ˆn + (x1-x5)ˆn)ˆ(1/n));
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148 (1/V_hex)*(u3*(x5-x3) - (U_hex*A_hex*0.5ˆ(1/n)/(rho*cp))*(...
(x3-T2)ˆn + (x5-x4)ˆn)ˆ(1/n));

150

(1/V_hex)*(u4*(T2-x4) + (U_hex*A_hex*0.5ˆ(1/n)/(rho*cp))*(...
152 (x3-T2)ˆn + (x5-x4)ˆn)ˆ(1/n));

154 (1/V_tank)*(u2*(x2-x5) + u3*(x3-x5) + (u5-h_s*A_tank*(x5-T_s)...
)/(rho*cp))];

156

%% Set up OCP
158

% Objective term
160 L = Pm*u6 + Pt*u5;

162 % Continuous time dynamics
f = Function('f', {x, u}, {xdot, L});

164

% Control discretization
166 N = 24; % number of control intervals

h = T/N; % length of discrete element
168 period = N; % Demand is cycling with a period of one day

Q_demand = zeros(N,1);
170

% Demand curve
172 for i=1:N+1

Q_demand(i) = Q_demand_0*(1+0.8*sin(2*(pi/period)*(i-1)+pi/2));
174 end

176 % Start with an empty NLP
w={};

178 w0 = [];
lbw = [];

180 ubw = [];
J = 0;

182 g={};
lbg = [];

184 ubg = [];

186 % "Lift" initial conditions
Xk = MX.sym('X0', nx);

188 w = {w{:}, Xk};
lbw = [lbw; x_init];

190 ubw = [ubw; x_init];
w0 = [w0; x_init];

192

% Formulate the NLP
194 for k=0:N-1

% New NLP variable for the control
196 Uk = MX.sym(['U_' num2str(k)],nu);

w = {w{:}, Uk};
198 lbw = [lbw; ulb];

ubw = [ubw; uub];
200 w0 = [w0; u_init];

202 % State at collocation points
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Xkj = {};
204 for j=1:d

Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)],nx);
206 w = {w{:}, Xkj{j}};

lbw = [lbw; xlb];
208 ubw = [ubw; xub];

w0 = [w0; x_init];
210 end

212 % Loop over collocation points
Xk_end = D(1)*Xk;

214 for j=1:d
% Expression for the state derivative at the collocation point

216 xp = C(1,j+1)*Xk;
for r=1:d

218 xp = xp + C(r+1,j+1)*Xkj{r};
end

220

% Add inequality constraint
222 g = {g{:}, Uk(6) + Uk(4)*rho*cp*(Xkj{j}(4)-T2)};

lbg = [lbg; Q_demand(k+1)];
224 ubg = [ubg; Inf];

226 % Append collocation equations
[fj, qj] = f(Xkj{j},Uk);

228 g = {g{:}, h*fj - xp};
lbg = [lbg; zeros(nx,1)];

230 ubg = [ubg; zeros(nx,1)];

232 % Add contribution to the end state
Xk_end = Xk_end + D(j+1)*Xkj{j};

234

% Add contribution to quadrature function
236 J = J + B(j+1)*qj*h;

end
238

% New NLP variable for state at end of interval
240 Xk = MX.sym(['X_' num2str(k+1)], nx);

w = {w{:}, Xk};
242 lbw = [lbw; xlb];

ubw = [ubw; xub];
244 w0 = [w0; x_init];

246 % Add equality constraint
g = {g{:}, Xk_end-Xk};

248 lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];

250 end

252 %% Create an NLP solver
prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));

254 solver = nlpsol('solver', 'ipopt', prob);

256 %% Solve the NLP
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);

258 w_opt = full(sol.x);
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260 %% Plot the solution
x1_opt = w_opt(1:(nx+nu)+nx*d:end);

262 x2_opt = w_opt(2:(nx+nu)+nx*d:end);
x3_opt = w_opt(3:(nx+nu)+nx*d:end);

264 x4_opt = w_opt(4:(nx+nu)+nx*d:end);
x5_opt = w_opt(5:(nx+nu)+nx*d:end);

266 u1_opt = w_opt(6:(nx+nu)+nx*d:end);
u2_opt = w_opt(7:(nx+nu)+nx*d:end);

268 u3_opt = w_opt(8:(nx+nu)+nx*d:end);
u4_opt = w_opt(9:(nx+nu)+nx*d:end);

270 u5_opt = w_opt(10:(nx+nu)+nx*d:end);
u6_opt = w_opt(11:(nx+nu)+nx*d:end);

272 T = T/3600;
tgrid = linspace(0, T, N+1);

274 clf;

276 % Plot state trajectory
figure(1)

278 plot(tgrid, x1_opt, '-')
hold on

280 plot(tgrid, x2_opt, '-')
plot(tgrid, x3_opt, '-')

282 plot(tgrid, x4_opt, '-')
plot(tgrid, x5_opt, '-')

284 xlabel('t [hr]')
ylabel('T [\circ C]')

286 legend('T_{L1}','T_{R1}','T_{L2}','T_{R2}','T_{tank}')
hold off

288 grid on

290 %Plot optimal controls
figure(2)

292 subplot(211)
stairs(tgrid, [u1_opt; nan], '-.')

294 hold on
stairs(tgrid, [u2_opt; nan], '-.')

296 stairs(tgrid, [u3_opt; nan], '-.')
stairs(tgrid, [u4_opt; nan], '-.')

298 hold off
xlabel('t [hr]')

300 ylabel('q_{i} [mˆ3/s]')
legend('q_{L1}','q_{R2}','q_{L2}','q_{R2}')

302 grid on

304 subplot(212)
stairs(tgrid, [u5_opt; nan], '-.')

306 hold on
stairs(tgrid, [u6_opt; nan], '-.')

308 hold off
xlabel('t [hr]')

310 ylabel('Energy supply rate [kW]')
legend('Q_{tank}','Q_M')

312 grid on

314 % Plot demand profile
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figure(3)
316 stairs(tgrid, Q_demand, '-')

hold on
318 plot(tgrid+0.5, Q_demand, 'k--')

plot(tgrid, mean(Q_demand)*ones(size(tgrid,2),1),'r--','LineWidth',1.5)
320 hold off

xlabel('t [hr]')
322 ylabel('Energy demand rate [kW]')

ylim([0 12000])
324 grid on
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