
Nonsmooth analysis of connected oil well
system

Marius Reed

December 19, 2017

TKP4580 - Chemical Engineering, Specialization Project
Department of chemical engineering

Norwegian University of Science and Technology

Supervisor 1: Johannes Jschke
Supervisor 2: Marlene L. Lund

Summary

The objective of the project was to show that recent development within nonsmooth analysis, with special
focus on the lexicographic derivative, make it possible to formulate a model that allow bi-directional
flow without use of logical statements or smooth approximations. This was illustrated by formulating
a nonsmooth model of a connected oil well system consisting of three wells and two risers. First some
preliminary theory about nonsmooth analysis, including convexity, generalized derivatives and piecewise
differentiable functions, was introduced. Afterwards, two solvers were suggested and explained. With
the mathematical introduction given, the development of the model of the connected oil-well system was
described, with focus on the nonsmooth formulations.

The system was solved using the Levenberg-Marquardt algorithm (LMA) as well as a Newton-type
method. The generalized derivatives were computed by using automatic forward differentiation, exploit-
ing the strict calculus rules that the lexicographic directional derivatives obey. The solutions showed
that the proposed formulation fulfilled the objective of bi-directional flow, meaning that a nonsmooth
approach is suitable to model such systems. In addition, the LMA proved to be the most robust solver of
the two proposed solvers, while the Newton-type method converged faster close to the nonsmooth point.

i

Table of Contents

Summary i

Table of Contents iii

List of Tables iv

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 2

2 Theory 3
2.1 Piecewise differentiable (PC1) functions and convexity 3
2.2 B-subdifferential & Clarke generalized Jacobian . 5
2.3 Lexicographic derivatives . 8
2.4 Automatic differentiation . 10

2.4.1 AD of PC1-functions . 11
2.5 Solvers for nonsmooth equation systems . 12

3 Connected oil wells modeling 13
3.1 Reservoir inflow model . 14
3.2 One-phase pseudo fluid . 14
3.3 Pressure drop through a vertical pipe . 15
3.4 Pressure drop through a valve . 16
3.5 Manifolds . 17
3.6 Calculation of flow rate in connection pipes . 18

4 Results and discussion 20
4.1 Varying the valve position in well 1 . 20
4.2 Response to changes in the valve position in riser 1, zR1 22
4.3 Surface response to changes in valve position in riser 1 and connecting flow 1 26
4.4 Convergence of the solvers . 29
4.5 Further discussion . 30

5 Conclusion and recommendations for further work 31
5.1 Recommendations for further work . 31

ii

Bibliography 31

A Parameters 33

B Additional results 35
B.1 Additional composition graphs from changing the valve position in riser 1 35
B.2 Graphs of the total flows by changing the different valves positions and the reservoir

pressure . 35
B.2.1 Reservoir pressures . 36
B.2.2 Valve positions . 36

B.3 Values for all variables at standard valve positions, zi = 0.5 38

C MATLAB code 39
C.1 valder.m . 39
C.2 wellSystem.m . 45
C.3 myFuncs.m . 48
C.4 newtonMethod.m . 53

iii

List of Tables

2.1 Forward AD of the function f(x,y) = x2y + ysin(x) at (x,y) = (1,2) 11

A.1 The parameters used in the connected oil well model. 33
A.2 The parameters used in the connected oil well model for the surface response in section

4.3. 34

B.1 Values for all variables at standard valve positions, zi = 0.5 38

iv

List of Figures

2.1 Graph of max(0,x) . 4
2.2 Convex and non-convex sets . 4
2.3 Non convex set and the corresponding convex hull . 5
2.4 Graph of f(x) = mid(-x,x,0.5) . 6
2.5 The graphs of f(x) = max(x,1), g(x) = min(x,1) and h(x) = f(x) · g(x) 7
2.6 Graph of f(x,y) = min{x,y} . 10

3.1 Connected oil well system . 13
3.2 Pressure drop through vertical pipe . 15
3.3 Lipschitz discontinuous functions sqrt(x) and sign(x) 16
3.4 Sketch of valve . 17
3.5 Scheme of manifold . 17
3.6 Flow directions in and out of manifolds . 18
3.7 Connecting Flows . 19

4.1 Graph of the total flow rates with varying valve position in well 1. 20
4.2 The flow directions in the well system for all valve position, zc1, with all other parameters

kept constant. 21
4.3 Pressures in the oil well system at different valve openings in well 1, zc1 21
4.4 Component mass flow in the oil well system at different valve openings in well 1, zc1 . . 22
4.5 Graph of the total flow rates with varying valve position in riser 1. 23
4.6 Flow directions for different valve positions in riser 1, zR1, with all other parameters kept

constant. 23
4.7 Pressures in the oil well system at different valve openings in riser 1, zR1 24
4.8 Component mass flow in the oil well system at different valve openings in riser 1, zR1 . 24
4.9 Gas-oil ratio (GOR) as a function of the valve position in riser 1. 25
4.10 The mass fraction of oil in Manifold 1,xM1o, and the connecting flow between manifold

1 and 2, xF1o. 26
4.11 GOR, oil-to-water ratio and the total oil production in the oil well system at different

valve openings in connection flow 1 and riser 1, zF1 and zR1 27
4.12 Flow rate in the connecting flow between manifold 1 and 2. 28
4.13 Value of the objective function, J, as at different valve openings in connection flow 1 and

riser 1, zF1 and zR1 . 28
4.14 Number of iterations needed to solve the system at different valve position in riser 1,

zR1, using the nonsmooth Newton-like method and LMA. 29
4.15 The 1-norm of the residual functions as a function of iteration number for the LMA and

Newton-type solver. 30

v

B.1 The mass fraction of water and gas plotted against the valve position in riser 1, zR1. . . . 35
B.2 The total flow rate in each section as a function of the different reservoir pressures. . . . 36
B.3 The total flow rate in each section as a function of the different valve positions. 37

vi

Nomenclature

Abbreviations

LD Lexicographic directional

LMA Levenberg-Marquardt algorithm

OOP Object-oriented programming

Mathematical notation

(f ◦ g) Composite function, f(g(x)

≡ Equivalent to

∃ Exists

∀ For all

∈ Element of

N Space of natural numbers

Rn Eucledian space of dimension n

A Bold upper case letter denotes a matrix

a Bold lower case letter denotes a vector

AT Transpose of matrix A

A−1 Inverse of matrix A

a(i) Column i of a matrix A

f ′(x) Derivative of f at x

f ′(x;M) Lexicographic directional derivative of f at x in direction M

Jf(x) Jacobian of f at x

Jf(x;M) Lexicographic derivative of f at x in direction M

C1 Continuous differentiable

PC1 Piecewise differentiable

vii

PL Piecewise linear

‖·‖ Unspecified norm

∂f Clarke Jacobian of f at x

∂Bf(x) B-subdifferential of f at x

∂Lf(x) Lexicographic subdifferential of f at x

∂P f(x) The plenary Jacobian

⊂ Subset of

⊃ Superset of

A→ B Mapping from A to B

A Upper case letter denotes a set

a Lower case letter denotes a scalar

a(i) Order of directional derivative or iteration i

aij Element in row i, column j in matrix A

conv(S) Convex hull of the set S

detM Determinant of M

Model nomenclature

m̂g Mass flow rate of gas kg·s−1

m̂o Mass flow rate of oil kg·s−1

m̂w,i,g Mass flow rate of gas in well i kg·s−1

m̂w,i,o Mass flow rate of oil in well i kg·s−1

m̂w,i,w Mass flow rate of water in well i kg·s−1

m̂w Mass flow rate of water kg·s−1

Φ Friction J

ρ Density kg·m−3

ρigg Density of ideal gas kg·m−3

ρmix Density of pseudo fluid kg·m−3

ρo Density of oil kg·m−3

ρw Density of water kg·m−3

A Area m2

Cd Valve constant (kg · m−1 · bar−1 · s−2) −0.5

F i Flow rate in flow i kg s−1

viii

g Gravitational constant m·s−2

h Height m

kg,i Transport coefficient for gas in well i kg·bar−4·s−1

ko,i Transport coefficient for oil in well i kg·bar−2·s−1

kw,i Transport coefficient for water in well i kg·bar−2·s−1

m mass kg

Mg Molar mass of gas kg·m−3

p Pressure bar

pr,i Reservoir pressure around well i bar

pwf,i Pressure at well inflow in well i bar

pwh,i Pressure at well head in well i bar

R Gas constant m3 · bar · kmol−1 · K−1

T Temperature K

V Volume m3

vj Volumetric fraction of component j -

Ws Work J

xij Mass fraction of component j in flow i. -

z Valve position -

GORi Gas-oil ratio in well i -

ix

Chapter 1
Introduction

Nonsmooth equations are equations that are not differentiable at every point. For systems of such equa-
tions it is not possible to calculate the Jacobian, which gradient based solvers rely on. However, nons-
mooth equation systems can be solved by semismooth Newton methods, which are similar to the standard
Newton method, but where the derivative is replaced by a element from Clarke’s (generalized) Jaco-
bian[3]. The Clarke Jacobian is a set-valued generalized derivative for Lipschitz continuous functions.
Such functions are not necessarily differentiable at every point. The problem with the Clarke Jacobian
is that they do not obey strict calculus rules by equality, meaning that it is not possible to compute them
automatically.

During the last few years there has been a development within the theory of nonsmooth analysis,
making it possible to automatically compute generalized derivatives that can be a replacement of Jaco-
bian elements for lexicographic smooth functions. First, the lexicographic derivative was proposed by
Nesterov in 2005[7], before Khan and Barton proved that these derivatives was part of the plenary hull
of the Clarke generalized Jacobian[4]. This means that such derivatives are equally useful as the Clarke
Jacobian in a semismooth Newton method. The main advantage of the lexicographic derivative is that it
is possible to calculate it automatically through the lexicographic directional derivative.

In many physcial systems, like chemical systems, there are nonsmooth behavior. Example of such
behavior is discrete events like phase shifts and, important to this project, the change in flow direction
in a pipe. Instead of using hybrid models, where logical statements are used to incorporate such discrete
events of the model, a nonsmooth model formulation can be used. In this project, a nonsmooth model
of a connected oil well system is developed and solved by using the newly developed theory within
nonsmooth analysis.

1.1 Motivation

As mentioned, there are nonsmooth behaviors in chemical systems, and one of them is when a flow
changes direction. In this project the main objective is to show that the new developments within nons-
mooth analysis can be used to formulate a model which allows bi-directional flow. Today, such systems
are often solved by using logical statements (i.e a hybrid model) or by using a smooth approximation of
the nonsmooth functions. By implementing automatic differentiation and using nonsmooth solvers, such
problems are avoided. In this project a connected oil well system is modeled by the use of nonsmooth
equations. The system is used as an example as it naturally has nonsmooth behavior. However, the non-
smooth equation formulations are not restricted to this system and can be applied to other systems with
similar behavior. Therefore, this project should demonstrate the advantages of using this approach, as
well as motivate others to consider using nonsmooth formulations when suitable.

1

1.2 Approach

1.2 Approach

The model of the connected oil well system was implemented in MATLAB. In addition, a class called
valder was implemented in MATLAB using object-oriented programming (OOP). It is this class that
performs the automatic differentiation, of both smooth and nonsmooth functions. The system of equa-
tions was solved using the built in Levenberg-Marquardt algorithm (LMA) in Matlab, and by using a
Newton-type method.

2

Chapter 2
Theory

In this chapter mathematical theory regarding the calculation of the generalized derivatives needed to
solve the connected oil well system, described in chapter 3, is presented. This chapter is important as it
explains how the derivatives of the nonsmooth functions are computed, which is essential to this project.
The connected oil well system is modeled by using nonsmooth functions (in the form of piecewise
differentiable functions), meaning that some equations in the model is not differentiable at certain points.
For such function, generalized derivative information is required as an replacement for the ordinary
derivative of continuously differentiable functions. This information can be obtained from elements of
the Clarke Jacobian or the B-subdifferential[3]. The problem with these subdifferentials is that they do
not obey strict calculus rules, meaning that it is not possible to calculate them automatically[3]. During
the last recent years, it has been proven that piecewise differentiable functions are lexicographically
smooth, as well as that lexicographic derivatives of the same type of functions are a superset of the
Clarke Jacobian[4]. These lexicographic derivatives is possible to compute through the lexicographic-
directional derivatives, which obeys strict calculus rules. This development makes it possible to obtain
a element of the Clarke Jacobian by automatic differentiation.

The chapter will define piecewise differentiable functions, convex functions, sets and hulls before the
B-subdifferential and Clarke Jacobian is introduced. After this introduction, the lexicographic and lexi-
cographic directional derivative will be defined. Further, the automatic differentiation with the extension
of the computation of lexicographic derivative of the absolute function will be covered. Finally, solvers
for nonsmooth problems is discussed.

2.1 Piecewise differentiable (PC1) functions and convexity

In the connected oil well system the equations for flow rates through valves and compositions in manifold
includes the PC1 functions abs, min and max. PC1-functions are defined in definition 2.1.

Definition 2.1. (From [3]) Consider an open set X ⊂ Rn and a function f : X → Rm. As defined by
Scholtes[11], f is piecewise differentiable (PC1) at x ∈ X if there exists a neighborhood N ⊂ X of x
and a finite collection of continuous differentiable (C1) functions f(1),...,f(q) : N → Rm such that f is
continuous on N and such that

f(y) ∈ {f(i)(y) : i ∈ {1, ..., q}}, ∀y ∈ N. (2.1)

If, in addition, each f(i) is linear, then f is piecewise linear (PL) at x.

Example 2.1. The function
f(x) : R→ R : x→ max{0,x}

3

2.1 Piecewise differentiable (PC1) functions and convexity

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

f(
x
)
=

m
ax

(0
,x
)

Figure 2.1: Graph of max(0,x)

consists of two linear (and thereby also C1) functions at x = 0:

f(1)(x) = 0, ∀x ∈ (−∞, 0]

f(2)(x) = x, ∀x ∈ [0,∞)

f(y) is therefore PL (and thereby also PC1) on R.

To define the B-subdifferentialand and Clarke Jacobian, and express the relationship between them,
the convex hull is needed. Before defining the convex hull, convex sets and functions are defined.

Definition 2.2. (From [8]) A set S ∈ Rn is a convex set, if for any two point x ∈ S and y ∈ S, the following
relation holds,

αx + (1− α)y ∈ S, ∀α ∈ [0, 1]. (2.2)

In other words, for a set to be convex, any straight line between two points within the set cannot cross
the boundary of the set. In figure 2.2 a example of both a convex and non-convex set is illustrated.

x2

x1 x1

x2

S N

Figure 2.2: Illustration of a convex set, S, and a non-convex set N.

Definition 2.3. (From [8]) The function f is a convex function if its domain S is a convex set and if for
any to points x ∈ S and y ∈, the following property is satisfied:

f(αx + (1− α)y) ≤ αf(x)(1− α)f(y), ∀α ∈ [0, 1]. (2.3)

4

2.2 B-subdifferential & Clarke generalized Jacobian

Definition 2.4. (From [8]) A convex combination of a finite set of vectors {x1,x1,...,xm} in Rm is any
vector x of the form

x =
m∑
i=1

αixi, where
m∑
i=1

αi = 1, and α ≥ 0 ∀i = 1, 2, ...,m (2.4)

The convex hull of {x1,x1, . . . ,xm} is the set of all convex combinations of these vectors.

Definition 2.4 states that a convex hull of a non-convex set, is the smallest convex superset of S. This
means that a convex hull of a set will always be larger than the original set, unless the original set is
convex, then the two will be equal. A non-convex set, S, and its corresponding convex hull is presented
in figure 2.3

x2

x1 x1

x2

S conv(S)

Figure 2.3: Illustration of a non-convex set (S) and its corresponding convex hull (conv(S)).

2.2 B-subdifferential & Clarke generalized Jacobian

Set-valued generalized derivatives is as mentioned a replacement of the ordinary derivative of contin-
uously differentiable function for non-smooth functions. However, both the B-subdifferential and the
Clarke generalized Jacobian requires some continuity, namely local Lipschitz continuity.

Definition 2.5. (From [8]) Given an open set X ⊂ Rn and a function f : X→ Rm. The function f is said
to be Lipschitz continuous at x ∈ X if there exists a L > 0 such that.

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ N. (2.5)

Further, if property 2.5 only holds for a x, y in a neighborhood N ⊂ X of x, the function is locally
Lipschitz continuous.

Definition 2.5 states that the derivatives of a function needs to be bounded from above for it to be Lips-
chitz continuous. An example of a function that often appears in physical systems that are not Lipshitz
continuous is f(x) = sqrt(x). This is because as x→ 0, f ′(x)→∞.

Definition 2.6. (From [3]) Given an open set X ⊂ Rn and a locally Lipschitz continuous function f : X
→ Rm, let S ⊂ X be the set on which f is differentiable. The B-subdifferential of f at x ∈ X is then

∂Bf(x) :=
{
H ∈ Rm×n : H = lim

n→∞
Jf(x(i)), x = lim

n→∞
x(i), x(i) ∈ S,∀i ∈ N

}
. (2.6)

The Clarke (generalized) Jacobian of f at x is ∂f(x) := conv(∂Bf(x))

5

2.2 B-subdifferential & Clarke generalized Jacobian

The B-subdifferential will in other words be a set which consist of Jacobian that arises when x is ap-
proached from every possible directions. The Clarke Jacobian is, from definition 2.6, a larger set than
the B-subdifferential as it is the convex hull of it. However, both the B-subdifferential and the Clarke
Jacobian reduces to the singleton of the jacbobian when f is continuously differeniable at x.

Example 2.2. Let f(x) = mid(-x,x,0.5), which is a PC1-function on R, and therefore also Lipschitz con-
tinuous. The graph of f(x) is shown in figure 2.4.

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

f(
x
)
=

m
id
(-
x
,x
,0
.5
)

Figure 2.4: The figure shows the graph of f(x) = mid(-x,x,0.5).

f(x) has three nondifferentiable points, x = -0.5, x = 0 and x = 0.5. In these points the Jacobian depends
on from which direction the nondifferentiable point is approach. Consider the points x = {-1, -0.25, 0.25,
1}, the B-subdifferentiable of f at these points are:

∂Bf(−1) = 0

∂Bf(−0.25) = −1

∂Bf(0.25) = 1

∂Bf(1) = 0

The B-subdifferentiable at these point is a single valued set as the slope of f(x) does not change depending
on from which direction the point is approached. For the nondifferentiable points on the other hand, the
Jacobians of f(x) changes depending on whether the function is approached from left or right. The
B-subdifferential at these three points are as following:

∂Bf(−0.5) = {0,−1}
∂Bf(0) = {−1, 1}

∂Bf(0.5) = {1, 0}.

The corresponding Clarke generalized Jacobian is:

∂f(−0.5) = [0,−1]

∂f(0) = [−1, 1]

∂f(0.5) = [1, 0].

The shortcoming of B-subdifferentials is that they do not obey the general calculus rules, and there
is no general approach on how to calculate them. A disadvantage with the Clarke Jacobian is that it only

6

2.2 B-subdifferential & Clarke generalized Jacobian

satisfies some classical calculus rules as inclusions, and not equality. One of these, the chain rule, has
to be satisfied as equality to be used in automatic vector forward differentiation[3], which is used in this
project. In calculus, the chain rule is the formula for calculating the derivative of the composition of two
or more functions,

(f ◦ g)′ = (f ′ ◦ g) · g′, (2.7)

with (f ◦ g) being f(g(x)).

Example 2.3. Consider two functions, f(x) = max{x,1} and g(x) = min{x,1}, that are both PC1 on R.
The functions are both nondifferentiable at x = 1, and has the following Clarke Jacobians at this point:

∂f(1) = [0, 1]

∂g(1) = [0, 1]

To show that the Clarke Jacobian only satisfies the chain rule by inclusion, consider the function h(x) =
f(x) · g(x) = x, which is smooth and its Clarke Jacobian at x = 1 is ∂h(1) = 1. This shows that the Clarke
Jacobian only satisfies the chain rule by inclusions as

∂h(1) ⊂ ∂(f(1) · g(1))

= ∂f(1) · g(1) + ∂g(1) · f(1)

= [0, 1] · 1 + [0, 1] · 1
= [0, 2]

∂h(1) 6= ∂(f(1) · g(1)).

0 1 2

x

0

1

2

f(
x
)
=

m
ax

(x
,1
)

(a) f(x) = max(x,1)

0 1 2

x

0

1

2

g(
x
)
=

m
in
(x
,1
)

(b) g(x) = min(x,1)

0 1 2

x

0

1

2

h
(x
)
=

f(
x
)
·
g(
x
)

(c) h(x) = f(x) · g(x)

Figure 2.5: The graphs of f(x) = max(x,1), g(x) = min(x,1) and h(x) = f(x) · g(x)

Due to the lack of strict calculus rules for Clarke Jacobian, another type of generalized derivatives
has to be used. Lexicographic derivatives can be obtained through the calculation of Lexicographic
directional derivatives (LD-derivatives), which follow strict calculus rules. It has been proved, by Khan
and Barton[4], that the Lexicographic derivative are elements of the plenary hull of the Clarke Jacobian,
meaning that such elements are equally useful as elements from the Clarke Jacobian.

Definition 2.7. (From [3]) The plenary Jacobian ∂P f(x) is the plenary hull of the Clarke Jacobian, and
satisfies:

∂P f(x) = {M ∈ Rm×n : ∀v ∈ Rn, ∃H ∈ ∂f(x) s.tMv = Hv} ⊃ ∂f(x)

This means that the lexicographic derivatives can be used in non-smooth Newton-type solvers on the
form,

7

2.3 Lexicographic derivatives

G(xk)
(
x(k+1) − xk

)
= −f(xk), (2.8)

where G is a generalized derivative element [10].

2.3 Lexicographic derivatives

The lexicographic derivatives was first proposed and developed by Nesterov[7], and, as mentioned ear-
lier, proved to be a part of the plenary hull of the Clarke generalized Jacobian by Khan and Barton[4].
For a function to have a well defined lexicographic derivative at a point x, it must lexicographically
smooth (L-smooth) at x. The lexicographic derivative is calculated through the lexicographic directional
derivatives (LD-derivatives) as they obey strict calculus rules, meaning that it is possible to compute
them automatically. These LD-derivatives are the lexicographic analogues to the directional derivative
of continuous differentiable functions (C).

Definition 2.8. (From [8]) The directional derivative of a function f(x): Rn→ Rm in the direction p is
given by,

f ′(x) ≡ lim
h→0

f(x + hp)− f(x)

h
(2.9)

Definition 2.9. (From [3]) Given an open set X ⊂ Rn and a locally continuous function f : X→ Rm, f
is lexicographically smooth at x ∈ X if it is directionally differentiable at x and if, for any p ∈ N and M
∈ Rn×p, the following functions are well-defined:

f
(0)
x,M : Rn → Rm : d 7→ f ′(x;d),

f
(1)
x,M : Rn → Rm : d 7→ [f

(0)
x,M]′(m(1);d),

f
(2)
x,M : Rn → Rm : d 7→ [f

(1)
x,M]′(m(2);d),

...

f
(k)
x,M : Rn → Rm : d 7→ [f

(k−1)
x,M]′(m(k);d).

There are many types of functions that are L-smooth. Some of these groups of functions are C1
functions, convex functions and, most importantly for this project work, PC1 functions[3].

Definition 2.10. (From [3]) Given the function f : X → Rm, with X ⊂ Rn and f lexicographically
smooth at x. The lexicographic derivative of f at x is defined as

JLf(x;M) ≡ Jf
(n)
x,M(0) (2.10)

for any nonsingular M ∈ Rnxn. Further, the lexicographic subdifferential of f at x is given by

∂Lf(x) = {JLf(x;M) : M ∈ Rnxn, detM 6= 0} (2.11)

Definition 2.11. (From [3]) Given an open set X ⊂ Rn, a locally Lipschitz continuous function f : X
→ Rm that is lexicographically smooth at x ∈ X, and a matrix M ≡ [m(1) . . . m(k)] ∈ Rn×k, the
LD-derivative of f at x in the directions M is

f ′(x;M) ≡
[
f
(0)
x,M(m(1))f

(1)
x,M(m(2)) . . . f

(k−1)
x,M (m(k))

]
(2.12)

=
[
f
(k)
x,M(m(1)) . . . f

(k)
x,M(m(k))

]
(2.13)

8

2.3 Lexicographic derivatives

Example 2.4. Let f(x) : R2 → R be the PC1 function: f(x1,x2) = min{x1,x2}. The function is not
differentiable at every point where x1 = x2. However the function is PC1, meaning that it is L-smooth,
and therefore, the LD-derivative is well defined. In this example the lexicographic derivative of f is
computed using definition 2.9 at (x1,x2) = (0,0).

Given the direction matrix

M =

[
m11 m12

m21 m22

]
=

[
1 0
0 1

]
(2.14)

which is square and nonsingular. The first order directional derivative is computed as defined in defini-
tion 2.9:

f
(0)
0,M(d) = f ′(0;d)

= lim
h→0

f(x1 + hd1, x2 + hd2)− f(x1, x2)

h

= lim
h→0

min{x1 + hd1, x2 + hd2} −min{x1, x2}
h

= lim
h→0

min{0 + hd1, 0 + hd2} −min{0, 0}
h

= lim
h→0

hmin{d1, d2}
h

= min{d1, d2}.

The second order directional derivative is further calculated by using definition 2.9:

f
(1)
x,M(d) =

[
f
(0)
0,M

]′ (
m(1);d

)
= lim

h→0

f0x,M (m11 + hd1,m21 + hd2)− f0x,M (m11,m21)

h

= lim
h→0

min{m11 + hd1,m21 + hd2} −min{m11,m21}
h

= lim
h→0

min{1 + hd1, 0 + hd2} −min{1, 0}
h

= lim
h→0

hd2
h

= d2.

The third order directional derivative is calculated in the same way. Equation

f
(2)
x,M(d) =

[
f
(1)
0,M

]′ (
m(2);d

)
= lim

h→0

f1x,M (m12 + hd1,m22 + hd2)− f1x,M (m12,m22)

h

= lim
h→0

m22 + hd2 −m22

h

= d2.

Using definition 2.11, the LD-derivative can be calculated in the two presented alternatives. Equation
2.12 gives

9

2.4 Automatic differentiation

f ′ (0;M) =
[
f00,M

(
m(1)

)
f10,M

(
m(2)

)]
= [min{m11,m21} m22] = [0 1] .

Alternative 2, equation 2.13 gives the same generalized derivative:

f ′ (0;M) =
[
f20,M

(
m(1)

)
f20,M

(
m(2)

)]
= [m21 m22] = [0 1] .

The graph of f(x,y) = min{x,y} is presented in figure 2.6.

-10
10

10

0

f(
x
,y
)
=

m
in
{
x
,y
}

5

y

0

x

0

10

-5
-10 -10

Figure 2.6: Graph of f(x,y) = min{x,y}

2.4 Automatic differentiation

In this section an introduction to automatic differentiation (AD) of smooth and L-smooth functions,
with additional focus on PC1 functions, will be given. The AD of PC1 uses the theory of generalized
derivatives presented in the previous sections, as well as further work done by Khan and Burton[3].

Automatic differentiation is an alternative to calculating the derivatives through symbolic or numer-
ical differentiation. There are two different kinds of AD, forward automatic differentiation and reverse
automatic differentiation. In this report, only the forward mode will be introduced as it is how the AD
used in this project is implemented. The thought of AD is that strict calculus rules such as the chain
rule, equation 2.7, can be implemented in a numerical environment[6]. This is done by exploiting the
procedural operations that a computer performs when evaluating functions. When a computer evaluates
a function, elemental operations are executed in a sequence. After each execution a temporary variable
is returned which is then used in the next operation. The elemental operations referred to are simple op-
erations such as subtraction, addition, multiplication, division as well as simple functions (trigonometric
functions, exponential function etc.). Similar to calculating the function value, the derivative of a func-
tion is possible to calculate by using this stepwise evaluation. In this project this has been implemented
using object-oriented programming (OOP) in MATLAB. The objects has both a value and a derivative.
By overwriting the elemental functions, both the value and derivative is updated after each elemental
operation. The class valder is presented in appendix C.1. The forward AD is illustrated in table 2.1.

10

2.4 Automatic differentiation

Table 2.1: Forward AD of the function f(x,y) = x2y + ysin(x) at (x,y) = (1,2)

Function Value Derivate expression Derivative
u1 = x = 1 Ju1 = [1 0]
u2 = y = 2 Ju2 = [0 1]
u3 = u21 = 1 Ju3 = 2u1Ju1 = [2 0]
u4 = u3 · u2 = 2 Ju4 = u2 · Ju3 + u3 · Ju2 = [4 1]
u5 = sin(u1) ≈ 0.8415 Ju5 = cos(u5) · Ju1 ≈ [0.5403 0]
u6 = u2 · u5 ≈ 1.6829 Ju6 = u5 · Ju2 + u2 · Ju5 ≈ [1.0806 0.8415]
u7 = u4 + u6 ≈ 3.6829 Ju7 = Ju4 + Ju6 ≈ [5.0806 1.8415]

2.4.1 AD of PC1-functions

The example of AD presented in table 2.1 was done using a C1 functions. It is also possible to apply the
same principle to a nonsmooth function, given that they are L-factorable.

Definition 2.12. (From [3]) A factorable function f us L-factorable if the elemental library L contains
only lexicographically smooth functions whose LD-derivatives are known or computable.

In definition 2.12 the library L refers to the elemental functions that the function f can be broken
down to. Important to this project, PC1-functions are L-factorable. In this project, only the abs-function
is differentiated by exploiting the strict calculus rules of the lexicographic directional derivatives. Also
the PC1-functions min and max are used in the model formulation presented in chapter 3, but these are
expressed as a function of the absolute function in the valder class. This means that it is actually the
abs-function that is evaluated when the min and max functions are called. min{x, y} and max{x, y}
can be expressed as a function of abs,

min{x, y} =
x+ y − |x− y|

2
, (2.15)

max{x, y} =
x+ y + |x− y|

2
. (2.16)

Algorithm 1: Computes the LD-derivative, u′(x;M) for the absolute value function u = |x| [3]

Require: Function f : R→ R : |x| that admits a scalar argument.
1: if x 6= 0 then
2: Set V̇← (signx)M
3: else
4: Set s1 ← 1
5: for k = 1 to p do
6: if m(k) 6= then
7: Set s1 ← signmk

8: Break out of for-loop
9: end if

10: end for
11: V̇← s1M
12: end if
13: return V̇

In algorithm 1 the procedure of calculating the LD-derivative of the absolute function. If x is not
equal to 0, the procedure reduces to returning the well-defined derivative of abs(x). With x = 0, the
LD-derivative is determined by the sign of the first non-zero direction.

11

2.5 Solvers for nonsmooth equation systems

2.5 Solvers for nonsmooth equation systems

One type of solvers that can be used to solve nonsmooth equation systems is the nonsmooth Newton-like
methods, (see equation 2.8). In this project the Newton-like method, using the Lexicographic derivatives
as a replacement for the Jacobian, has proven to be quite sensitive to the initial guess (further discussed
in section 4.4). As a result, the Levenberg-Marquardt algorithm (LMA) in MATLAB has been used to
solve the system. The LMA is used to solve non-linear least squares problem and can be thought of as a
combination of steepest descent and the Gauss-Newton method[5]. Far away from the solution the LMA
will behave as the steepest descent, which is slow, but guarantees convergence[5]. Closer to the correct
solution, it becomes Gauss-Newton method. The gradient descent is described in equation 2.17[8], and
the search direction in the Gauss-Newton method is the solution of equation 2.18[8].

xk+1 = xk − Jf(xk) (2.17)

Jf(xk)TJf(xk)pkGN = −Jf(xk)Tf(xk) (2.18)

xk+1 = xk −
(
Jf(xk)TJf(xk)

)−1
Jf(xk)Tf(xk) (2.19)

In this project, the generalized derivative G has been used as a substitution for Jacobian in equation 2.17
and 2.18. The

(
Jf(xk)TJf(xk)

)−1
Jf(xk)T part is the pseudo inverse of the Jacobian, meaning that the

Gauss Newton method is the same as the Newton-type method proposed in equation 2.8. This is due to
the fact that

(
Jf(xk)TJf(xk)

)−1
Jf(xk)T = Jf(xk)−1 if the Jacobian is square and has full rank.

12

Chapter 3
Connected oil wells modeling

In this chapter the steady state model of connected oil wells will be described in detail. The model is
describing the system presented in figure 3.1.

pS1 pS2

pM1

pM2

pM3

pr2

pwf;2

pwf;1

pwf;3

pwh;1 pwh;2 pwh;3

zc1 zc2 zc3

zF1 zF2

zR1 zR2

+ +

pr1

mw1o

mw1w

mw1g

GOR1

mw2o

mw2w

mw2g

GOR2

mw3o

mw3w

mw3g

GOR3

mF1o

mF1w

mF1g

mF1o

mF1w

mF1g

pR1 pR2

mR1o

mR1w

mR1g

mR2o

mR2w

mR2g

+

pr3

Figure 3.1: Illustration of the connected oil well system modeled in this project with the relevant nomenclature
and positive flow directions indicated.

The system consists of three wells that are connected to two risers. In the model the reservoir and
separator pressures are set, and it is this pressure gradients that sets the mass flows in the different pipe
segments. The model is formulated using the newly developed methods within nonsmooth analysis de-
scribed in chapter 2. The advancements within nonsmooth analysis has made it possible to solve systems
with nonsmooth equations and is computationally tractable thanks to the vector forward mode of auto-
matic differentiation for generalized derivative evaluation[3][9]. Formulating the problem in this manner
allows the streams to flow in both directions. The main objective of modeling this system is to show that

13

3.1 Reservoir inflow model

this is possible to achieve using nonsmooth equations were the Jacobian elements at nondifferentiable
points are substituted by elements from the lexicographic derivative. The nonsmoothness of the system
arises in the valve equations (section 3.4) in addition to the calculation of the composition in the man-
ifolds (section 3.5). This chapter will include the assumptions made and all the equations used in the
model with a comprehensive description of how the nonsmooth equations are formulated.

3.1 Reservoir inflow model

The inflow of oil and water into the well is assumed to follow the quadratic deliverability function
proposed by Fetkovich[1]:

m̂w,i,o = ko,i(p
2
r,i − p2wf,i), (3.1)

m̂w,i,w = kw,i(p
2
r,i − p2wf,i). (3.2)

Here m̂w,i,o and m̂w,i,w is the mass flow of oil and water into well i, ko,i and kw,i is the transport
coefficient for oil and water from the reservoir to well i. pr,i is the reservoir pressure and pwf,i is the
well inflow pressure for well i. The inflow of gas is given by the gas-oil ratio in the well (GORi):

m̂w,i,g = GORi · m̂w,i,o. (3.3)

where m̂w,i,g is the mass flow of gas into well i. The GOR is assumed to follow the relation proposed by
Grimholt[2]:

GORi =
kg,i
ko,i

(pr,i − pwf,i)2. (3.4)

3.2 One-phase pseudo fluid

The well flow is a multiphase fluid consisting of liquid and gas. In this model this multiphase fluid is
approximated as a one-phase fluid. By doing so, and neglecting mixing effects, the density of the pseudo
fluid can be calculated using the volumetric average of the separate densities:

ρmix = vgρ
ig
g + voρo + vwρw. (3.5)

ρmix is the density of the pseudo fluid, vg,vo and vw is the volumetric fractions of gas, oil and water
respectively. ρo, ρw and ρigg is the density of oil, water and ideal gas. The flows in the model has units of
mass per time, so equation 3.5 is reformulated to mass basis by the use of the following relation:

vi =
m̂i/ρi

mo/ρo + mw/ρw + mg/ρigg
for i= {o, w, g}. (3.6)

By combining equation 3.5 and 3.6, the overall density, in terms of mass flows, becomes

ρmix =
m̂o + m̂g + m̂w

m̂g/ρigg + m̂o/ρo + m̂w/ρw
. (3.7)

The oil and water is assumed to be incompressible, and that the gas behaves as an ideal gas. These
assumption implies that the density of oil and water is constant, whilst the density of gas can be calculated
from the ideal gas law,

ρigg =
pMg

RT
, (3.8)

where Mg is the molar mass of the gas, R is the gas constant and T is the temperature.

14

3.3 Pressure drop through a vertical pipe

3.3 Pressure drop through a vertical pipe

The calculation of the pressure drop through the well (vertical pipe) is calculated from the stationary
mechanical energy balance [12];

mα
v22
2

+mgz2 +

∫ p2

p1

dp

ρ
+ Φ = mα

v21
2

+mgz1 +Ws. (3.9)

In the mechanical energy balance the kinetic energy (mv2/2), potential energy (mgz), ”potential pressure
energy” (m

∫ dp
ρ), energy loss due to friction (Φ) and work (Ws) are included. By assuming no slip

between the phases and neglecting kinetic energy, friction and work the equation is reduced to:∫ p2

p1

dp =

∫ h2

h1

ρmix(p)gdh. (3.10)

Using the expression of ρmix obtained in 3.7 and integrating equation 3.10 between the limits, indicated
in figure 3.2, gives

m̂gRT

Mg
ln(p2/p1) + (m̂o/ρo + m̂w/ρw) (p2 − p1) = m̂totg∆h. (3.11)

Equation 3.11 cannot be solved directly for p2, but by performing a serial expansion of the natural
logarithmic part,

ln(p2/p1) = ln(p1 + ∆p/p1) ≈ ∆p/p1, (3.12)

the pressure difference through a vertical pipe can be expressed as:

∆p = p2 − p1 =
m̂totgp1∆h

m̂gRT
Mg

+ p1 (m̂o/ρo + m̂w/ρw)
. (3.13)

pr

(p2; h2)

(p1; h1)

∆h

Figure 3.2: Sketch of a single oil well where the limits for calculation of pressure through the vertical pipe is
indicated.

15

3.4 Pressure drop through a valve

3.4 Pressure drop through a valve

The mass flow through a valve is modeled by a modification of the standard valve equation,

m̂ = f(z)CdAρ
√
p2 − p1, (3.14)

where f(z) is the valve characteristic function, Cd is the valve coefficient,A is the cross-section area and
p1 and p2 is the pressure on each side of the valve. The valves are assumed to have linear characteristics,
meaning f(z) = z, where z is the valve position ranging from z = 0 (fully closed) to z = 1 (fully open).
The standard valve equation is modified to allow mass flows in both directions. One approach to achieve
this is to introduce the sign-function,

sign(x) =

{
1 :x> 0

−1 :x< 0
(3.15)

resulting in the following equation:

m̂ = zCdAρ sign(p2 − p1)
√
|p2 − p1|. (3.16)

This approach is not possible to use as the computation of the lexicographical directional derivatives
demands that the function is Lipschitz continuous (see definition 2.11). Neither the sqrt-function nor
the sign function meets this demand. The sqrt-function is not Lipschitz continuous at x = 0, as the
derivative is not bounded from above (it approaches infinity). The sign-function has a step change at x
= 0, and is therefore not Lipschitz continuous.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

(a) sqrt(x)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

f
(x

)

(b) sign(x)

Figure 3.3: Lipschitz discontinuous functions sqrt(x) and sign(x)

Another approach is to square equation 3.14, resulting in,

m̂2 =

{
z2C2

dA
2ρ(p2 − p1) : p2 − p1 > 0

−z2C2
dA

2ρ(p2 − p1) : p2 − p1 < 0
(3.17)

Equation 3.17 is not defined at x = 0. Reformulating the equation by substituting m̂2 with m̂|m̂| results
in equation 3.18, which is Lipschitz continous and allows the mass to flow in both directions.

m̂|m̂| = z2C2
dA

2ρ(p2 − p1) (3.18)

As for the flow in the well, the fluid is assumed to be a pseudo one-phase fluid inside the valve. The
density is calculated by the average of the densities on both sides of the valve,

ρ =
1

2
(ρmix,1 + ρmix,2) (3.19)

16

3.5 Manifolds

z

ρ

ρmix;1

p1

ρmix;2

p2

m̂+

Figure 3.4: Sketch of valve with the densities, pressures and positive flow direction indicated.

3.5 Manifolds

The wells are connected through a common point of mixing. As the flow is modeled by equation 3.18, the
flow is either in or out of each well, depending on the pressure difference. Since there is no accumulation
in the manifolds, the sum of all flows in and out of the manifold must be zero, leading to the following
relationship,

n∑
i=1

F i = 0, (3.20)

where F i is the flow rate in or out of well i, depending on the sign. The calculation of the composition
in a mixing point/manifold is dependent on which flows that are going into it.

M 1

j ; p
1 M 2

j ; p
2

M i
j ; p

i

F i

F 1

F 2

x0j ; p
0

+

−

Figure 3.5: Scheme of a the manifold. The flow rate is defined as positive into the manifold. The sign of the flow
rate is dependent on the pressure difference.

The standard approach for calculation of the composition in such mixing points is to apply logical
statements on the pressure difference. The possibility to include nonsmooth equation in the model re-
moves the need of these statements. A nonsmooth formulation of the components balance, which covers
all cases of different flow directions, is proposed by Stechlinski 2017 [9] as,

n∑
i

(max{F i, 0}xij) =

(
n∑
i

max{F i, 0}

)
x0j , j = 1, . . . , nc, (3.21)

where j is the component and x0j is the composition in the manifold. By using this formulation, only the
positive flows are taken into account when calculating the compositions. In equation 3.21 flows from a
well into the manifold is defined as positive. In the model the flows are defined as positive upwards and

17

3.6 Calculation of flow rate in connection pipes

from Manifold 2, M2 to Manifold 1, M1 and Manifold 3, M3, as illustrated in figure 3.1 and 3.6. For
this reason, the defined direction has to be accounted for, leading to the following equations for the three
manifolds:

(max(m̂w,1, 0) + max(m̂F,1, 0) + max(−m̂R,1, 0))xM1
j

= max(m̂w,1,j , 0) + max(m̂F,1,j , 0) + max(−m̂R,1,j , 0) j = o, w, g,
(3.22a)

(max(m̂w,2, 0) + max(−m̂F,1, 0) + max(−m̂F,2, 0))xM2
j

= max(m̂w,2,j , 0) + max(−m̂F,1,j , 0) + max(−m̂F,2,j , 0) j = o, w, g,
(3.22b)

(max(m̂w,3, 0) + max(m̂F,2, 0) + max(−m̂R,2, 0))xM3
j

= max(m̂w,3,j , 0) + max(m̂F,2,j , 0) + max(−m̂R,2,j , 0) j = o, w, g
(3.22c)

+

+

+−

−

−

M1

m̂w;1;j

m̂F;1;j

m̂R;1;j

(a) Manifold 1

+

+

−

−

M2

m̂w;2;j

m̂F;1;j

+

−

m̂F;2;j

(b) Manifold 2

+

+

+−

−

−

M3

m̂w;3;j

m̂F;2;j

m̂R;2;j

(c) Manifold 3

Figure 3.6: The figures shows how the positive and negative directions in and out of the manifolds are defined in
the model.

Equations 3.22a, 3.22b and 3.22c is the component balances for manifold 1, manifold 2 and manifold
3 respectively. m̂w,i,j is flow rate in well i of component j, m̂w,i is the total flow rate in well i, m̂F,i,j is
the flow from manifold 2 to manifold 1 or 3 of component j, whilst m̂F,i is the total flow rate in the same
streams. m̂R,i,j is the flow rate of component j in riser i, m̂R,i is the total flow rate in riser i and xMi

j is
the molar fraction of component j in manifold j.

3.6 Calculation of flow rate in connection pipes

The calculation of the flow rates in the connection pipe from manifold 2 to manifold 1 and 3, F1 and
F2, requires a nonsmooth formulation to be valid for both the possible flow directions. There are two
physical requirements that has to be satisfied. First, all the three components (oil, water and gas) needs
to have the same flow direction. Second, the composition of the flows is the same as the composition
in the manifold which it flows from. Equation 3.18, together with a equation formulated in a similar
manner as for the calculations of the composition in the manifolds used in section 3.5 can fulfill both
requirements. The driving force for the flows is the difference in pressure, so by using the sign of the
pressure difference it is possible to find the direction of the flow. Using this logic, a possible formulation
for the flow rate of component j in stream m̂F,i is,

m̂F,i,j =

(
min(∆pi, 0)

∆pi
xMk
j +

min(−∆pi, 0)

−∆pi
xM2
j

)
m̂F,i, i = 1, 2 j = o, w, g (3.23)

∆pi = pM2 − pMk
i = 1, 2 (3.24)

18

3.6 Calculation of flow rate in connection pipes

where subscript k is 1 and 3 when subscript i is 1 and 2 respectively, as indicated in figure 3.7. If the
pressure difference is positive, the pressure in manifold 2, pM2 , is higher than in the connected manifold.
If this is the case, equation 3.23 makes sure that the composition in the flow is equal to the composition in
M2, as it should. If the pressure difference is negative, the composition will be equal to the composition
in the connected manifold.

+

−

M3; pM3

m̂F;2;j

M2; pM2

∆p2 = pM2
− pM3

+

−

m̂F;1;j

∆p1 = pM2
− pM1

M1; pM1

Figure 3.7: A scheme of the connected manifolds with the defined pressure difference included.

19

Chapter 4
Results and discussion

In this chapter the results obtained from running the model at different values for the degrees of freedom,
which are the 7 valve positions and reservoir pressure, are presented. First, some results showing the
behaviour of the model with respect to changes in a valve position is presented. Second, the allowance
of bi-directional flow in the model is shown. Finally, a simple graphical optimization, with respect to
different objectives, of the valve positions are presented. In this chapter all the parameters are set to the
values presented in table A.1 if not stated otherwise. Similarly, all valves are set to be half open (z = 0.5)
as default.

4.1 Varying the valve position in well 1

To illustrate the general behavior of the system, this section will present results obtained by solving the
model for different valve positions in well 1. This is done to introduce how the system is connected
before presenting the results which shows that the model handles any flow direction. In figure 4.1 the
total flow rates in the well system as functions of the valve position, zc1.

0 0.2 0.4 0.6 0.8 1

z
c1

0

1

2

3

4

m
as
s
fl
ow

[k
g/

s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

Figure 4.1: Graph of the total flow rates with varying valve position in well 1.

The results presented in figure 4.1 shows that all flows have the same sign for any valve opening in well
1. This means that the flow directions does not change. These flow directions are illustrated in figure 4.2.
Overall, with increasing valve opening in well 1 the flow rate in well 1 and riser 1 increases, whilst the
flow rate in well 2 and 3 is reduced. Still, the total flow rate in riser 2 is slightly increased as the fraction
of the flow in well 2 that flows into manifold 3 is increased.

20

4.1 Varying the valve position in well 1

m̂1

m̂F1 m̂F2

m̂2 m̂3

m̂R2

m̂R1

zc1

Figure 4.2: The flow directions in the well system for all valve position, zc1, with all other parameters kept
constant.

Further, the results in 4.1 shows that for zc1 = 0 the flow in well 1 is zero, which is what is desired. It
also shows that larger parts of the flow in well 2 flows into riser 1 than riser 2 for small valve openings.
This is because the pressure in manifold 1 is lower for small openings as the pressure drop through the
valve in well 1 is high for small valve openings (see section 3.4). As the valve opening is increased, the
flow rate in well 1 increases, and thereby also the flow rate in riser 1. The higher production in well 1
leads to an increase in the pressure in manifold 1 (see figure 4.3), further decreasing the flow rate from
manifold 2 to manifold 1 due to a decrease in the pressure gradient.

0 0.5 1

z
c1

394

396

398

400

P
re
ss
u
re

[b
ar
] p

wf1

p
wf2

p
wf3

(a) Well inflow

0 0.5 1

z
c1

305

310

315

320

P
re
ss
u
re

[b
ar
] p

wh1

p
wh2

p
wh3

(b) Well heads

0 0.5 1

z
c1

150

200

250

P
re
ss
u
re

[b
ar
] p

M1

p
M2

p
M3

(c) Manifolds

Figure 4.3: Pressures in the oil well system at different valve openings in well 1, zc1

The graphs of the pressures in figure 4.3 shows the pressures in the well system plotted against
the valve position in well 1. Figure 4.3a correlates with the flow rates presented in figure 4.1 as the
mass flow rates increases with increasing pressure difference between the reservoir and well inflow (see
section 3.1). The well head pressure decreases for well 1, while it increases for well 2. This behaviour
arises from the energy balance described in section 3.3, which states that the pressure drop through a
vertical pipe is dependent on the mass flow rate and the densities of the components. Thus, figure 4.3b
corresponds to the flow rates.

The valve opening will also affect the component flow rates in each well due to the different depen-
dencies of the pressure gradients (see section 3.1). In addition the different wells have different transport
coefficients, meaning that the composition in each well will be different. The main objective of an oil
well is to produce oil, but often there are capacity problems for gas and water. The gas production in
the model has a higher order dependency on the pressure difference, meaning that the gas flow increases

21

4.2 Response to changes in the valve position in riser 1, zR1

relatively faster than both oil and water. Figure 4.4 shows how the different component flows change as
functions of the valve opening. Notice how both oil and water flow rate starts to converge, while the gas
rate seem to diverge. In figure 4.4d the total component flows are presented. Since both well 2 and 3 has
higher transport coefficients for water than for oil, the flow rate of water is larger than that of oil in these
wells. As the valve in well 1 is gradually opened, the oil rate increases faster compared to water. This is
due to the relative high oil transport coefficient in well 1. It is important to notice that these results are
dependent on the transport coefficients, which is set. By changing which well is the best oil producer
(changing the transport coefficient to be relative high for oil compared water and gas), the results will be
different.

0 0.5 1

z
c1

0

1

2

3

O
il
fl
ow

[k
g/
s] m

w1o

m
w2o

m
w3o

(a) Oil flow

0 0.5 1

z
c1

0

0.5

1

1.5

W
at
er

fl
ow

[k
g/
s]

m
w1w

m
w2w

m
w3w

(b) Water flow

0 0.5 1

z
c1

0

5

10

G
as

fl
ow

[k
g/
s]

×10
-3

m
w1g

m
w2g

m
w3g

(c) Gas flow

0 0.2 0.4 0.6 0.8 1

z
c1

0

1

2

3

4

m
as
s
fl
ow

[k
g/

s]

m
o

m
w

m
g

(d) Total component flow

Figure 4.4: Component mass flow in the oil well system at different valve openings in well 1, zc1

4.2 Response to changes in the valve position in riser 1, zR1

The main purpose of modeling the system using nonsmooth functions is to allow bi-directional flow in
the pipe segments. In the previous example, varying the valve position in well 1, did not show that the
model is solve-able for all flow directions. In this section, the valve position in riser 1 will be adjusted.
Closing the valve entirely will force the flow in well 1 to flow from manifold 1 to manifold 2, which is
the opposite flow direction compared to the case with all valves at half open position. In figure 4.5 the
flow rates for different valve position in riser 1 is presented.

The results in figure 4.5 shows that the flows are allowed to flow in both directions. Flow m̂F2,
from manifold 2 to 1, is negative for small valve opening (below zR1 = 0.165), while it is positive for
larger openings. This means that the flow direction changes in this pipe segment at zR1 ≈ 0.165. These
results shows that the nonsmooth formulation together with the replacement of the Jacobian elements
with Lexicographic derivative elements allow the model to have a solution for all flow directions. The
direction of the flows are presented in figure 4.6. In addition, the model behaves in a manner which is

22

4.2 Response to changes in the valve position in riser 1, zR1

0 0.2 0.4 0.6 0.8 1

z
R1

-1

0

1

2

3

4

m
a
ss

fl
ow

[k
g
/s
]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

Figure 4.5: Graph of the total flow rates with varying valve position in riser 1.

physically expected. When the valve in riser 1 is completely closed, the flow rates from well 1, 2 and 3
is produced through riser 2 as shown in figure 4.6a. By these results it shows that it will be possible to
produce from well 1, even with riser 1 completely closed. When the valve in riser 1 is gradually opened,
some of the flow rate from well 1 is starting to be produced through riser 1. The reason why only parts
of the flow is produced through riser 1 is that the pressure in manifold 1 is higher than in manifold 2 at
these valve positions, as shown in figure 4.6b. With the valve in riser 1 at small openings, the pressure
drop through the valve is high, limiting the flow rate in riser 1 which is what causes the high pressure in
manifold 1.

zR1 = 0

m̂1

m̂F1 m̂F2

m̂2 m̂3

m̂R2

m̂R1 = 0

(a) zR1 = 0

zR1 = (0; 0:165]

m̂1

m̂F1 m̂F2

m̂2 m̂3

m̂R2

m̂R1

(b) zR1 = (0, 0.165]

zR1 = (0:165; 1]

m̂1

m̂F1 m̂F2

m̂2 m̂3

m̂R2

m̂R1

(c) zR1 = (0.165, 1]

Figure 4.6: Flow directions for different valve positions in riser 1, zR1, with all other parameters kept constant.

As the valve in riser 1 is further opened, the flow rate increases, and the pressure in manifold 1
decreases. When the valve is at zR1 = 0.165 the pressure in manifold 1 and 2 intersect each other in
figure 4.7c. At this point the pressure gradient changes sign, and the flow changes direction. From this
valve position until fully open, the flow direction is as presented in figure 4.6c, which is the same as for
the case in section 4.1.

23

4.2 Response to changes in the valve position in riser 1, zR1

0 0.5 1

z
R1

394

396

398

400
P
re
ss
u
re

[b
ar
] p

wf1

p
wf2

p
wf3

(a) Well inflow

0 0.5 1

z
R1

305

310

315

P
re
ss
u
re

[b
ar
] p

wh1

p
wh2

p
wh3

(b) Well heads

0 0.5 1

z
R1

150

200

250

300

350

P
re
ss
u
re

[b
ar
] p

M1

p
M2

p
M3

(c) Manifolds

Figure 4.7: Pressures in the oil well system at different valve openings in riser 1, zR1

Overall, the flow rate in the wells increase with increasing valve opening in riser 1, but as mentioned
in the previous section, the component flows are more important from an economic point of view. The
component flows as functions of the valve position is presented in figure 4.8. From the graph in figure
4.8a it can be seen that the ratio between the oil and flow rate is close to constant. This means that it is
not possible to adjust this ratio using this valve position. But there is another ratio which is important,
namely the GOR. The total GOR as well as the GOR in the three wells is shown in figure 4.9. The
graphical results shows that the GOR gets approximately three times higher from a closed to fully open
valve. This follows from that the pressure at the inflow decreases, see figure 4.7a. This leads to a higher
increase in the gas production than for both oil and water. If there are problems with the gas capacity
topside, adjusting the valve in riser 1 can reduce the GOR, at the cost of less total production.

0 0.5 1

z
R1

0

1

2

O
il
fl
ow

[k
g/
s] m

w1o

m
w2o

m
w3o

(a) Oil flow

0 0.5 1

z
R1

0

0.5

1

1.5

W
at
er

fl
ow

[k
g/
s]

m
w1w

m
w2w

m
w3w

(b) Water flow

0 0.5 1

z
R1

0

2

4

G
as

fl
ow

[k
g/
s]

×10
-3

m
w1g

m
w2g

m
w3g

(c) Gas flow

0 0.2 0.4 0.6 0.8 1

z
R1

0

1

2

3

4

m
as
s
fl
ow

[k
g
/s
]

m
o

m
w

m
g

(d) Total component flow

Figure 4.8: Component mass flow in the oil well system at different valve openings in riser 1, zR1

24

4.2 Response to changes in the valve position in riser 1, zR1

0 0.2 0.4 0.6 0.8 1

z
R1

0

0.5

1

1.5

2

2.5

G
O
R

[-
]

×10
-3

GOR
1

GOR
2

GOR
3

GOR
tot

Figure 4.9: Gas-oil ratio (GOR) as a function of the valve position in riser 1.

In addition to the valves, the equation of the mass fractions in both the manifolds and the connecting
streams was formulated using the nonsmooth functions min and max (see equation 3.22 and 3.23). In
figure 4.10 the mass fraction of oil in manifold 1, xM1o, and in the connecting flow between manifold
1 and 2, xF1o, as plotted against the valve position in riser 1 is shown. The graph in figure 4.10a shows
that the mass fraction of oil in manifold 1 is the same as in well 1 for valve openings below 0.165, while
it is a weighted average of the mass fraction in the connecting flow 1 and well 1 for larger openings. This
can be explained by relating it to the direction of the flows presented in figure 4.5 and 4.6. As discussed
earlier, the flow between manifold 1 and manifold 2 changes direction at zR1 = 0.165. At valve openings
less than this, the only flow into manifold 1 is the flow in well 1, thus the mass fraction should be the
same as in well 1. This is also what the results in figure 4.10a say it is. With larger valve openings,
both flow from well 1 and manifold 2 will flow into manifold 1. This results in that the mass fractions
in manifold should be a weighted average of the fractions in these two flows, which the results in figure
4.10a agree with.

The results in figure 4.10b shows the mass fraction of oil in the connecting flow between manifold
1 and manifold 2 as a function of the valve position in riser 1. The obtained results says that the mass
fraction of oil in this flow is equal to the mass fraction in manifold 1 for valve positions less than 0.165,
while it is equal to the mass fraction in manifold 2 for larger openings, as it should. When the direction
of the flow changes, the mass fractions should also change. This is because the mass fractions of a
flow is equal to the fractions in the point it comes from, and not the point it goes into. This behavior
is nonsmooth as the equation for the mass fraction ”changes” when the flow direction in the connecting
flow changes. The equation for the composition in manifold 1 is given in equation 3.22a. With the valve
position below 0.165, this equation (for oil) is reduced to

m̂w,1,o = m̂w,1 · xM1
o .

For valve opening above 16.5 %, this equation changes to

m̂w,1,o + m̂F,1,o = (m̂w,1 + m̂F,1) · xM1
o .

The graphs of the mass fraction of oil is a good visualization of that the model formulation captures the
nonsmooth behavior, and that it is possible to obtain a solution by using lexicographic derivatives.

25

4.3 Surface response to changes in valve position in riser 1 and connecting flow 1

0 0.2 0.4 0.6 0.8 1

z
R1

0.4

0.45

0.5

0.55

0.6

0.65

0.7
M
as
s
fr
ac
ti
on

[-
]

x
M1o

x
w1o

x
F1o

(a) Mass fraction of oil in manifold 1, xM1o.

0 0.2 0.4 0.6 0.8 1

z
R1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

M
as
s
fr
ac
ti
on

[-
]

x
M1o

x
M2o

x
F1o

(b) Mass fraction of oil in the connecting flow between
manifold 1 and 2,xF1o.

Figure 4.10: The mass fraction of oil in Manifold 1,xM1o, and the connecting flow between manifold 1 and 2,
xF1o.

The results presented in this sections shows that the nonsmooth oil well model allows bi-directional
flow in the connecting flow between manifold 1 and manifold 2. In addition, it has been shown that the
nonsmooth formulation both captures and handles the discrete event where the flow changes directions.
This is shown in how the mass fraction in manifold 1 and in the connecting flow changes at this event.
Overall, the model behaves in the way it is supposed to, and the main objective has been achieved. The
valve equation and the equations used to calculate the composition in the manifolds is not specific for this
system. This means that systems with bi-directional flow and/or mixing points can use these formulations
and thereby capture all states with a few equations. Further, these equations are simpler to formulate than
making a logical statements for all different combination of in- and outflows in a mixing point, which
would be the other option.

4.3 Surface response to changes in valve position in riser 1 and connecting
flow 1

After establishing that the model and the solvers handle the nonsmoothness in the system, it is possible
to optimize the valve positions in the system. Doing a full optimization is out of the scope of this project,
but in this section some surface plots that can be used to perform a simple graphical optimization of two
variables are presented. These two variables are the valve positions in the riser, zR1, and the valve in the
pipe segment between manifold 1 and 2, zF1. For this section, some of the parameters for the system
was changed. This was to have a larger difference in the well characteristics. The parameters that was
changed is presented in table A.2. All valve positions are still set to 0.5, except the valve in the second
connection flow (from manifold 2 to manifold 3) which is set to be fully open (zF2 = 1).

As mentioned earlier, there are three important properties that has to be considered to find the optimal
valve positions in the system. These three are the amount of oil produced, the gas-to-oil ratio (GOR) and
the oil-to-water ratio. The amount of oil produced is important as that is the most valueable product. The
GOR should be low due to the gas capacity limitations topside, while oil-to-water ratio is desired to be
low as there a cost associated with the water spills, due to oil impurities in the water.

26

4.3 Surface response to changes in valve position in riser 1 and connecting flow 1

0
1

1

2

G
O

R
 [
-]

×10
-3

z
F1

0.5

z
R1

0.5

4

0 0

(a) GOR

0
1

0.5

1

m
o

il
/m

w
a

te
r [

-]

1

z
F1

0.5

z
R1

0.5

1.5

0 0

(b) moil/mwater

1
1

2

1

m
o

il [
k
g
/s

]

3

z
F1

0.5

z
R1

0.5

4

0 0

(c) moil

Figure 4.11: GOR, oil-to-water ratio and the total oil production in the oil well system at different valve openings
in connection flow 1 and riser 1, zF1 and zR1

In figure 4.11a the total GOR in the system is presented as a function of both the valves position, zR1

and zF1. The results show that the GOR has a higher dependency of the valve position in the riser than
in the connecting flow. The GOR increases as the valve in riser 1 is opened. This is explained by that the
valve in the riser has an bigger impact on the production rate than the valve in the connecting flow. As
the gas production has a higher order of dependency of the pressure difference between the reservoir and
inflow (see section 3.1) than oil and gas, the amount of gas produced will increase relatively faster. This
effect seems to affect the GOR to a greater extent than the difference in transport coefficients for gas in
the different wells. The optimal conditions for the oil wells are not necessarily to minimize the GOR as
it will limit the amount of oil produced. The limit of the GOR depends on the gas capacity topside, and
the GOR of other wells in the same network.

The oil-to-water ratio for the system is presented in figure 4.11b. In the model, oil and gas has the
same dependency of the pressure difference between the reservoir and inflow (see section 3.1). Because
of this, this ratio depends on the transport coefficients for the different wells. With both the valves closed,
zR1 = 0 and zF1 = 0, well 1 is not produced at all. Therefore, as the results show, the oil-to-water ratio
is low at these valve positions. This is because well 1 is the best oil producer. This ratio should be
maximized as long as the gas capacity constraint is not violated. From the results the valve position in
riser 1 should be fully open, while the valve in the connecting flow should be fully closed. This is to fully
utilize the production capacity in riser 1 to only produce well 1, and thereby maximize the oil-to-water
ratio.

The last property that is considered is the total oil production. The resulting production rate of oil
at the different valve positions is presented in figure 4.11c. With both valves closed the oil production
is at the lowest, mainly because the total production rate is lower, but also since the best oil producer,
well 1, is not produced at this valve configuration. With the valve in riser 1 completely closed, the valve
position in the connecting pipe has a positive effect on the oil rate. This is because some of well 1, which
is the best oil producer, is produced through this pipe. Opening the valve in the riser gradually, the flow
direction in this pipe segment will change, see figure 4.12. When the direction of the flow changes the

27

4.3 Surface response to changes in valve position in riser 1 and connecting flow 1

flow, which now will have the composition as in well 2, will reduce the mass fraction of oil in manifold
1, and thereby reducing the amount of oil produced through riser 1. The optimal valve positions with
respect to maximizing the total oil production is to have riser 1 fully open, whilst the connecting flow
should be fully closed.

-2
1

1

0

m
F

1
 [

k
g

/s
]

z
F1

0.5

z
R1

0.5

2

0 0

Figure 4.12: Flow rate in the connecting flow between manifold 1 and 2.

To minimize the GOR, the connecting flow should be fully open and the riser should be closed. On
the other hand, to maximize the oil-to-water ratio and the oil production the connecting flow should be
closed, while the riser should be fully open. By these results, the valve in the connecting flow should be
closed and the valve in riser 1 should be as open as possible without exceeding the gas capacity topside.
It is important to keep in mind that these results is highly dependent on the transport coefficients for each
well. Changing these coefficients would change the optimal valve positions.

An alternative method to the previous approach to find the optimal valve positions is to formulate
an objective function and make a surface plot of it. In this project a simple objective function has been
formulated,

J = 60mo − 6mw − 10mg. (4.1)

These weights in the objective functions should be considered to be an illustrative example and are not
based on any real values. The plot of this objective function is presented in figure 4.13 and shows, as
the other approach did, that the optimal valve positions are zR1 = 1 and zF 1 = 0. An important aspect
here is that the gas capacity is not included as a constraint, but the negative weight of amount of gas is
included to try to minimize the amount produced.

50
1

100

1

J

150

z
F1

0.5

z
R1

0.5

200

0 0

Figure 4.13: Value of the objective function, J, as at different valve openings in connection flow 1 and riser 1, zF1

and zR1

28

4.4 Convergence of the solvers

4.4 Convergence of the solvers

Solving the problem for different valve position was done using the Levenberg-Marquardt algorithm
(see section 2.5). The number of iterations needed to solve the system varied from 14 to over 43 000
iterations. The number of iterations at the different valve positions is presented in figure 4.14a. The
number of iterations needed at zR1 = 0 is quite high due to lack of a good initial guess. The other
initial values fed to the solver is the solution at the previous valve positions. The amount of iterations
close to the valve position where the flow direction between manifold 1 and 2 changes direction are
significantly higher than for other points. This indicates that the solver have problems converging around
the nonsmooth point.

Another method that can be used to obtain a solution is a Newton-type method. The method is very
sensitive to the initial guess when trying to solve the oil-well system. When a valve is completely closed,
this method has not been able to find the desired solution. The oil well system has shown to have (at least)
two solutions for all valve position configurations. One solution is the values presented in the graphs in
the previous sections, which is also the desired solution. The other solution is setting every flow rate to
zero. The zero flow rate solution is the solution that the Newton-type solver converges to when the initial
point is not good enough, while this is not a problem for the LMA. A possible explanation for this is
that the desired solution is a very narrow solution, where the equations are stiff. This can lead to that,
with a to large step size, the Newton method moves into another convex domain where the zero flow
rate solution is located. The Newton-type method used in this project is a slightly altered version of the
one presented in equation 2.8. To make it converge for all valve positions, except of completely closed
valves, a damping factor of 0.7 was introduced,

x(k+1) = xk − 0.7 ·G(xk)−1f(xk), (4.2)

where the pseudo-inverse of G is used, as the generalized derivative matrix is badly scaled and therefore
not easily inverted. A fix to these problems has been to let the LMA find the solution for completely
closed valve positions, as well as finding a good initial guess, that can be used to find the solution of the
next point were the valve position is slightly adjusted, for the Newton-type solver. As visualized in figure
4.14b, the number of iterations using the Newton-type method is much less than for the LMA close to
the nonsmooth point. Further, the Newton-type method uses the same amount of iterations close to the
nonsmooth point as for the other points.

0 0.2 0.4 0.6 0.8 1

z
R1

10
1

10
2

10
3

10
4

10
5

N
u
m
b
e
r
o
f
it
e
r
a
t
io
n
s

0.3 0.4 0.5 0.6 0.7 0.8

Details away from the nonsmooth point

10

15

20

(a) Number of iterations needed to solve the system
at different valve position in riser 1, zR1, using the
Levenberg-Marquardt algorithm.

0 0.2 0.4 0.6 0.8 1

z
R1

0

5

10

15

20

25

I
t
e
r
a
t
io
n
s

(b) Number of iterations needed to solve the system at
different valve position in riser 1, zR1, using the nons-
mooth Newton-like method.

Figure 4.14: Number of iterations needed to solve the system at different valve position in riser 1, zR1, using the
nonsmooth Newton-like method and LMA.

Another attribute of a solver is the rate of convergence. By plotting the error, in this project measured
by the 1-norm, versus the iterations number, the convergence rate can be visualized. This has been
done and is presented in figure 4.15. For both the solvers, the same initial guess, which is close to

29

4.5 Further discussion

the correct solution, was provided to the solver. From the plot it can be seen that the Newton-type
solver has quadratic convergence, whilst LMA converges linearly. However, the quadratic convergence
of the Newton-type method ”kicks in” at quite small errors (approximately 1e-4), leading to the LMA to
converge with fewer iterations.

0 5 10 15 20 25 30 35
Iterations

10
-15

10
-10

10
-5

10
0

||
F

|| 1

Newton-type method

LMA

Figure 4.15: The 1-norm of the residual functions as a function of iteration number for the LMA and Newton-type
solver.

These results suggests that the LMA is more robust than the Newton-type method. However, the
LMA converges slowly when approaching the nonsmooth point compared to the Newton-type method.
Which solver to use depends on how big changes are induced to the system. With big changes, the
previous solution might not be good enough for the Newton method to find the desired solution, and the
LMA has to be used. On the other hand, if the changes are small, the previous solution is good enough
for the Newton-type method to find the desired solution. As this method converges faster close to the
nonsmooth point, this would be the preferred solver.

4.5 Further discussion

The results presented in the previous sections shows that it is possible to solve a system of nonsmooth
equation by using lexicographic derivatives as a replacement for Jacobian elements. The theory presented
in chapter 2 is quite complicated mathematical theory. However, the computation of the lexicographic
derivative for the absolute function reduces to algorithm 1, which is easily implemented in for example
MATLAB. This makes it quite simple to use the nonsmooth theory in practice, at least for PC1 functions.

The nonsmooth equation, equation 3.21, describing the mass fractions in the manifolds is a good
example of where nonsmooth formulations are very useful. Consider a mixing point with more than
three flows going in or out. With the formulation used in this project, just another flow has to be added to
the equation. The alternative is to use logical statements that checks which flows are going into the point
or not. The number of such statements increases rapidly with increasing amount of flows. Therefore, the
nonsmooth approach is a good alternative, where all different flow direction scenarios does not need to
be considered by the user.

There are also some negative aspects with the use of nonsmooth equations in a model. The main
problems are related to the solvers, which is illustrated in the number of iterations needed by the built-
in Levenberg-Marquardt algorithm to solve the system at the nonsmooth point. The built-in solvers in
software such as MATLAB is more computational economic than user-developed solvers in the same
language. In addition, the solvers are often more robust. That such solvers are not necessarily usable for
systems of nonsmooth equations can make it harder to solve the system.

30

Chapter 5
Conclusion and recommendations for further
work

This project work has shown that a nonsmooth formulation can be used to model a system with bi-
directional flows. The model handles the discrete event where the direction of the flow changes and
is able to calculate the composition in the manifold for all different flow directions. The nonsmooth
formulations makes it possible to include physical equations that are of nonsmooth nature without the
need of smooth approximations.

The Levenberg-Marquardt algorithm was found to be the most robust solver, but has problems con-
verging close to the nonsmooth point. The Newton-type solver on the other hand has no problems
converging at the nonsmooth point, but is very sensitive to the initial guess. Taking this into account, the
choice of solver should be based on how good initial guesses it is possible to provide the solver.

5.1 Recommendations for further work

There are several parts of this project that can be developed further. For the model of the oil well
system, it can be made dynamically and thereby add depletion of the reservoir into the model. By
doing so, the model can be simulated over time to see how the production rates changes. Afterwards it
can be optimized to find the optimal valve positions to maximize the profit. Another part that can be
developed further is the automatic differentiation class, valder. In this project the class is implemented
in MATLAB which have quite high run times compared to low-level languages such as C++. This class
can be implemented in C++, and be made to communicate with MATLAB to be able to use the existing
solvers, which will make it faster. If this is to be done, it should be made in a way which makes it easy
for other to use. This will make it possible for others to solve nonsmooth models without having to
implement their on automatic differentiation class. This can reduce the barrier of going into nonsmooth
analysis, making more people consider using this approach.

31

Bibliography

[1] M. J. Fetkovich. “The Isochronal Testing of Oil Wells”. In: (1973).

[2] Chriss Grimholt and Sigurd Skogestad. “Optimization of oil field production under gas coning
conditions using the optimal closed-loop estimator”. In: IFAC-PapersOnLine 48.6 (2015), pp. 39–
44.

[3] Kamil A. Khan and Paul I. Barton. “A vector forward mode of automatic differentiation for gen-
eralized derivative evaluation”. In: Optimization Methods and Software 30.6 (2015), pp. 1185–
1212.

[4] Kamil A. Khan and Paul I. Barton. “Generalized Derivatives for Solutions of Parametric Ordinary
Differential Equations with Non-differentiable Right-Hand Sides”. In: Journal of Optimization
Theory and Applications 163.2 (2014), pp. 355–386.

[5] Manolis Lourakis. “A Brief Description of the Levenberg-Marquardt Algorithm Implemened by
levmar”. In: 4 (Jan. 2005).

[6] Richard D. Neidinger. “Introduction to Automatic Differentiation and MATLAB Object-Oriented
Programming”. In: SIAM Review 52.3 (2010), pp. 545–563.

[7] Yu. Nesterov. “Lexicographic differentiation of nonsmooth functions”. In: Mathematical Pro-
gramming 104.2 (2005), pp. 669–700.

[8] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd. Springer, 2006.

[9] Paul I. Barton Peter G. Stechlinski Michael Shoham Patrascu. “Nonsmooth Differential-Algebraic
Equations in Chemical Engineering”. In: Computers & Chemical Engineering (2017).

[10] Liqun Qi and Jie Sun. “A nonsmooth version of Newton’s method”. In: Mathematical Program-
ming 58.1 (1993), pp. 353–367.

[11] Stefan Scholtes. Introduction to Piecewise Differentiable Equations. Jan. 2012.

[12] Sigurd Skogestad. Prosessteknikk - Masse- og energibalanser. Tapir, 2003.

32

Appendix A
Parameters

Parameter Value Unit
Pressures
pr1 400 [bar]
pr1 400 [bar]
pr1 400 [bar]
pS1 10 [bar]
pS2 10 [bar]
Transport Coefficients
ko,1 4.567 · 10−4 [kg · bar−2 · s−1]
ko,2 5.966 · 10−4 [kg · bar−2 · s−1]
ko,3 3.793 · 10−4 [kg · bar−2 · s−1]
kw,1 2.322 · 10−4 [kg · bar−2 · s−1]
kw,2 8.572 · 10−4 [kg · bar−2 · s−1]
kw,3 7.160 · 10−4 [kg · bar−2 · s−1]
kg,1 5.721 · 10−8 [kg · bar−4 · s−1]
kg,2 7.110 · 10−8 [kg · bar−4 · s−1]
kg,3 6.219 · 10−8 [kg · bar−4 · s−1]
Heights
h1 1000 [m]
h2 1000 [m]
h3 1000 [m]
hriser,1 1500 [m]
hriser,2 1500 [m]
Miscellaneous
T 373 [K]
Mg 16.04 [kg · kmol−1]
ρo 800 [kg · m−3
ρw 1000 [kg · m−3
Awells 0.01267 [m2]
Arisers 0.0248 [m2]
R 8.314 · 10−2 m3 · bar · kmol−1 · K−1
Cd 1 (kg · m−1 · bar−1 · s−2) −0.5

Table A.1: The parameters used in the connected oil well model.

33

Parameter Value Unit
Transport Coefficients
ko,1 1.157 · 10−3 [kg · bar−2 · s−1]
ko,2 1.157 · 10−4 [kg · bar−2 · s−1]
ko,3 5.787 · 10−4 [kg · bar−2 · s−1]
kw,1 1.165 · 10−4 [kg · bar−2 · s−1]
kw,2 1.158 · 10−3 [kg · bar−2 · s−1]
kw,3 4.729 · 10−4 [kg · bar−2 · s−1]
kg,1 1.042 · 10−6 [kg · bar−4 · s−1]
kg,2 7.110 · 10−8 [kg · bar−4 · s−1]
kg,3 1.589 · 10−7 [kg · bar−4 · s−1]

Table A.2: The parameters used in the connected oil well model for the surface response in section 4.3.

34

Appendix B
Additional results

In this appendix, additional results from different case studies that are not discussed in the main report
are presented.

B.1 Additional composition graphs from changing the valve position in
riser 1

In section 4.2 graphs of the oil mass fraction in Manifold 1 was presented. In this section, the corre-
sponding plots for water and gas is given. As for the oil fraction, both the equation for water and gas
mass fraction in the manifolds changes as the direction of the flow in the connection flows changes.

0 0.2 0.4 0.6 0.8 1

z
R1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
as
s
fr
ac
ti
on

w
at
er

[-
]

x
M1w

x
w1w

x
F1w

(a) Mass fraction water,xM1,w

0 0.2 0.4 0.6 0.8 1

z
R1

0

0.5

1

1.5

M
as
s
fr
ac
ti
on

ga
s
[-
]

×10
-3

x
M1g

x
w1g

x
F1g

(b) Mass fraction gas, xM1,g

Figure B.1: The mass fraction of water and gas plotted against the valve position in riser 1, zR1.

Both the water and gas mass fraction is equal to the corresponding fraction in well 1 for valve
openings below 0.165. For higher openings, the mass fraction in manifold 1 is a weighted average
between the mass fractions in well 1 and manifold 2.

B.2 Graphs of the total flows by changing the different valves positions
and the reservoir pressure

In section 4.1 and 4.2, the results from varying the valve position in well 1 and riser 1 was presented.
Here, the resulting flow rates in the different pipe segments by varying the reservoir pressures and the
valves are presented. For all the plots presented in this section the valve are set to be half open (zi = 0)
and the parameters is equal to the once presented in table A.1.

35

B.2.1 Reservoir pressures

The reservoir pressures affect the production rate as the pressure difference between the separator and
the reservoir set the maximum production rate. It is interesting to examine these results as in a dynamic
model, the reservoir will deplete over time. This means that the reservoir pressure will gradually decrease
it is produced. From the results in figure B.2 it is possible to see that the reservoir pressure mainly affects
the production rate in the corresponding well. However, the production rate from the other wells will
slightly increase. The total production rate (the sum of the flow rate in riser 1 and riser 2) will decrease
with decreasing reservoir pressure. This is due to reduction in pressure difference between the reservoir
and separator.

300 350 400 450 500

p
r1

0.5

1

1.5

2

2.5

3

3.5

m
as
s
fl
ow

[k
g/
s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(a) Reservoir 1,pr1

300 350 400 450 500

p
r2

0

1

2

3

4

m
as
s
fl
ow

[k
g/
s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(b) Reservoir 2,pr2

300 350 400 450 500

p
r3

0.5

1

1.5

2

2.5

3

3.5

m
as
s
fl
ow

[k
g
/s
]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(c) Reservoir 3,pr3

Figure B.2: The total flow rate in each section as a function of the different reservoir pressures.

B.2.2 Valve positions

All the valve positions in the system will affect the flow rates in the different pipe segments. In figure B.3
the flow rates for different valve positions are presented. Generally for the valves in the wells, increasing
valve opening will increase the production from the corresponding well, but will also slightly decrease
the flow rates in the other wells. With all other valves set to half open, only the positions of the valves
in the two risers and in well 2 causes a flow to change direction. For riser 1 this is the connection flow
between manifold 1 and 2, while for riser 2 and well 2 this is the connection flow between manifold 2
and 3. This is additional results that shows that the model allows bi-directional flow.

36

0 0.2 0.4 0.6 0.8 1

z
c1

0

1

2

3

4
m
as
s
fl
ow

[k
g/
s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(a) Well 1,zc1

0 0.2 0.4 0.6 0.8 1

z
c2

-1

0

1

2

3

4

m
as
s
fl
ow

[k
g/
s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(b) Well 2,zc2

0 0.2 0.4 0.6 0.8 1

z
c3

0

1

2

3

4

m
as
s
fl
ow

[k
g/
s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(c) Well 3,zc3

0 0.2 0.4 0.6 0.8 1

z
F1

0

1

2

3

4

m
as
s
fl
ow

[k
g/
s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(d) Connection flow 1,zF1

0 0.2 0.4 0.6 0.8 1

z
F2

0

1

2

3

4

m
as
s
fl
ow

[k
g
/s
]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(e) Connection flow 2,zF2

0 0.2 0.4 0.6 0.8 1

z
R1

-1

0

1

2

3

4

m
as
s
fl
ow

[k
g
/s
]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(f) Riser 1,zR1

0 0.2 0.4 0.6 0.8 1

z
R2

-1

0

1

2

3

4

m
as
s
fl
ow

[k
g/
s]

m
1

m
2

m
3

m
F1

m
F2

m
R1

m
R2

(g) Riser 2,zR2

Figure B.3: The total flow rate in each section as a function of the different valve positions.

37

B.3 Values for all variables at standard valve positions, zi = 0.5

Variable Value Unit Variable Value Unit
Well 1 Well 2
m̂w,1,o 1.2935 kg · s−1 m̂w,2,o 0.7256 kg · s−1
m̂w,1,w 0.6578 kg · s−1 m̂w,2,w 1.0443 kg · s−1
m̂w,1,g 0.0020 kg · s−1 m̂w,2,g 0.0002 kg · s−1
GOR1 0.0016 - GOR2 0.0003 -
pwf,1 394.4 bar pwf,2 398.5 bar
pwh,1 312.7 bar pwh,2 309.5 bar
ρwh,1 854.0 kg · m−3 ρwh,2 906.6 kg · m−3
ρc,1 852.7 kg · m−3 ρc,2 906.4 kg · m−3
Well 3
m̂w,3,o 0.6813 kg · s−1
m̂w,3,w 1.2859 kg · s−1
m̂w,3,g 0.0006 kg · s−1
GOR3 0.0008 -
pwf,3 397.7 bar
pwh,3 307.6 bar
ρwh,3 919.1 kg · m−3
ρc,3 918.7 kg · m−3
Manifold 1 Manifold 2
pM,1 201.2 bar pM,2 223.4 bar
ρM1,w 851.4 kg · m−3 ρM2,w 906.3 kg · m−3
ρM1,R 867.9 kg · m−3 ρM2,1 906.3 kg · m−3
ρM1,2 906.3 kg · m−3 ρM2,3 906.3 kg · m−3
xM1,o 0.5827 - xM2,o 0.4099 -
xM1,w 0.4166 - xM2,w 0.5900 -
xM1,g 0.0007 - xM2,g 0.0001 -
Manifold 3
pM,3 202.6 bar
ρM3,w 918.3 kg · m−3
ρM3,R 914.5 kg · m−3
ρM3,2 906.3 kg · m−3
xM3,o 0.3657 -
xM3,w 0.6340 -
xM3,g 0.0003 -
Connecting flow 1 Connecting flow 1
m̂F,1,o 0.3686 kg · s−1 m̂F,2,o 0.3569 kg · s−1
m̂F,1,w 0.5306 kg · s−1 m̂F,2,w 0.5137 kg · s−1
m̂F,1,g 0.0001 kg · s−1 m̂F,2,g 0.0001 kg · s−1
ρF,1 906.3 kg · m−3 ρF,2 906.3 kg · m−3
Riser 1 Riser 2
m̂R,1,o 1.6621 kg · s−1 m̂R,2,o 1.0382 kg · s−1
m̂R,1,w 1.1884 kg · s−1 m̂R,2,w 1.7997 kg · s−1
m̂R,1,g 0.0022 kg · s−1 m̂R,2,g 0.0007 kg · s−1
pR,1 74.8 bar pR,2 68.5 bar
ρR,1 858.8 kg · m−3 ρR,2 910.9 kg · m−3
ρT,1 816.8 kg · m−3 ρT,2 895.4 kg · m−3
ρS,1 774.73 kg · m−3 ρS,2 879.9 kg · m−3

Table B.1: Values for all variables at standard valve positions, zi = 0.5

38

Appendix C
MATLAB code

In this appendix, the automatic differentiation class, valder, the oil-well system, and the initialization of
values and solvers are presented as MATLAB code.

C.1 valder.m

%**
% @author: Marius Reed
% @organization: Department of chemical engineering, NTNU
% @since: 09-01-2017
% @requires: MATLAB R2016a (not tested in other releases)
%**

classdef valder
properties

val %function value
der %derivative value or gradient vector

end
methods

%Constructor of a valder object.
function obj = valder(a,b)

if nargin == 0
obj.val = [];
obj.der = [];

elseif nargin == 1
obj.val = a;
obj.der = 0;

else
obj.val = a;
obj.der = b;

end
end

function val = getVal(obj)
val = obj.val;

end

function der = getDer(obj)
der = obj.der;

end

%Creating a vector from the valder object.

39

function vec = double(obj)
vec = [obj.val, obj.der];

end

% Overloading plus for the object
function h = plus(u,v)

if ˜isa(u,'valder')
h = valder(u+v.val, v.der);

elseif ˜isa(v,'valder')
h = valder(v+u.val, u.der);

else
h = valder(u.val+v.val, u.der+v.der);

end
end

% Overloading negative for the object
function h = uminus(u)

h = valder(uminus(u.val), uminus(u.der));
end

% Overloading minus for the object
function h = minus(u,v)

if ˜isa(u,'valder')
h = valder(u-v.val, -v.der);

elseif ˜isa(v,'valder')
h = valder(u.val-v, u.der);

else
h = valder(u.val-v.val, u.der-v.der);

end
end

% Overloading multiplication for the object
function h = mtimes(u,v)

if ˜isa(u,'valder')
h = valder(u*v.val, u*v.der);

elseif ˜isa(v,'valder')
h = valder(v*u.val, v*u.der);

else
h = valder(u.val*v.val, u.der*v.val + u.val*v.der);

end
end

% Overloading division for the object
function h = mrdivide(u,v)

h = mtimes(u,vˆ(-1));
end

% Overloading power for the object
function h = mpower(u,v)

if ˜isa(u,'valder')
h = valder(uˆv.val, uˆv.val*log(u)*v.der);

elseif ˜isa(v,'valder')
h = valder(u.valˆv, v*u.valˆ(v-1)*u.der);

else
h = exp(v*log(u));

end
end

% Overloading exponenital for the object
function h = exp(u)

h = valder(exp(u.val), exp(u.val)*u.der);
end

40

% Overloading log for the object
function h = log(u)

h = valder(log(u.val),u.der/u.val);
end

% Overloading the square root for the object
function h = sqrt(u)

h = valder(sqrt(u.val), u.der/(2*sqrt(u.val)));
end

% Overloading sine for the object
function h = sin(u)

h = valder(sin(u.val), cos(u.val)*u.der);
end

% Overloading cosine for the object
function h = cos(u)

h = valder(cos(u.val), -sin(u.val)*u.der);
end

% Overloading tan for the object
function h = tan(u)

h = valder(tan(u.val), sec(u.val)ˆ2*u.der);
end

% Overloading arcsine for the object
function h = asin(u)

h = valder(asin(u.val), u.der/sqrt(1-u.valˆ2));
end

% Overloading arctan for the object
function h = atan(u)

h = valder(atan(u.val), u.der/(1+u.valˆ2));
end

% Overloading the absolute function for the object using
% lexicographic derivatives
function u = abs(u)

s.type = '()'; % reference type
for i = 1:length(u.val)

s.subs = {i};
uvar = subsref(u,s); % store ith element
x = double(uvar); % convert to double
% assign abs value and derivative to output :
v = abs(uvar.val);
d = valder.fsign(x)*uvar.der ;
u = subsasgn (u, s, valder(v, d));

end
end

% Overloading the max function for the object
function h = max(u)

s.type = '()';
if length(u.val) > 2

s.subs = {length(u.val)};
u_l = subsref(u,s);
s.subs = {1:length(u.val)-1};
u_f = subsref(u,s);
h = max2(u_l,max(u_f));

else
s.subs = {1};

41

u_f = subsref(u,s);
s.subs = {2};
u_l = subsref(u,s);
h = max2(u_f,u_l);

end
end

% Overloading the min function for the object
function h = min(u)

s.type = '()';
if length(u.val) > 2

s.subs = {length(u.val)};
u1 = subsref(u,s);
s.subs = {1:length(u.val)-1};
u2 = subsref(u,s);
h = min2(u1,min(u2));

elseif length(u.val) == 1
h = u;

else
s.subs = {1};
u1 = subsref(u,s);
s.subs = {2};
u2 = subsref(u,s);
h = min2(u1,u2);

end
end

% Overloading the max function for two objects
function h = max2(u,v)

h = (u + v + abs(u-v))/2;
end

% Overloading the min function for two objects
function h = min2(u,v)

h = (u + v - abs(u-v))/2;
end

% Creating the midfunction for the object
function h = mid(u)

s.type = '()';
s.subs = {1};
u1 = subsref(u,s);
s.subs = {2};
u2 = subsref(u,s);
s.subs = {3};
u3 = subsref(u,s);
s.subs = {1};
u = subsasgn(u,s,max2(u1,u2));
s.subs = {2};
u = subsasgn(u,s,max2(u1,u3));
s.subs = {3};
u = subsasgn(u,s,max2(u2,u3));
h = min(u);

end

% Creating the midfunction for the three objects
function h = midobj(u1,u2,u3)

s.type = '()';
s.subs = {1};
u = valder();
u = subsasgn(u,s,max2(u1,u2));
s.subs = {2};

42

u = subsasgn(u,s,max2(u1,u3));
s.subs = {3};
u = subsasgn(u,s,max2(u2,u3));

value = u.val;
if length(find(value ˜= inf)) == 3

h = min(u);
else

index = find(value ˜= inf);
s.subs = {index};
h = subsref(u,s);

end
end

% Overloading the 1 and inf norm for the object
function h = norm(u,p)

switch p
case 1

h = sum(abs(u));
case inf

h = max(abs(u));
end

end

% Overloading the mnorm of the function
function h = mnorm(u,p)

nsq = length(u.val);
n = sqrt(nsq);
if mod(n,1) > 0

n = nsq;
end
S.type = '()';
D.type = '()';
uabs = abs(u);
h = double(zeros(n,1), zeros(n,length(getDer(u))));
switch p

case 1
j = 1;
for i = 1:nsq

S.subs = {i};
D.subs = {j};
h = subsasgn(h, S, subsref(h,D) + subsref(uabs, S));
if mod(1,n) == 0

j = j + 1;
end

end
h = max(h);

case inf
j = 1;
for i = 1:nsq;

S.subs = {i};
D.subs = {j};
h = subsasgn(h,S, subsref(h,D) + subsref(uabs, S));
if j < n

j = j + 1;
else

j = 1;
end

end
end

end

43

% Overloading indexed reference
function h = subsref (u,S)

SD.type = S.type;
SD.subs = {S.subs{1} , ':'}; % get row number 1
h = valder(subsref(u.val,S), subsref(u.der,SD));

end

% Overloading indexed assignment
function obj = subsasgn (obj ,S,u)

SD. type = S.type ;
SD. subs = {S.subs{1} ,':'}; % get row number i
A = subsasgn (obj.val , S, u.val);
B = subsasgn (obj.der , SD , u.der);
obj = valder(A,B);

end

% Overloading the sum function for the object
function h = sum(u)

s.type = '()';
s.subs = {1};
h = subsref(u,s);
if length(getVal(u)) > 1

for i = 2:length(getVal(u))
s.subs = {i};
h = h + subsref(u,s);

end
end

end

end
methods (Static)

% Takes the sign of the first nonzero element
function s = fsign (x)

i = 1;
while x(i) == 0 && i< length (x)

i = i+1;
end
s = sign (x(i));

end
end

end

44

C.2 wellSystem.m

%**
% @author: Marius Reed
% @organization: Department of chemical engineering, NTNU
% @since: 09-01-2017
% @requires: MATLAB R2016a (not tested in other releases)
%**
%% Parameters
par.p_r_1 = 400; % Reservoir pressure in well 1 [bar]
par.p_r_2 = 400; % Reservoir pressure in well 2 [bar]
par.p_r_3 = 400; % Reservoir pressure in well 3 [bar]
par.k_o_1 = 39.456/86400; % Transport coefficient oil in well1 [kg/barˆ2*s]
par.k_o_2 = 51.456/86400; % Transport coefficient oil in well2 [kg/barˆ2*s]
par.k_o_3 = 32.772/86400; % Transport coefficient oil in well3 [kg/barˆ2*s]
par.k_g_1 = 4.943e-3/86400;%Transport coefficient gas in well1 [kg/barˆ4*s]
par.k_g_2 = 6.143e-3/86400;%Transport coefficient gas in well2 [kg/barˆ4*s]
par.k_g_3 = 5.373e-3/86400;%Transport coefficient gas in well3 [kg/barˆ4*s]
par.k_w_1 = 20.064/86400;%Transport coefficient water in well1 [kg/barˆ2*s]
par.k_w_2 = 74.064/86400;%Transport coefficient water in well2 [kg/barˆ2*s]
par.k_w_3 = 61.86/86400; %Transport coefficient water in well3 [kg/barˆ2*s]
par.h_1 = 1000; % Height of well 1 [m]
par.h_2 = 1000; % Height of well 2 [m]
par.h_3 = 1000; % Height of well 3 [m]
par.T = 373; % Temperature[K]
par.M_g = 16.04; % Molar mass of gas in well 1 [kg/kmol]
par.rho_o = 800; % Density of oil [kg/mˆ3]
par.rho_w = 1000; % Density of water [kg/mˆ3]
par.R = 8.314e-2; % Gas constant [mˆ3 bar/(kmol*K)]
par.g = 9.81; % Gravitational constant [m/sˆ2]
par.Cd = 1; % Valve coefficient [(kg/(m bar sˆ2))ˆ.5]
par.A_wells = 0.01267; % Cross section valve in wells [mˆ2]
par.h_riser_1 = 1500; % Height of riser 1 [mˆ2]
par.h_riser_2 = 1500; % Height of riser 2 [mˆ2]
par.A_riser = 0.0248; % Cross section valve in riser [mˆ2]

par.P_S1 = 10; % Pressure in separator 1 [bar]
par.P_S2 = 10; % Pressure in separator 2 [bar]

par.z_R1 = 0.5; % Valve position in riser 1 [-]
par.z_R2 = 0.5; % Valve position in riser 2 [-]
par.z_F1 = 0.5; % Valve position in connection pipe 1 [-]
par.z_F2 = 0.5; % Valve position in connection pipe 2 [-]
par.z_c1 = 0.5; % Valve position in well 1 [-]
par.z_c2 = 0.5; % Valve position in well 2 [-]
par.z_c3 = 0.5; % Valve position in well 3 [-]
data.par = par;

%% Initial guess used to find solution at standard conditions
% Well 1
z(1) = 2; % m_w1o [kg/s]
z(2) = 2; % m_w1w [kg/s]
z(3) = 2; % m_w1g [kg/s]
z(4) = 1; % GOR_1 [-]
z(5) = 215; % P_wf1 [bar]
z(6) = 190; % P_wh1 [bar]
z(7) = 300; % rho_wh1 [kg/mˆ3]
z(8) = 600; % rho_c1 [kg/mˆ3]

45

% Well 2
z(9) = 2; % m_w2o [kg/s]
z(10) = 2; % m_w2w [kg/s]
z(11) = 2; % m_w2g [kg/s]
z(12) = 1; % GOR_2 [-]
z(13) = 215; % P_wf2 [bar]
z(14) = 190; % P_wh2 [bar]
z(15) = 300; % rho_wh2 [kg/mˆ3]
z(16) = 600; % rho_c2 [kg/mˆ3]

% Well 3
z(17) = 2; % m_w3o [kg/s]
z(18) = 2; % m_w3w [kg/s]
z(19) = 2; % m_w3g [kg/s]
z(20) = 1; % GOR_3 [-]
z(21) = 215; % P_wf3 [bar]
z(22) = 190; % P_wh3 [bar]
z(23) = 300; % rho_wh3 [kg/mˆ3]
z(24) = 600; % rho_c3 [kg/mˆ3]

% Manifolds
z(25) = 170; % P_M1 [bar]
z(26) = 300; % rho_M1w [kg/mˆ3]
z(27) = 300; % rho_M1R [kg/mˆ3]
z(28) = 300; % rho_M12 [kg/mˆ3]

z(29) = 180; % P_M2 [bar]
z(30) = 300; % rho_M2w [kg/mˆ3]
z(31) = 300; % rho_M21 [kg/mˆ3]
z(32) = 300; % rho_M23 [kg/mˆ3]

z(33) = 175; % P_M3 [bar]
z(34) = 300; % rho_M3w [kg/mˆ3]
z(35) = 300; % rho_M3R [kg/mˆ3]
z(36) = 300; % rho_M32 [kg/mˆ3]

% Connecting flows
z(37) = 1; % m_F1o [kg/s]
z(38) = 1; % m_F1w [kg/s]
z(39) = 1; % m_F1g [kg/s]
z(40) = 600; % rho_F1 [kg/mˆ3]

z(41) = 1; % m_F2o [kg/s]
z(42) = 1; % m_F2w [kg/s]
z(43) = 1; % m_F2g [kg/s]
z(44) = 600; % rho_F2 [kg/mˆ3]

% Riser
z(45) = 2; % m_R1o [kg/s]
z(46) = 2; % m_R1w [kg/s]
z(47) = 2; % m_R1g [kg/s]
z(48) = 150; % P_R1 [bar]

z(49) = 3; % m_R2o [kg/s]
z(50) = 3; % m_R2w [kg/s]
z(51) = 3; % m_R2g [kg/s]
z(52) = 150; % P_R2 [bar]

z(53) = 200; % rho_R1_top [kg/mˆ3]
z(54) = 200; % rho_R2_top [kg/mˆ3]
z(55) = 200; % rho_T1 [kg/mˆ3]
z(56) = 200; % rho_T2 [kg/mˆ3]

46

z(57) = 200; % rho_S1 [kg/mˆ3]
z(58) = 200; % rho_S2 [kg/mˆ3]

% Mass fractions
z(59) = 0.33; % x_M1o
z(60) = 0.33; % x_M1w
z(61) = 0.33; % x_M1g
z(62) = 0.33; % x_M2o
z(63) = 0.33; % x_M2w
z(64) = 0.33; % x_M2g
z(65) = 0.33; % x_M3o
z(66) = 0.33; % x_M3w
z(67) = 0.33; % x_M3g
z0 = z';

%% Solving

options = optimoptions(@fsolve,'Display','iter',...
'MaxIterations',1e5,'MaxFunEvals',1e5,...
'specifyObjectiveGradient', true,'Algorithm','levenberg-marquardt',...
'stepTolerance',1e-14,'FunctionTolerance',1e-8);

% Solving using the Levenberg-Marquardt algorithm
z = fsolve(@(z) myFuncs(z,data),z0,options);

47

C.3 myFuncs.m

%**
% @author: Marius Reed
% @organization: Department of chemical engineering, NTNU
% @since: 09-01-2017
% @requires: MATLAB R2016a (not tested in other releases)
%**
% The function calculates the residual functions F and the generalized
% derivative G.

function [F,G] = myFuncs(z,data)

%% Parameters
par = data.par;
P_r1 = par.p_r_1; %Reservoir pressure in well 1 [bar]
P_r2 = par.p_r_2; %Reservoir pressure in well 2 [bar]
P_r3 = par.p_r_3; %Reservoir pressure in well 3 [bar]
k_o_1 = par.k_o_1; %Transport coefficient for oil in well 1 [s/barˆ2]
k_o_2 = par.k_o_2; %Transport coefficient for oil in well 2 [s/barˆ2]
k_o_3 = par.k_o_3; %Transport coefficient for oil in well 3 [s/barˆ2]
k_g_1 = par.k_g_1; %Transport coefficient for gas in well 1 [s/barˆ4]
k_g_2 = par.k_g_2; %Transport coefficient for gas in well 2 [s/barˆ4]
k_g_3 = par.k_g_3; %Transport coefficient for gas in well 3 [s/barˆ4]
k_w_1 = par.k_w_1; %Transport coefficient for water in well 1 [s/barˆ2]
k_w_2 = par.k_w_2; %Transport coefficient for water in well 2 [s/barˆ2]
k_w_3 = par.k_w_3; %Transport coefficient for water in well 3 [s/barˆ2]
h_1 = par.h_1; %Length of well 1 [m]
h_2 = par.h_2; %Length of in well 2 [m]
h_3 = par.h_3; %Length of in well 3 [m]
T = par.T; %Temperature in well 1 [K]
M_g = par.M_g; %Molar mass [kg/kmol]
rho_o = par.rho_o; %Density of oil [kg/mˆ3]
rho_w = par.rho_w; %Density of water [kg/mˆ3]
R = par.R; %Gas constant [J/(kmol*K)]
g = par.g; %Gravitational constant [m/sˆ2]
Cd = par.Cd; %Valve coefficient [(kg/(m bar sˆ2))ˆ.5]
A_wells = par.A_wells; %Cross section valve in wells [mˆ2]
h_riser_1 = par.h_riser_1; %Height of riser 1 [mˆ2]
h_riser_2 = par.h_riser_2; %Height of riser 2 [mˆ2]
A_riser = par.A_riser; %Cross section valve in riser [mˆ2]

P_S1 = par.P_S1; %Pressure separator 1 [bar]
P_S2 = par.P_S2; %Pressure separator 2 [bar]
z_R1 = par.z_R1; %Valve position R1 [-]
z_R2 = par.z_R2; %Valve position R2 [-]
z_F1 = par.z_F1; %Valve position F1 [-]
z_F2 = par.z_F2; %Valve position F2 [-]
z_c1 = par.z_c1; %Valve position c1 [-]
z_c2 = par.z_c2; %Valve position c2 [-]
z_c3 = par.z_c3; %Valve position c3 [-]

%% Variables
% Construction valder objects from the variable vector
z = valder(z, eye(length(z)));
% Well 1
m_w1o = z(1); %Oil flow in well 1 [kg/s]
m_w1w = z(2); %Water flow in well 1 [kg/s]
m_w1g = z(3); %Gas flow in well 1 [kg/s]
GOR_1 = z(4); %Gas-oil-ratio in well 1 [-]

48

P_wf1 = z(5); %Well inflow pressure in well 1 [bar]
P_wh1 = z(6); %Wellhead pressure in well 1 [bar]
rho_wh1 = z(7); %Density at wellhead in well 1 [kg/mˆ3]
rho_c1 = z(8); %Density at valve in well 1 [kg/mˆ3]
% Well 2
m_w2o = z(9); %Oil flow in well 2 [kg/s]
m_w2w = z(10); %Water flow in well 2 [kg/s]
m_w2g = z(11); %Gas flow in well 2 [kg/s]
GOR_2 = z(12); %Gas-oil-ratio in well 2 [-]
P_wf2 = z(13); %Well inflow pressure in well 2 [bar]
P_wh2 = z(14); %Wellhead pressure in well 2 [bar]
rho_wh2 = z(15); %Density at wellhead in well 2 [kg/mˆ3]
rho_c2 = z(16); %Density at wellhead in well 2 [kg/mˆ3]
% Well 3
m_w3o = z(17); %Oil flow in well 3 [kg/s]
m_w3w = z(18); %Water flow in well 3 [kg/s]
m_w3g = z(19); %Gas flow in well 3 [kg/s]
GOR_3 = z(20); %Gas-oil-ratio in well 3 [-]
P_wf3 = z(21); %Well inflow pressure in well 3 [bar]
P_wh3 = z(22); %Wellhead pressure in well 3 [bar]
rho_wh3 = z(23); %Density at wellhead in well 3 [kg/mˆ3]
rho_c3 = z(24); %Density at wellhead in well 3 [kg/mˆ3]

% Manifold 1
P_M1 = z(25); %Pressure at manifold 1 [bar]
rho_M1w = z(26); %Density of stream from well 1 to manifold 1 [kg/mˆ3]
rho_M1R = z(27); %Density of stream from manifold 1 to riser 1 [kg/mˆ3]
rho_M12 = z(28); %Density of stream from manifold 1 to manifold 2 [kg/mˆ3]
% Manifold 2
P_M2 = z(29); %Pressure at manifold 2 [bar]
rho_M2w = z(30); %Density of stream from well 2 to manifold 2 [kg/mˆ3]
rho_M21 = z(31); %Density of stream from manifold 2 to manifold 1 [kg/mˆ3]
rho_M23 = z(32); %Density of stream from manifold 2 to manifold 3 [kg/mˆ3]
% Manifold 3
P_M3 = z(33); %Pressure at manifold 2 [bar]
rho_M3w = z(34); %Density of stream from well 3 to manifold 3 [kg/mˆ3]
rho_M3R = z(35); %Density of stream from manifold 3 to riser 2 [kg/mˆ3]
rho_M32 = z(36); %Density of stream from manifold 3 to manifold 2 [kg/mˆ3]

%Connection flows
% Well 2 - Well 1
m_F1o = z(37); %Oil flow from manifold 2 to manifold 1 [kg/s]
m_F1w = z(38); %Water flow from manifold 2 to manifold 1 [kg/s]
m_F1g = z(39); %Gas flow from manifold 2 to manifold 1 [kg/s]
rho_F1 = z(40); %Density at valve between manifold 1 and 2 [kg/mˆ3]

% Well 2 - Well 3
m_F2o = z(41); %Oil flow from manifold 2 to manifold 3 [kg/s]
m_F2w = z(42); %Water flow from manifold 2 to manifold 3 [kg/s]
m_F2g = z(43); %Gas flow from manifold 2 to manifold 3 [kg/s]
rho_F2 = z(44); %Density at valve between manifold 2 and 3 [kg/mˆ3]

% Riser 1
m_R1o = z(45); %Oil flow in riser 1 [kg/s]
m_R1w = z(46); %Water flow in riser 1 [kg/s]
m_R1g = z(47); %Gas flow in riser 1 [kg/s]
P_R1 = z(48); %Density at top of riser 1 [kg/mˆ3]
% Riser 2
m_R2o = z(49); %Oil flow in riser 2 [kg/s]
m_R2w = z(50); %Water flow in riser 2 [kg/s]
m_R2g = z(51); %Gas flow in riser 2 [kg/s]
P_R2 = z(52); %Density at at top of riser 2 [kg/mˆ3]

49

rho_R1_top = z(53); %Density at top of riser 1 [kg/mˆ3]
rho_R2_top = z(54); %Density at top of riser 2 [kg/mˆ3]
rho_T1 = z(55); %Density at valve between riser 1 and separator 1 [kg/mˆ3]
rho_T2 = z(56); %Density at valve between riser 2 and separator 2 [kg/mˆ3]
rho_S1 = z(57); %Density at separator 1 [kg/mˆ3]
rho_S2 = z(58); %Density at separator 2 [kg/mˆ3]
% Composition in manifolds
x_M1o = z(59); % Mass fraction of oil in manifold 1
x_M1w = z(60); % Mass fraction of water in manifold 1
x_M1g = z(61); % Mass fraction of gas in manifold 1
x_M2o = z(62); % Mass fraction of oil in manifold 2
x_M2w = z(63); % Mass fraction of water in manifold 2
x_M2g = z(64); % Mass fraction of gas in manifold 2
x_M3o = z(65); % Mass fraction of oil in manifold 3
x_M3w = z(66); % Mass fraction of water in manifold 3
x_M3g = z(67); % Mass fraction of gas in manifold 3
%% Equations
f1 = m_w1o - k_o_1*(P_r1ˆ2 - P_wf1ˆ2);
f2 = m_w1w - k_w_1*(P_r1ˆ2 - P_wf1ˆ2);
f3 = m_w1g - GOR_1*m_w1o;
f4 = GOR_1 - k_g_1/k_o_1 * (P_r1 - P_wf1)ˆ2;

f5 = m_w2o - k_o_2*(P_r2ˆ2 - P_wf2ˆ2);
f6 = m_w2w - k_w_2*(P_r2ˆ2 - P_wf2ˆ2);
f7 = m_w2g - GOR_2*m_w2o;
f8 = GOR_2 - k_g_2/k_o_2 * (P_r2 - P_wf2)ˆ2;

f9 = m_w3o - k_o_3*(P_r3ˆ2 - P_wf3ˆ2);
f10 = m_w3w - k_w_3*(P_r3ˆ2 - P_wf3ˆ2);
f11 = m_w3g - GOR_3*m_w3o;
f12 = GOR_3 - k_g_3/k_o_3 * (P_r3 - P_wf3)ˆ2;

f13 = (P_wf1-P_wh1)*((m_w1g * R * T)/M_g + P_wh1*(m_w1o/rho_o + m_w1w/rho_w))...
- 1e-5*(((m_w1o + m_w1g + m_w1w)*g*P_wh1 * h_1));

f14 = (P_wf2-P_wh2)*((m_w2g * R * T)/M_g + P_wh2*(m_w2o/rho_o + m_w2w/rho_w))...
- 1e-5*(((m_w2o + m_w2g + m_w2w)*g*P_wh2 * h_2));

f15 = (P_wf3-P_wh3)*((m_w3g * R * T)/M_g + P_wh3*(m_w3o/rho_o + m_w3w/rho_w))...
- 1e-5*(((m_w3o + m_w3g + m_w3w)*g*P_wh3 * h_3));

f16 = (P_M1 - P_R1)*((m_R1g * R * T)/M_g + P_R1*(m_R1o/rho_o + m_R1w/rho_w))...
- 1e-5*(((m_R1o + m_R1g + m_R1w)*g*P_R1 * h_riser_1));

f17 = (P_M3-P_R2)*((m_R2g * R * T)/M_g + P_R2*(m_R2o/rho_o + m_R2w/rho_w))...
- 1e-5*(((m_R2o + m_R2g + m_R2w)*g*P_R2 * h_riser_2));

f18 = rho_R1_top*(m_R1g*R*T/(M_g)+ P_R1*m_R1o/rho_o + P_R1*m_R1w/rho_w)...
- P_R1*(m_R1o + m_R1g + m_R1w);

f19 = rho_R2_top*(m_R2g*R*T/(M_g)+ P_R2*m_R2o/rho_o + P_R2*m_R2w/rho_w)...
- P_R2*(m_R2o + m_R2g + m_R2w);

f20 = rho_S1*(m_R1g*R*T/(M_g)+ P_S1*m_R1o/rho_o + P_S1*m_R1w/rho_w)...
- P_S1*(m_R1o + m_R1g + m_R1w);

f21 = rho_S2*(m_R2g*R*T/(M_g)+ P_S2*m_R2o/rho_o + P_S2*m_R2w/rho_w)...
- P_S2*(m_R2o + m_R2g + m_R2w);

f22 = rho_T1 - 0.5*(rho_R1_top + rho_S1);
f23 = rho_T2 - 0.5*(rho_R2_top + rho_S2);

f24 = (m_R1o + m_R1g + m_R1w)*abs(m_R1o + m_R1g + m_R1w)...
- z_R1ˆ2*Cdˆ2 *A_riserˆ2*rho_T1*(P_R1-P_S1);

f25 = (m_R2o + m_R2g + m_R2w)*abs(m_R2o + m_R2g + m_R2w)...
- z_R2ˆ2*Cdˆ2 *A_riserˆ2*rho_T2*(P_R2-P_S2);

f26 = rho_M1R*((m_R1g *R *T)/(M_g)+ P_M1*m_R1o/rho_o + P_M1*m_R1w/rho_w)...

50

- P_M1*(m_R1o + m_R1g + m_R1w);
f27 = rho_M3R*((m_R2g *R *T)/(M_g)+ P_M3*m_R2o/rho_o + P_M3*m_R2w/rho_w)...

- P_M3*(m_R2o + m_R2g + m_R2w);

% Mass balance manifolds
% M1
f28 = m_w1o + m_F1o - m_R1o;
f29 = m_w1g + m_F1g - m_R1g;
f30 = m_w1w + m_F1w - m_R1w;

% M2
f31 = m_w2o - m_F2o - m_F1o;
f32 = m_w2g - m_F2g - m_F1g;
f33 = m_w2w - m_F2w - m_F1w;

% M3
f34 = m_w3o + m_F2o - m_R2o;
f35 = m_w3g + m_F2g - m_R2g;
f36 = m_w3w + m_F2w - m_R2w;

f37 = rho_M12*(m_F1g*R*T/(M_g)+ P_M1*m_F1o/rho_o + P_M1*m_F1w/rho_w)...
- P_M1*(m_F1o + m_F1g + m_F1w);

f38 = rho_M21*(m_F1g*R*T/(M_g)+ P_M2*m_F1o/rho_o + P_M2*m_F1w/rho_w)...
- P_M2*(m_F1o + m_F1g + m_F1w);

f39 = rho_M23*(m_F2g*R*T/(M_g)+ P_M2*m_F2o/rho_o + P_M2*m_F2w/rho_w)...
- P_M2*(m_F2o + m_F2g + m_F2w);

f40 = rho_M32*(m_F2g*R*T/(M_g)+ P_M3*m_F2o/rho_o + P_M3*m_F2w/rho_w)...
- P_M3*(m_F2o + m_F2g + m_F2w);

f41 = rho_F1 - 0.5*(rho_M12 + rho_M21);
f42 = rho_F2 - 0.5*(rho_M23 + rho_M32);

f43 = (m_F1o + m_F1g + m_F1w)*abs(m_F1o + m_F1g + m_F1w)...
- z_F1ˆ2*Cdˆ2*A_wellsˆ2*rho_F1 * (P_M2 - P_M1);

f44 = (m_F2o + m_F2g + m_F2w)*abs(m_F2o + m_F2g + m_F2w)...
- z_F2ˆ2*Cdˆ2*A_wellsˆ2*rho_F2 * (P_M2 - P_M3);

f45 = rho_wh1*(m_w1g*R*T/(M_g)+ P_wh1*m_w1o/rho_o + P_wh1*m_w1w/rho_w)...
- P_wh1*(m_w1o+m_w1g + m_w1w);

f46 = rho_wh2*(m_w2g*R*T/(M_g)+ P_wh2*m_w2o/rho_o + P_wh2*m_w2w/rho_w)...
- P_wh2*(m_w2o+m_w2g + m_w2w);

f47 = rho_wh3*(m_w3g*R*T/(M_g)+ P_wh3*m_w3o/rho_o + P_wh3*m_w3w/rho_w)...
- P_wh3*(m_w3o + m_w3g + m_w3w);

f48 = rho_M1w*(m_w1g*R*T/(M_g)+ P_M1*m_w1o/rho_o + P_M1*m_w1w/rho_w)...
- P_M1*(m_w1o+m_w1g + m_w1w);

f49 = rho_M2w*(m_w2g*R*T/(M_g)+ P_M2*m_w2o/rho_o + P_M2*m_w2w/rho_w)...
- P_M2*(m_w2o+m_w2g + m_w2w);

f50 = rho_M3w*(m_w3g*R*T/M_g + P_M3*m_w3o/rho_o + P_M3*m_w3w/rho_w)...
- P_M3*(m_w3o + m_w3g + m_w3w);

f51 = rho_c1 - 0.5*(rho_wh1 + rho_M1w);
f52 = rho_c2 - 0.5*(rho_wh2 + rho_M2w);
f53 = rho_c3 - 0.5*(rho_wh3 + rho_M3w);

f54 = (m_w1o + m_w1g + m_w1w)*abs(m_w1o + m_w1g + m_w1w) - ...
z_c1ˆ2 * Cdˆ2 * A_wellsˆ2 * rho_c1 * (P_wh1 - P_M1);

f55 = (m_w2o + m_w2g + m_w2w)*abs(m_w2o + m_w2g + m_w2w) - ...
z_c2ˆ2 * Cdˆ2 * A_wellsˆ2 * rho_c2 * (P_wh2 - P_M2);

f56 = (m_w3o + m_w3g + m_w3w)*abs(m_w3o + m_w3g + m_w3w) - ...
z_c3ˆ2 * Cdˆ2 * A_wellsˆ2 * rho_c3 * (P_wh3 - P_M3);

51

m_w1 = m_w1o + m_w1w + m_w1g;
m_w2 = m_w2o + m_w2w + m_w2g;
m_w3 = m_w3o + m_w3w + m_w3g;
m_R1 = m_R1o + m_R1w + m_R1g;
m_R2 = m_R2o + m_R2w + m_R2g;
m_F1 = m_F1o + m_F1w + m_F1g;
m_F2 = m_F2o + m_F2w + m_F2g;

f57 = max2(m_w1o,0) + max2(-m_R1o,0) + max2(m_F1o,0) -...
(max2(m_w1,0) + max2(-m_R1,0) + max2(m_F1,0))*x_M1o;

f58 = max2(m_w1w,0) + max2(-m_R1w,0) + max2(m_F1w,0) -...
(max2(m_w1,0) + max2(-m_R1,0) + max2(m_F1,0))*x_M1w;

f59 = x_M1w +x_M1g + x_M1o - 1;

f60 = max2(m_w3o,0) + max2(-m_R2o,0) + max2(m_F2o,0) -...
(max2(m_w3,0) + max2(-m_R2,0) + max2(m_F2,0))*x_M3o;

f61 = max2(m_w3w,0) + max2(-m_R2w,0) + max2(m_F2w,0) -...
(max2(m_w3,0) + max2(-m_R2,0) + max2(m_F2,0))*x_M3w;

f62 = x_M3w + x_M3g + x_M3o - 1;

dP_12 = P_M2 - P_M1;
dP_32 = P_M2 - P_M3;

f63 = dP_12ˆ2*m_F1o + (min2(dP_12,0)*-dP_12*x_M1o...
+ min2(-dP_12,0)*dP_12 * x_M2o)*m_F1;

f64 = dP_12ˆ2*m_F1w + (min2(dP_12,0)*-dP_12*x_M1w...
+ min2(-dP_12,0)*dP_12 * x_M2w)*m_F1;

f65 = dP_12ˆ2*m_F1g + (min2(dP_12,0)*-dP_12*x_M1g...
+ min2(-dP_12,0)*dP_12 * x_M2g)*m_F1;

f66 = dP_32ˆ2*m_F2o + (min2(dP_32,0)*-dP_32*x_M3o...
+ min2(-dP_32,0)*dP_32 * x_M2o)*m_F2;

f67 = dP_32ˆ2*m_F2w + (min2(dP_32,0)*-dP_32*x_M3w...
+ min2(-dP_32,0)*dP_32 * x_M2w)*m_F2;

%% Extracting the values and the derivatives from the valder objects
F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...

getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18);getVal(f19);getVal(f20);getVal(f21);...
getVal(f22);getVal(f23);getVal(f24);getVal(f25);getVal(f26);...
getVal(f27);getVal(f28);getVal(f29);getVal(f30);getVal(f31);...
getVal(f32);getVal(f33);getVal(f34);getVal(f35);getVal(f36);...
getVal(f37);getVal(f38);getVal(f39);getVal(f40);getVal(f41);...
getVal(f42);getVal(f43);getVal(f44);getVal(f45);getVal(f46);...
getVal(f47);getVal(f48);getVal(f49);getVal(f50);getVal(f51);...
getVal(f52);getVal(f53);getVal(f54);getVal(f55);getVal(f56);...
getVal(f57);getVal(f58);getVal(f59);getVal(f60);getVal(f61);...
getVal(f62);getVal(f63);getVal(f64);getVal(f65);getVal(f66);...
getVal(f67)];

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...
getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18);getDer(f19);getDer(f20);getDer(f21);...
getDer(f22);getDer(f23);getDer(f24);getDer(f25);getDer(f26);...
getDer(f27);getDer(f28);getDer(f29);getDer(f30);getDer(f31);...
getDer(f32);getDer(f33);getDer(f34);getDer(f35);getDer(f36);...
getDer(f37);getDer(f38);getDer(f39);getDer(f40);getDer(f41);...
getDer(f42);getDer(f43);getDer(f44);getDer(f45);getDer(f46);...
getDer(f47);getDer(f48);getDer(f49);getDer(f50);getDer(f51);...

52

getDer(f52);getDer(f53);getDer(f54);getDer(f55);getDer(f56);...
getDer(f57);getDer(f58);getDer(f59);getDer(f60);getDer(f61);...
getDer(f62);getDer(f63);getDer(f64);getDer(f65);getDer(f66);...
getDer(f67)];

end

C.4 newtonMethod.m

%**
% @author: Marius Reed
% @organization: Department of chemical engineering, NTNU
% @since: 09-01-2017
% @requires: MATLAB R2016a (not tested in other releases)
%**
% Semi smooth newton-type method. Finding the z such that the norm of the
% residual F is below the given tolerance

function [z,iter,error] = newtonMethod(z0,data,tol)
z = z0;
F = myFuncs_Newton(z,data); % Finding the initial residual
iter = 0; % Iterations set to zero
error = norm(F,1); % Calulating inital error
while norm(F,1) > tol % Checking for convergence

[F,G] = myFuncs_Newton(z,data); % Computing residual and derivative
z = z - 0.7*pinv(G)*F; % Performs one iteration
iter = iter+1;
if mod(iter,100) == 0 % If number of iterations exceeds 100

tol = tol*10; % reduce convergence tolerance
end
error = [error norm(F,1)]; % Saving the current error

end
end

53

	Summary
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Approach

	Theory
	Piecewise differentiable (PC1) functions and convexity
	B-subdifferential & Clarke generalized Jacobian
	Lexicographic derivatives
	Automatic differentiation
	AD of PC1-functions

	Solvers for nonsmooth equation systems

	Connected oil wells modeling
	Reservoir inflow model
	One-phase pseudo fluid
	Pressure drop through a vertical pipe
	Pressure drop through a valve
	Manifolds
	Calculation of flow rate in connection pipes

	Results and discussion
	Varying the valve position in well 1
	Response to changes in the valve position in riser 1, zR1
	Surface response to changes in valve position in riser 1 and connecting flow 1
	Convergence of the solvers
	Further discussion

	Conclusion and recommendations for further work
	Recommendations for further work

	Bibliography
	Parameters
	Additional results
	Additional composition graphs from changing the valve position in riser 1
	Graphs of the total flows by changing the different valves positions and the reservoir pressure
	Reservoir pressures
	Valve positions

	Values for all variables at standard valve positions, zi = 0.5

	MATLAB code
	valder.m
	wellSystem.m
	myFuncs.m
	newtonMethod.m

