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Abstract

This work contain a study of a real-time Multiple-Input-Multiple-Output (MIMO) sys-
tem connected to Matlab and Simulink. The system contain three manipulated inputs
(power to bulb, power to fan and power to LED) and two controllable outputs (measured
temperature and measured light intensity).

The purpose of the work was to identify models describing the interactions between
the inputs and outputs in the system and implement controllers for the MIMO system
with decentralized controllers. This was done with several Single-Input-Single-Output
(SISO) controllers where it switches control structures for different control regions. The
work also look into more centralized and optimized MIMO control structures where Lin-
ear Quadratic Regulator (LQR) and Model Predictive Control (MPC) were studied and
tested.

The model identification was done by estimating transfer functions from measured step
responses and the use of functions from “System Identification Toolbox” in Matlab. Es-
timated state space models was calculated from the estimated transfer functions using
“Control System Toolbox”.

The SISO controllers in the system was tuned using Simple Internal Model Control
(SIMC) tuning. The MPC object was made with “Model Predictive toolbox” using the
estimated model. The LQR gain was calculated with “Control System Toolbox” and the
state space model.

This work concluded that for the real-time plant the MPC is the easiest solution. The
LQR will be a Linear Quadratic Gaussian (LQG) since it need to estimate the states not
measured. The LQG has more difficult implementation and state estimations than the
MPC, and it goes unstable. The MPC has the option to take the input constraints into
consideration. The decentralized MIMO structure implemented needed to switch focus
and has therefore conditions and several optional controllers which makes the control
structure bigger and more difficult than the MPC.

It is recommended that the further work goes into the identification of the models. A
better identification might also identify the noise and add it separately so it can be
used to improve the LQG calculations and state estimation. It is also possibilities to
implemented better decentralized MIMO structure that takes better care of the controlled
Light Intensity.
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Sammendrag

Dette arbeidet ser nærmere på et “real-time” system med flere pådrag og flere regulerte
variabler (MIMO). Systemet har tre pådrag (strøm til lyspære, strøm til Vifte og strøm
til LED-pære) og to regulerte variabler (målt temperatur og målt lys intensitet).

Hensikten med arbeidet var å identifisere modeller som beskriver interaksjonene mellom
pådragene og de regulerte variablene i systemet og implementere desentraliserte regu-
latorer for MIMO-systemet. Dette ble gjort ved hjelp av Enkel-Inngang-enkel-utgang
(SISO) regulatorer som endre struktur etter reguleringsområde. Arbeidet så også på
mer sentraliserte og optimaliserte regulatorer som Linear Quadratic Regulator (LQR) og
Modellbasert Predektiv Regulering (MPC).

Identifiseringen av modellene ble gjort ved å estimere overføringsfunksjoner fra målte
responser og “System Identification Toolbox” in Matlab. Estimerte “state space” modeller
ble funnet ved å bruke de estimerte overføringsfunksjoner og “Control System Toolbox” i
Matlab.

SISO regulatorene ble stilt inn ved hjelp av enkel IMC (SIMC). MPC’en ble laget ved hjelp
av “Model Predictive toolbox” i Matlab og den estimerte MIMO modellen. Forsterningen
fra LQR ble funnet ved hjelp av state space modellen og “Control System Toolbox”.

Arbeidet konkluderte med at MPC gir den enkleste og beste løsningen på regulator for
systemet. For å bruke LQR på dette systemet må tilstandene estimeres og LQR’en er
derfor en “Linear Quadratic Gaussian” (LQG). LQG ga mer ustabile løsninger og vanske-
ligere implementeringer og estimeringer i strukturen. Siden MPC også kan implementere
begrensninger på pådragene vil den ikke være like ustabil som LQG. Den desentraliserte
løsningen var mer komplisert og var nødt til å bytte mellom strukturer etter hvordan
tilstanden til systemet var.

Det foreslås at videre arbeid ser nærmere på model identifikasjonen, slik at også støyen
estimeres slik at den kan brukes i LQG utregningen og tilstandestimeringen. Det foreslås
også å se på mulighetene for å implementere bedre desentralisert MIMO struktur slik at
lys intensitet reguleringen blir bedre.
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1 Introduction

The easiest and most common part in control theory is Single-Input-Single-Output (SISO)
systems that contains one Controlled Variable (CV) and one Manipulated Variable (MV).
By measuring the system output the CV can be controlled in a feedback controller.
According to Otto Mayr (1970) the feedback controller systems has been around since
the water clock of Ktesibios in 250 B.C [1]. But the rightfully feedback controllers with
closed loop mechanism was first used in the medieval clocks. The more modern three mode
feedback PID-controller (Proportional control, Integral control and Derivative control)
came first in the 1930’s and is now the most used basis controller [2].

In industrial processes the systems is often, more complex and can be a Multiple-Input-
Multiple-Output (MIMO) system. The number of inputs and outputs depends on how
many MV’s needed to have a good control of the CV in the whole range it is supposed
to be controlled in. In MIMO systems the inputs might have interactions on several
of the outputs and the complexity of the control increases. The selection of the MV-
CV pairing in the multi-loop system, is not as easy when there is interactions between
several inputs and outputs. A way of analysing the multivariable control system is the
Relative Gain Array (RGA) method developed by Bristol in 1960’s [2]. In decentralized
control the system is controlled by several other controllers like SISO or Multiple-Input-
Single-Output (MISO) controllers. Simple Internal Model Control (SIMC) is a method
for tuning the PID-controllers. The method uses transfer function models of the response
to perform the tuning.

A more centralized and optimized control of the full MIMO is to use Linear Quadratic
Regulator (LQR) or Model Predictive Control (MPC). The LQR is a feedback controller
where the gain is optimized. The MPC and the LQR is tuned by choosing the penalty-
weights on the deviations in the inputs and outputs of the system. The MPC can also
implement constraints on all variables and step constraints. MPC was first developed in
the end of the 1970’s and is popular alternative when controlling multivariable systems
[2]. The MPC uses models of the process and measurements to predict and optimize
a sequence of changes in the MV’s, and implements the first step in the sequence and
reoptimizes a new sequence of changes. State space models are used to optimize the
tuning of these control structures.

1.1 Report Structure

The work starts with identification of models of the responses in the system. The models
are then used to identify and tune control structures for the plant. Decentralized control
and LQR and MPC will be tested on the plant.

The structure of the report is the following:

1. Introduction includes a brief description of goals of the project and the methods
used. It also describes the structure of the report.

2. Theory and System Description includes a description of the equipment/plant to
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be controlled. The section also describes the structure of the MIMO system and
the software and programs that was used during the project. The section also goes
through the theory of the project.

3. Approach and Results describes the approach during the work and is presenting
the result and comments on the structures.

4. Conclusion gives the final comments on the methods and control structures.

The identified models of the process responses and the plots of the SISO controls are
given in the appendix. The main Matlab scripts and Simulink diagrams are also given in
the appendix.
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2 Theory and System Description

The objective of the project was to implement control structures in a real-time MIMO
plant. The plant was easily connected to a computer and controlled with Simulink. The
plant was looked at as a black box system where only the outputs and inputs was known
and used further. No more theory or analysis of the plant processes was used.

2.1 System and Equipment/Plant

The plant is a small box that is connected to a computer with an universal serial bus
USB. A picture of the plant is shown in Figure 1a. The plant has a bulb (B), a fan (F) and
a light-emitting diode (LED). The plant can measure the temperature (T) and the light
intensity (LI) inside the plant. The three MV’s or system inputs are the power supplied
to the bulb, the fan and the LED. The measured temperature and light intensity are the
CVs or system outputs. The structure of the MIMO system with the inputs and outputs
is shown in Figure 1b. The system inputs and outputs (power and measurements), will
in this work be mentioned with capital front letters, where the physical parts of the plant
will not. The order of the inputs and outputs given above will be used when numbering
inputs and outputs later on in this work.

(a) Equipment/plant (b) MIMO system structure

Figure 1: Picture of the plant/equipment and MIMO structure. The plant has a
bulb, a fan and a LED and can measure the temperature and light intensity inside
the plant. The plant has an external power supply and an USB to connect to the
computer. The plant comes with installation files, and can be directly connected
and manipulated inside Simulink.

The equipment came with installation files, Simulink library and initialization variables
that allows the system to be connected and used in Simulink in real-time. The time unit
used in Simulink as well as all time units in this work is given in seconds. The length
of the time steps in the plant, Ts, was set to 0.1 sec. The equipment can measure more
variables than the temperature and the light intensity, but the temperature and light
intensity is the only measured output considered in this work. The units of the outputs
are not considered in this work and the measurements are used directly. Temperature in
this work is given in unspecified degrees (◦). All inputs are unitless between 0 to 1.
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The software that was used in this work is Matlab and Simulink. “System Identification
toolbox” was used to estimate the response models and “Control System Toolbox” was
used find state space models of the system and to calculate the LQR gain. “Model
Predictive Control Tooolbox” was used during the building and testing of the MPC
control structure.

2.2 Process Models

This work mainly work with transfer function models. The transfer functions are an
alternative Laplace transform model of the ordinary differential equation (ODE), and is
specified with the parameters: gain, k, time delay, θ and time constants, τi of orders i [2].
In first order responses the transfer function between the input, u, and the output, y, is

y =
k

τ1s+ 1
e−θsu (1)

The gain k is the step in y from initial state to new steady state. τ1 is the time constant
and is the time from y starts to change until it reach 1 − 1/e ≈ 63% of the gain step. θ
is the delay present in the process. No delay present in the response gives that e−θs = 1.

State space models is a general class of ODE [2]. A linear state space model is given as

ẋ = Ax + Bu (2)

y = Cx + Du (3)

where x, u and y is vectors of the states, outputs and inputs respectively. ẋ is the vector
of time derivatives of the states and A, B, C and D is matrices describing the system
combinations.

2.3 PID Tuning

PID-control can be tuned from transfer function describing the open loop response. In
SIMC tuning the derivative part of the PID controller is zero if the open loop response has
a first order dynamic, or if the approximated second order response has a second order
time constant lower than the delay (τ2 < θ) [3]. The PI controller and SIMC tuning of
first order transfer functions are given by

c(s) = Kc

(
τIs+ 1

τIs

)
(4)

Kc =
1

k

τ1

τc + θ
(5)

τI = min (τ1, 4(τc + θ)) (6)

where Kc is the proportional controller gain, τI is the integration time constant of the
controller and τc is the tuning parameter.
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Tight control is achieved by choosing τc = θ and tuning the parameter larger gives a more
slow and robust PI controller [3]. A way of calculating the maximum τc (no unnecessary
large τc) is to calculate it from maximum Kc from known disturbances or changes. If the
known input change, ∆u, is needed to perform the output change, ∆y, then the maximum
need Kc = ∆u

∆y
and τc =

∣∣∣ 1
Kc,max

τ1
k

∣∣∣. This tuning gives a no saturation limit for a ∆y step
in the setpoint, given that the input has a ∆u available before it saturates.

2.4 Relative Gain Array

In multivariable processes it can be difficult to identify the best pairing between MVs and
CVs. The Relative Gain Array (RGA) method developed by Bristol in 1966 is a systematic
approach for identifying the pairings and identify where the highest interactions will be
in the process [2]. The elements λij in the array is defined as the ratio between steady
state gain with constant u and the steady state gain with constant y.

λij =
(∂yi/∂uj)u
(∂yi/∂uj)y

(7)

uj and yi is the system input number j and system output number i respectively. The
first column in the RGA shows the different interactions (relative gains) on all outputs yi,
from the first input u1. In a square non-singular plant the sums of the elements on a row
or column is equal 1, and the best pairing will be the element nearest 1 [2]. If the element
is 1 then the only effect from the corresponding input is on the corresponding output. In
a non-square plant the sums of the RGA do not have to be 1, but the sums still give a
indication on the good pairings [4]. If the sum of a column is much lower than 1, then
the corresponding input have small interaction and there is other inputs that gives the
main interactions on the process.

The RGA of the system with the steady state, square plant G is

RGA(G) = G× (G−1)ᵀ (8)

where × is element-by-element multiplication [4]. For a non-squareG, the pseudo inverse,
G† is used.

RGA(G) = G× (G†)ᵀ (9)

In Matlab the RGA is calculated by

RGA = G.*pinv(G.’); (10)

2.5 Model Predictive Control

The MPC uses a model of the process and the measurements to optimize a future sequence
of input steps. The prediction horizon, ph is the number of steps in the sequence. The
main advantages [2] with MPCs is

5



1. The process model describes the interactions in the process.

2. Possible to implement constraints on CV and MV.

3. Can coordinate process control with optimal operation condition.

4. Good model predictions can give early warnings.

The summarized objective of the MPC is to drive the process to an optimal setpoint or
reference point while maintaining constraints on where the variables can move and how
they can move.

The process movements comes from minimizing the cost function J . The tuning of the
MPC is to set weights on different part of the cost function containing deviations from
optimal reference. The constraints in the MPC includes the constraints like operational
limits for input and outputs and constraints of the physical process movements given in
state space model.

The cost function used in the MPC in “Model predictive control toolbox” in Matlab [5]
without soft constraints is

J = Jy + Ju + J∆u (11)

where Jy is the cost of deviations between the outputs, yi, and their respective references,
ri, given as

Jy =

ny∑
i=1

ph∑
p=1

{wpi
si

[
rk+p
i − yk+p

i

]}2

(12)

ny is the number of output variables, p is the index of the step in the prediction horizon
from the current time step k. wpi is the tuned weight on the output variable i at prediction
step p and si is a scaling factor of the given output variable. The tuned weight is often
equal during the prediction horizon. It can also have increased weight at the end of the
prediction horizon.

Ju is the cost of deviations between the inputs, uj, and their respective references or
target values, rj, given as

Ju =
nu∑
j=1

ph−1∑
p=0

{wpj
sj

[
uk+p
j − rk+p

j

]}2

(13)

nu is the number of input variables. wpj is the tuned weight on the output variable j at
prediction step p and sj is the scaling factor of the output variable. J∆u is the cost of the
changes in the inputs.

J∆u =
nu∑
j=1

ph−1∑
p=0

{wp∆j
sj

[
uk+p
j − uk+p−1

j

]}2

(14)

The weights on the changes in input does not set any constraints on changes, but specifies
what changes that are not as desirable. Any constraints on movement need to be specified
separately together with the constraints and not in the cost function.
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2.6 Linear Quadratic Regulator

In linear quadratic control there is no equality constraints and the only constraints are
the state space model [6]. The LQR is a state feedback controller

ut = −Kxt (15)

ut is the system input and xt the corresponding state andK is the state feedback gain that
minimizes the objective function over the infinite time horizon. The objective function is
given as

f∞ =
∞∑
t=0

1

2
xᵀt+1Qxt+1 +

1

2
uᵀtRut (16)

Where Q and R is matrices specifying the weightings and t is the index of the time step.
The LQR gain is constant over the whole infinite time horizon and is given by

K = R−1BᵀP (I +BR−1BᵀP )−1A) (17)

P = Q+ AᵀP (I +BR−1BᵀP )−1A (18)

where P = P ᵀ ≤ 0 [6]. A and B is the matrices from the state space model and I is an
identity matrix.

The LQR need feedback of all states and if not all states are measured the LQR will need
to estimate the states. LQR where the estimation of the states is done with Kalman filter
is called a linear quadratic Gaussian (LQG) The structure of the LQG is illustrated in
Figure 2

4.4. Infinite horizon LQ control 69

where the dimension of the augmented state is given by

ξt ∈ R2nx

and x̃t refers to the error in the state estimates. The overall structure of the
LQG controller is shown in Figure 4.7.

xt+1

A

CB−K

x̂t+1

A

CB

KF

xt

x̂t

yt

ŷt

ut

−

System

Estimator

Controller

Figure 4.7: Structure of the LQG controller, i.e., output feedback LQ control.

Several comments and observations can be made from this.

• The dimension of the system and the state estimator is 2 · nx, i.e.,
double the size of the original system. This reason is that the estimator
introduces dynamics. To repeat, in the state feedback case the closed
loop system has nx eigenvalues while in the output feedback case the
closed loop system has 2 · nx eigenvalues.

• The dynamics of the matrix in (4.37) are given by the eigenvalues of
A − BK and A − KFC, respectively, since there is a 0 matrix in the
lower left corner. Hence the eigenvalues are given by the dynamics of
state feedback LQ control, i.e., A − BK, and the estimator dynamics
A − KFC. This simplifies tuning since the estimator and controller
can be tuned separately. As discussed earlier the estimator dynamics
should be significantly faster than the LQ controller dynamics to limit
interaction between these loops.

• (4.37) defines the system dynamics in an idealized case since the esti-
mator model equals the system model. In practice there will always be

Figure 2: Illustration of LQG structure [6].
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3 Approach and Results

The transfer function describing the system interactions was estimated from measured
responses between the system inputs and outputs. The system of transfer functions was
used to analyze the system with the RGA method, and also used to tune SISO, MISO
and MIMO control structures. LQR and MPC control structures was also implemented
and tested on the MIMO plant.

The approach and result and plots showing the control will be shown and commented
continuously.

3.1 Model Identification

The plant was first installed and connected to Simulink, so it could communicate with
Simulink in real-time. The system was then tested for step changes in all the inputs
separately and the responses in the outputs measured. It was shown that responses
of first order would give good estimated responses, where the fast responses in Light
Intensity with nearly zero order dynamic could be estimated with small first order time
constants τ1.

The measured responses to the inputs was then used by the tfest function in Matlab
to estimate the transfer functions with specified order. The response from Fan to Light
Intensity and LED to Temperature was neglected and set as a 0 function. Any process
delay was neglected (θ = 0). It was found that the estimated functions describing the
responses in Temperature had to high gain from Bulb and too low negative gain from
Fan. The first order response parameters (τ1, k) was therefore calculated directly from
the Temperature response. The measured responses in temperature and the estimated
responses are shown in Figure 3a and 3b. It was found that the estimated transfer
functions describing the Light Intensity responses from Bulb and LED was good, and
they was kept without any additional calculation. The measured responses in Light
Intensity from Bulb and LED and the estimated response are shown in Figure 3c and 3d.
The parameters describing the estimated first order responses are given in Table 1.

Table 1: First order response parameters of estimated models. The response from
Fan to Light Intensity and from LED to Temperature was neglected. All process
delays θ was neglected.

Response k τ1

Bulb to Temperature 27.5800 110.0000
Fan to Temperature -31.6800 14.3000
Bulb to Light Intensity 48.9019 0.1556
LED to Light Intensity 8.9218 0.0557

The full MIMO model was made by combining the transfer functions. The MIMO transfer
function model was then used by the ss function in Matlab to calculate the state space
model. The MIMO transfer function model and the state space model on the form given
in (2) and (3) are shown in Appendix A.
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(a) Bulb to Temperature response.
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(b) Fan to Temperature response.
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(c) Bulb to Light Intensity response.
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(d) LED to Light Intensity response.

Figure 3: Measured and estimated responses. The input steps during the step
response test was 0.5 for Bulb and Fan and 1 for the LED. The input steps in the
estimated responses shown are 1. Note that the different step times have no impact
on the estimations and that there is no delay in any of the responses.
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3.2 RGA Analysis

The models above was used in a RGA analysis to get get an overview of the main process
responses and to get an indication of good control pairing and structures. The steady
state gains of the plant system G was found from the transfer functions and the RGA
calculated with equation (10). The G and RGA matrix with the sums of the rows and
columns in the RGA is given as

G =

[
27.5800 −31.6800 0
48.9019 0 8.9218

]
RGA =

[
0.0238 0.9762 0
0.9447 0 0.0553

]
1
1

0.9686 0.9762 0.0553

The gain matrix G gives an indication of the inputs-output pairing because it shows
where the highest output comes from. Since the LED has much lower gain than the Bulb
on the Light Intensity the Bulb should be better to control the Light Intensity because
it gives the highest output range. Since Fan has high negative gain on Temperature, the
Fan can control the Temperature produces from Bulb to Light Intensity control. It can
not hold the Temperature at minimum while the Light Intensity is maximized from Bulb,
because the absolute value of the gain from Fan is lower than the gain from Bulb. The
RGA confirms the thoughts about the control pairing. The LED has bad Light Intensity
control compared to other process interactions. The RGA shows that the best pairing is
to use Bulb to control Light Intensity and Fan to control Temperature. Note that low
Light Intensity is not possible while the temperature is supposed to be high. How the
plant operation is going to be is not specified, and several possible operational solution
is possible. The RGA analysis concludes with the pairing of Bulb to Light Intensity and
Fan to Temperature, but with the non-square plant it is more optimal to also include the
extra input to the control structure.

3.3 SISO Control

SISO controllers was implemented and tested on the estimated models and the real-time
plant. The tests was used to check the four possible pairings in real-time and to check
the quality of the estimated models. During the SISO testing the other output was not
taken into any consideration.

All the controllers was tuned with SIMC PI tuning and no delay. Since there is no
delay, the tuning parameters, τc, could not be set equal to the delay. The Light Intensity
controllers was tuned with τc = 0.5. The controllers was first tuned and simulated with
lower tuning parameters, but the tuning was not usable during the real-time control of
the plant. Because of unstable oscillation, the parameter was tuned to be at least 0.5.
This tuning gave a real-time control on the edge of going to unstable oscillation. Because
of slow dynamics in the temperature, the Bulb to Temperature and Fan to Temperature
was tuning slowly and robust to avoid any overshoots. It was assumed that a change of
5◦C could be expected at operation and the τc,max was calculated for this expected change
and ∆u = 1.

10



The SISO control on the models and the real-time plant is shown in Appendix B. The
Temperature models show much similarities and gave good control, but the real-time Fan
gives bad Temperature control near minimum Fan input. The assumed reason was that
the fan has resistance and was not able to turn very slowly and respond to very small
inputs. When the fan finely was able to turn it would give to high response and result
in spikes. The real-time control on Light Intensity was less stable than the simulated
control.

3.4 MISO Control

To improve the control of the plant outputs, MISO controllers was implemented and
tested. The MISO controllers took use of the extra input to increase the total gain and
the dynamic of the control. It was two possible MISO control structures for the plant.
The first MISO uses Bulb and Fan to control Temperature and the second MISO uses
Bulb and LED to control the Light Intensity. The MISO systems is illustrated in Figure
4.

Figure 4: Illustration of possible MISO control structures.

3.4.1 Temperature

The MISO Temperature control structure combined the two SISO Temperature con-
trollers. Since the Fan and Bulb had opposite sign on their gains the two controllers
was two opposite constraint controllers. Overshoots from one of the inputs would be
corrected by the other input. Because of the corrections between the inputs, the MISO
control could be tuned much more aggressively than the earlier SISO controllers. The
MISO control was tested on the estimated models and it was shown that the control was
good with small Integrated Absolute Error (IAE) and with much faster response. The
problem with the MISO control was that it stabilized at high input usages in both inputs.
The control is shown in Figure 5.

The high input usage in the simulation was also shown in the real-time testing, where the
plant got high input usage and oscillations. The problem was avoided by implementing
“setpoint back-off” on one of the controllers. The same setpoints made the two controllers
fight over the same position and the error in the real-time plant resulted in high oscil-
lations in the system. The back-off allows the CV to stabilizes at one of the setpoints.
This idea of the setpoint back-off is illustrated in Figure 6.

The MISO control was tuned with τc = 0.1 for the Bulb and τc = 1 for the Fan and the
setpoint back-off was implemented with 0.15◦ higher setpoint for the Fan. The real-time
control is shown in Figure 7. The real-time Temperature was shifted down 27◦.
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Figure 5: Simulation of MISO Temperature control. The two opposite constraint
controllers resulted in high input usage in both directions. There was no setpoint
back-off implemented in this simulation. The tuning was τc = 0.1 for the Bulb and
τc = 1 for the Fan. u1 and u2 is Bulb and Fan respectively and y is Temperature.

Figure 6: Illustration of setpoint back-off in two directional constraint control.
The controller with negative gain (c2) has a higher setpoint (ys2) than the other
controller (c1). The two setpoints is for the same controlled output y.
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Figure 7: Real-Time MISO Temperature control with setpoint back-off. The Fan
has a temperature setpoint 0.15◦ higher than the Bulb. The input usage with
the back-off was much lower, but the plant would still show high input usage and
oscillations. The tuning was τc = 0.1 for the Bulb and τc = 1 for the Fan. u1 and
u2 is Bulb and Fan respectively and y is Temperature.
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The setpoint back-off in the real-time control gave considerably reduction in the input
usage compared to no back-off, where the Fan and Bulb would flash continuously. The
implemented control with back-off still gave high oscillations and flashing in the Bulb.
The high oscillations was reduced with implementation of alternative smooth control near
the setpoints. The thresholds was set to 0.2◦ and the back-off in the new implemented
structure was decreased to 0.1◦. The alternative controllers was tuned with a 10 times
larger parameter (τc = 1 for Bulb and τc = 10 for Fan). The real-time control with
alternative smooth control near setpoint is shown in Figure 8.
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Figure 8: Real-Time control of MISO system with alternative smooth control near
setpoint. The Fan had a Temperature setpoint with a 0.1◦ back-off. The tuning is
τc = 0.1 for the Bulb and τc = 1 for the Fan. Near setpoint the tuning (τc) is 10
times larger. u1 and u2 is Bulb and Fan respectively and y is Temperature.
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3.4.2 Light Intensity

In MISO Light Intensity control the main response is from Bulb, as shown in the RGA
analysis in section 3.2. To get a good Light Intensity control the help from Bulb is nec-
essary. There was not implemented any single test for MISO Light Intensity control, but
some suggestions was considered and is discussed in this section. MISO Light Intensity
control was implemented as a part of the MISO structure in Section 3.5.

One possible MISO control structure is split range control where the span of the Light
Intensity is increased from adding Bulb when the LED is saturated. It is optimal to
use the LED first because the use of Bulb do not result in any additional use of Fan if
Temperature is taken into consideration.

If the plant is supposed to change the Light Intensity regularly, then changes in Bulb is
not desirable since it also interact with the Temperature. A structure that can avoid most
of these changes in the Temperature is using input resetting control. The Bulb is then
tuned much slower than the LED, so that the LED have the fastest dynamic and takes
care of the main changes in the Light Intensity. The Bulb is then used to control the
LED input to a wanted operational LED input. A block diagram of the input resetting
structure is illustrated in Figure 9.

Figure 9: Illustration of input resetting in MISO Light Intensity control. LEDs

is the setpoint for the LED input at 50%. The Bulb uses the deviation from this
setpoint to help LED back to 50%.

3.5 Decentralized MIMO control

A MIMO control structure was implemented using the structures discussed above. It was
assumed that the Temperature was the main output and that deviations in Light Intensity
was not as undesirable than deviations in Temperature. It was also assumed that tight
control was a goal and that all inputs are to be used to optimize the control. Since the
Temperature was the main objective the Bulb was mainly used to control Temperature,
but if the temperature from Bulb to Light Intensity was higher than the Temperature
setpoint the Fan could control the temperature by its own. Estimated Temperature from
Bulb to Light Intensity control was therefore used to select which of the outputs the
Bulb should focus on. The block diagram showing the steady state gains from Bulb is
illustrated in Figure 10.
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Figure 10: Block diagram of the interactions from Bulb.

The steady state Temperature and Light Intensity from a given Bulb input, uB, is

TB = gB,TuB (19)

LIB = gB,LIuB (20)

gj,i is the steady state gain from input j to output i. If the Bulb controls the Light
Intensity at the setpoint, LIs, then

uB = g−1
B,LILIB = g−1

B,LILIs (21)

and the steady state Temperature from the Bulb becomes

TB = gB,Tg
−1
B,LILIs (22)

The temperature from the Bulb controlling Light Intensity can be estimated from steady
state gains gB,T and gB,LI and the Light Intensity setpoint. This estimated temperature
was implemented and used condition to switch between control structures in the MIMO
control structure.

The nominal operational conditions was chosen as 31.51◦ in Temperature and 26.50 in
Light Intensity. Temperature was shifted 27◦. The control structure was tested on the
real-time plant and is shown in Figure 11. Because the Light Intensity was taken into
consideration in the MISO the tuning of Bulb to Temperature was much slower. This
was to avoid the high interactions Bulb gives on Light Intensity. Because of the slower
tuning there was no need of the alternative smooth controllers near setpoint and they
was not implemented. Since the Bulb can switch between the focus on Temperature and
the focus on Light Intensity the setpoint back-off on the Fan controller was implemented
and set to 0.1◦.

It was shown in the real-time control that the Fan still gave bad control near zero input.
When the Bulb was controlling the Temperature the LED and Light Intensity became
more noisy because of the changes in Bulb from the noisy Temperature control. The Bulb
did switch good between the two outputs. The controlled output with the MISO Bulb,
did show the best control, And as long as the temperature could be high enough for the
Fan to control control the temperature alone the system was controlled very stable.
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Figure 11: Real-Time MIMO Temperature and Light Intensity control. The tuning
was τc = 5 for the Bulb to Temperature and τc = 2 for the Fan to Temperature. The
Bulb to Light Intensity had τc = 1 and LED to Light Intensity had τc = 0.5. When
the Bulb was controlling the Temperature the Light Intensity had more oscillations.
The Fan had 0.1◦ back-off. The Bulb mainly helped the Light Intensity because
it gave high enough temperature, but between 30 sec and 60 sec the wanted Light
Intensity was low and the Bulb had to control the Temperature instead.

3.6 Model Predictive Control

The MPC was implemented using the “Model Predictive control toolbox” in Matlab. The
toolbox contains a MPC block for Simulink and a function for making the MPC object
used by the block. In this work the tuning of the MPC was done in Matlab. It was also
possible to use a Graphical user interface (GUI) in Simulink to adjust and tune the MPC.
The problem with the GUI was that it would need to be tuned on the model. The tuning
of the MPC directly in Matlab made it possible to easily test the MPC tuning directly
on the real-time plant. The nominal operational conditions chosen are given in Table 2.

Variable Symbol Size
Temperature y1 31.51
Light Intensity y2 26.50
Bulb u1 0.5
Fan u2 0.2
LED u3 0.5

Table 2: Nominal operation conditions.

The constraints implemented in the MPC was the saturation limits for the three inputs.

0 ≤ uj ≤ 1 (23)
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The cost function in the MPC is given as

J = Jy + Ju + J∆u (24)

Jy =

ph∑
p=1

[{wpT
sT

[
rk+p
T − yk+p

T

]}2

+
{wpLI
sLI

[
rk+p
LI − yk+p

LI

]}2
]

(25)

Ju =

ph−1∑
p=0

[{wpB
sB

[uk+p
B − rk+p

B ]
}2

+
{wpF
sF

[uk+p
F − rk+p

F ]
}2

+
{wpLED
sLED

[uk+p
LED − rk+p

LED]
}2
]

(26)

J∆u =

ph−1∑
p=0

[{wp∆B
sB

[uk+p
B − uk+p−1

B ]
}2

+
{wp∆F
sF

[uk+p
F − uk+p−1

F ]
}2

+
{wp∆LED
sLED

[uk+p
LED − uk+p−1

LED ]
}2
]

(27)

The weight on the Temperature was chosen to be much greater than the weight on Light Intensity
because of the slower dynamic compared to Light Intensity. Since the Bulb interacted with both
outputs it was the only input with weight on the deviation from the target value, and it was
also the input with most penalty on rate of change in its value. The tuned weights made the
Bulb stay more stable than the other inputs and the other inputs was forced to take care of
their respective outputs. Since the stable Bulb input was set, the Fan was forced to add input
to hold the temperature down, and therefore avoiding the problem with Fan input near zero.
The tuned parameters in the MPC are given in Table 3.

Table 3: Tuned MPC parameters.

Parameter Symbol Value
Step length Ts 0.1
Prediction horizon ph 100
Control horizon pc 10
Scaling factor all inputs sj 1
Scaling factor Temperature sT 27.58
Scaling factor Light Intensity sLI 48.90
Weight on Temperature wT 1000
Weight on Light Intensity wLI 1
Weight on Bulb wB 1
Weight on Fan wF 0
Weight on LED wLED 0
Weight on Bulb rate w∆B 1
Weight on Fan rate w∆F 0.1
Weight on LED rate w∆LED 0.1

The tuned MPC was tested to check if it could be controlled and stabilized at the nominal point
given in Table 2. The test is shown in Figure 12. The MPC stabilized the plant good, but the
startup procedure of the MPC was bad. The MPC started with initial Bulb input and makde
the temperature overshoot the setpoint before it started its control of the plant. The testing of
setpoint changes on the MPC structure is shown in Figure 13. Apart from the startup the MPC
did show good control of the plant.
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Figure 12: Stabilized control of plant with MPC. The nominal conditions is given
in Table 2 and the tuned parameters of the MPC is given in Table 3. The MPC
had bad startup procedure, where the initial Bulb made the temperature overshoot
before the MPC started to control the plant.
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Figure 13: Test of setpoint changes on the MPC. The MPC had bad startup pro-
cedure. Apart from the startup, the control was good and the plant was controlled
with stable Bulb, except for big changes in Temperature where the Bulb helps to
change the Temperature. Because Temperature was assumed more important than
the Light Intensity the big steps in Temperature setpoint result in errors in the
Light Intensity. Since the LED was not weighted as much as the Bulb, the LED
changed more easily and took care of most of the small changes in Light Intensity.
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The problem with the bad startup could probably been avoided with implementation of a start
condition or known initial state. If the initial states was known the MPC could start at these
conditions and would not have to do anything before it was ready to do the calculations.

3.7 Linear Quadratic Gaussian

Since the plant did not have full measurement of the state, the states had to be estimated. The
LQG control was not completed in this work and the last tests did go unstable. The Simulink
diagram of the structure is given in Figure 26 in Appendix C. The input and output to the LQR
gain was chosen as x− x0 and u− u0.

The LQG implementation was overridden in the favor of the MPC implementation described in
the previous section. The MPC was instead implemented because of the possibility of constraints
on the inputs. A reason for the unstable LQG is that it also tries to use negative inputs to control
the system. Other reasons for the unstable control can be that it only was given bad tuning.
The estimation could also been better if the model identification had taken care of the measured
noise, and used it to tune the Kalman filter.
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4 Conclusion

The responses in the system could be estimated as first order and therefore easy to estimate
directly. The estimation from “system identification toolbox” did not give as good result as
hoped, and it gave Temperature gains that was bad and also Light Intensity models that was
not good. The Light Intensity was not a smooth first order response and should maybe not been
estimated as a first order response.

The MIMO control of the plant was well enough and the switching between the placement of the
MISO did work good. Comparing the difficult structure in the decentralized MIMO with the
MPC, the tuning and implementation of the MPC was much easier. The control of the MPC
was also better if the startup is not taken into consideration. The LQG had also easier structure
than the big decentralized structure, but would probably not been any better than the MPC.
The problem with the MPC implementation was that it had bad startup control. This could
most likely been avoided with implementation start condition or known initial states.

It is recommended that any further work on the topic and plant look into better model identifi-
cation, so that the noise also is a part of the identified model. The noise model can then be used
to tune the LQG for better state estimation. The model of the system could also been better if
it was derived from theory of Temperature and Light Intensity, but it would not have modeled
the noise in the measurements and plant.

It is also recommended to look for a better decentralized MIMO structure that result in better
Light Intensity control. An example is to implement the MISO input resetting structure into a
MIMO structure. The MPC was able to do the same when weighting the LED to take care of
the main changes in the Light Intensity and leaving the Bulb to run stable.
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Abbreviations

B Bulb

CV Control Variable

F Fan

IAE Integrated Absolute Error

LED Light-Emitting Diode

LI Light Intensity

LQG Linear Quadratic Gaussian

MIMO Multiple-Input-Multiple-Output

MISO Multiple-Input-Single-Output

MPC Model Predictive Control

MV Manipulated Variable

ODE Ordinary Differential Equation

PID Proportional Integrating Derivative

RGA Relative Gain Array

SIMC Simple Internal Model Control

SISO Single-Input-Single-Output

T Temperature

USB Universal Serial Bus
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Nomenclature

τi Response time constant of order i

τc Controller tuning parameter

τI Controller integration time constant

λij Relative gain of input j and output i

θ Response time delay

A System matrix

B Input matrix

C Output matrix

D Feedtrough matrix

gj,i Steady state gain from input j to output i

G Matrix of steady state gains

G† Pseudo inverse of matrix G

I Identity matrix

J Total cost function

Ju Cost function of input deviations

J∆u Cost function of input changes

Jy Cost function of output deviations

K State feedback gain

k Response gain

k Current time step

Kc Proportionl controller gain

nu Number of inputs

ny Number of outputs

p Prediction index

ph Prediction horizon in number of steps p

Q Weight matrix on states

R Weight matrix on inputs

ri Reference output i

rj Reference input j

si Scaling factor of output i

sj Scaling factor of input j

t Time index

Ts Time step length

u System input (MV)

∆u Change in input

uj Input number j

u Vector of inputs

wpi Weight on output i at prediction step p

wpj Weight on input j at prediction step p

x Vector of states

ẋ Vector of time derivative states

xt state at time t

y System output (CV)

y Vector of outputs

∆y Change in output

yi Output number i
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A Identified models

The matrices describing the state space model on the form given in (2) and (3) are given in
equation (28), (29), (30) and (31). The combined transfer function system is given in equation
(32).

A =


-0.009091 0 0 0

0 -6.426 0 0
0 0 -0.06993 0
0 0 0 -17.95

 (28)

B =


0.5 0 0
16 0 0
0 2 0
0 0 16

 (29)

C =

[
0.5015 0 -1.108 0

0 19.64 0 10.01

]
(30)

D =

[
0 0 0
0 0 0

]
(31)

MIMO tf
system =


27.58

110s+1
−31.68
14.3s+1 0

48.9019
0.1556s+1 0 27.58

0.0557s+1

 (32)
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B SISO control figures

This section contains the SISO control tests on the four possible pairings in the system.
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Figure 14: Bulb (u) to Temperature (y) control. Figures shows both the control on
the estimated model and on the real-time plant. Slow and robust tuning was chosen,
avoiding saturation at 5◦ steps in Temperature. τc = 19.94. The SISO control had
better control on the real-time plant than on the model. Integral Absolute Error
(IAE) is shown for the output.
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Figure 15: Fan (u) to Temperature (y) control. Figures shows both the control on
the estimated model and on the real-time plant. Slow and robust tuning was chosen,
avoiding saturation at 5◦ steps in Temperature. τc = 2.257. The real-time control
shows more error because of the bad Fan control at low input. Integral Absolute
Error (IAE) is shown for the output.
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Figure 16: Bulb (u) to Light Intensity (y) control. Figures shows both the control
on the estimated model and on the real-time plant. τc = 0.5 to avoid unstable
oscillation in the real-time system. Integral Absolute Error (IAE) is shown for the
output.
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Figure 17: LED (u) to Light Intensity (y) control. Figures shows both the control
on the estimated model and on the real-time plant. τc = 0.5 to avoid unstable
oscillation in the real-time system. Integral Absolute Error (IAE) is also shown for
the output.
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C Simulink diagrams

This section contains the main Simulink diagrams used.
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D Scripts

This section contains the main scripts used.

D.1 identification.m

% Identifies transfer function models, state space models, Gains and RGA
% The data (WS_Bulb.mat, WS_Fan.mat and WS_Led.mat) of the responses
% was collected in runSteptest.m.
% The script uses the System Identification Toolbox to estimate the
% transfer functions. All non-zero responses was estimated as first order
% responses. There was no significant response in Temperature from LED and
% no response in Light Intensity from the Fan. All delays was neglected.
%
% See also RUNSTEPTEST.m TFEST SS

% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, November 20th, 2017
% Specialization project TKP4580 at Department of Chemical Engineering

close all
clear
clc

% figure settings
figProps.OuterPosition = [100 100 1000 500];
figProps.Color = [1 1 1];

%% Loading responses:
load('WS_Bulb')
load('WS_Fan')
load('WS_Led')

Ts = 0.1;
stepIndx_B = 100/Ts; %100 sec
stepIndx_F = 10/Ts; %10 sec
stepIndx_L = 10/Ts; %10 sec
data_BT = dataBulb(stepIndx_B:end,'Temperature','Bulb');
data_BLI = dataBulb(stepIndx_B:end,'Light','Bulb');
data_FT = dataFan(stepIndx_F:end,'Temperature','Fan');
data_LLI = dataLed(stepIndx_L:end,'Light','Led');
timeBulb = timeBulb(stepIndx_B:end);
timeFan = timeFan(stepIndx_F:end);
timeLed = timeLed(stepIndx_L:end);

%% Bulb to Temperature

% Plot the measured and estimated response:
fig = figure();
set(fig,figProps);
subplot(1,2,1)
plot(timeBulb,data_BT.outputData);
xlabel('Time')
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ylabel('Measured Temperature')

% estimated 1st order tf:
tf_BT = tfest(data_BT,1,0);
[T_est,t] = step(tf_BT,timeBulb(end)-timeBulb(1));
subplot(1,2,2)
plot(t,T_est)

% The esimated transfer function has to high gain. The transfer function
% is instead calculated with gain delta_y / delta_u and time constant
% at 63% of the step
u_init = data_BT.inputData(1);
u_end = data_BT.inputData(end);
y_init = data_BT.outputData(1);
y_end = data_BT.outputData(end);
gain_BT = (y_end-y_init)/(u_end-u_init);
tC_idx=1;
while data_BT.outputData(tC_idx)<y_init+(y_end-y_init)*0.63

tC_idx=tC_idx+1;
end%while
tConst_BT = timeBulb(tC_idx)-timeBulb(1);
tf_BT_calc = tf([gain_BT],[tConst_BT 1]);

hold on
[T_est,t] = step(tf_BT_calc,timeBulb(end)-timeBulb(1));
plot(t,T_est)
xlabel('Time')
ylabel('Temperature')
legend('Identified tf','Calculated tf','Location','southeast')

% save figure
figIm = getframe(gcf);
imwrite (figIm.cdata, 'BT_tf.png', 'png');
hgexport(fig,'BT_tf.eps')

%% Bulb to Light Intensity
% plot measured and estimated response:
fig = figure();
set(fig,figProps);
subplot(1,2,1)
plot(timeBulb(2:12),data_BLI.outputData(2:12));
xlabel('Time')
ylabel('Measured Light Intensity')

% estimated 1st order tf
subplot(1,2,2)
tf_BLI = tfest(data_BLI,1,0);
[LI_est,t]=step(tf_BLI,1); % The esimated transfer function is a good fit.
plot(t,LI_est)
xlabel('Time')
ylabel('Light Intensity')

% save figure
figIm = getframe(gcf);
imwrite (figIm.cdata, 'BLI_tf.png', 'png');
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hgexport(fig,'BLI_tf.eps')

%% Fan to Temperature
% plot measured and estimated response:
fig = figure();
set(fig,figProps);
subplot(1,2,1)
plot(timeFan,data_FT.outputData);
xlabel('Time')
ylabel('Measured Temperature')

% estimated 1st order tf
tf_FT = -tfest(data_FT,1,0); % negative response
[T_est,t]=step(tf_FT,[0:Ts:timeFan(end)]);
subplot(1,2,2)
plot(t,T_est)

% The esimated transfer function has to high gain. The transfer function
% is instead calculated with gain delta_y / delta_u and time constant
% at 63% of the step
hold on
u_init = data_FT.inputData(1);
u_end = data_FT.inputData(end);
y_init = data_FT.outputData(1);
y_end = data_FT.outputData(end);
gain_FT = (y_end-y_init)/(u_end-u_init);

tau1_idx=1;
while data_FT.outputData(tau1_idx)>y_init+(y_end-y_init)*0.63

tau1_idx=tau1_idx+1;
end%while
tau1_FT = timeFan(tau1_idx)-timeFan(1);
tf_FT_calc = tf([gain_FT],[tau1_FT 1]);
hold on
[T_est,t]=step(tf_FT_calc,[0:Ts:timeFan(end)]);
plot(t,T_est)
legend('tf from ident.','tf calculated','Location','southeast')
xlabel('Time')
ylabel('Temperature')

% save figure
figIm = getframe(gcf);
imwrite (figIm.cdata, 'FT_tf.png', 'png');
hgexport(fig,'FT_tf.eps')

%% Led to Light
% plot measured and estimated response:
fig = figure();
set(fig,figProps);
subplot(1,2,1)
plot(timeLed(2:12),data_LLI.outputData(2:12));
xlabel('Time')
ylabel('Measured Light Intensity')

% estimated 1st order tf
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subplot(1,2,2)
tf_LLI = tfest(data_LLI,1,0);
[LI_est,t]=step(tf_LLI,1); % The estimated transfer function is a good fit.
plot(t,LI_est);
ylabel('Light Intensity')
xlabel('Time')
ylim([0,10])

% save figure
figIm = getframe(gcf);
imwrite (figIm.cdata, 'LLI_tf.png', 'png');
hgexport(fig,'LLI_tf.eps')

%% Save transfer functions to .mat file
tf_BT = tf_BT_calc;
tf_BT.InputName = 'Bulb';
tf_BT.OutputName = 'Temperature';
tf_BLI = 1*tf_BLI; % makes idtf to tf
tf_BLI.InputName = 'Bulb';
tf_BLI.OutputName = 'Light';
tf_FT = tf_FT_calc;
tf_FT.InputName = 'Fan';
tf_FT.OutputName = 'Temperature';
tf_LLI = 1*tf_LLI; % makes idtf to tf
tf_LLI.InputName = 'LED';
tf_LLI.OutputName = 'Light';
save('WS_tfs.mat','tf_BT','tf_BLI','tf_FT','tf_LLI')

%% Save MIMO-models to .mat file
MIMO_tf = [tf_BT, tf_FT, 0; tf_BLI, 0, tf_LLI ];
MIMO_css = ss(MIMO_tf);
save('WS_MIMO_models.mat','MIMO_tf','MIMO_css');

%% first order response parameters:
close all
clear
clc
load('WS_tfs')

numden = [cell2mat(tf_BT.num);cell2mat(tf_BT.den)]; %Bulb Temperature
BT_gain = numden(1,2)/numden(2,2);
BT_tau1 = numden(2,1)/numden(2,2);

numden = [cell2mat(tf_FT.num);cell2mat(tf_FT.den)]; % Fan Temperature
FT_gain = numden(1,2)/numden(2,2);
FT_tau1 = numden(2,1)/numden(2,2);

numden = [cell2mat(tf_BLI.num);cell2mat(tf_BLI.den)];% Bulb Light Intensity
BLI_gain = numden(1,2)/numden(2,2);
BLI_tau1 = numden(2,1)/numden(2,2);

numden = [cell2mat(tf_LLI.num);cell2mat(tf_LLI.den)]; % LED Light Intensity
LLI_gain = numden(1,2)/numden(2,2);
LLI_tau1 = numden(2,1)/numden(2,2);

42



tfParam = [ BT_gain, BT_tau1;...
FT_gain, FT_tau1;...
BLI_gain, BLI_tau1;...
LLI_gain, LLI_tau1];

%% Steady state gains and RGA:
close all
clear all
clc
load('WS_tfs')

G = zeros(2,3);
s=0;

num = cell2mat(tf_BT.num);
den = cell2mat(tf_BT.den);
G(1,1) = (num(1)*s+num(2))/(den(1)*s+den(2)); % tf_BT

num = cell2mat(tf_FT.num);
den = cell2mat(tf_FT.den);
G(1,2) = (num(1)*s+num(2))/(den(1)*s+den(2)); % tf_FT

G(1,3) = 0;

num = cell2mat(tf_BLI.num);
den = cell2mat(tf_BLI.den);
G(2,1) = (num(1)*s+num(2))/(den(1)*s+den(2)); % tf_BLI

G(2,2) = 0;
num = cell2mat(tf_LLI.num);
den = cell2mat(tf_LLI.den);
G(2,3) = (num(1)*s+num(2))/(den(1)*s+den(2)); % tf_LLI

RGA_Matrix =G.*pinv(G.');
save('WS_RGA.mat','RGA_Matrix','G')

D.2 runSteptest.m

% Initializes system and performs step respononses and save measured data.
% The three datasets is saved as the following .mat files:
% WS_Bulb.mat, WS_Fan.mat and WS_Led.mat

% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, November 20th, 2017

% The script uses runSystem.slx to run the MIMO system that is connected
% with the port spesified as teh 'com' variable.
% tom1ar8_lib.mdl, tom_lib.mdl and msfun_realtime_pacer.m is also needed
% to run the system.

%% Initialization of system

clc
clear
com = 'COM4'; % com port
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delete(instrfind({'Port'},{com}));
baud = 250000; % baud rate
Ts = 0.1; % Sampling time period
fTt = 0.05; % Filter time constant for temperature (0.05s - 10s)
fTl = 0.05; % Filter time constant for light intensity (0.05s - 10s)
fTf = 0.1; % Filter time constant for light intensity (0.1s - 10s)

t_sim = 1400; % Simulation time
t_step = 100; % Step time in simulation
stepSize = 1; % step change in input in simulation

%% Response from Bulb
stepBulb = stepSize;
stepFan = 0;
stepLed = 0;

open('runSystem');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(3) %Waiting for simulink to save to WS
y = [Temperature,LightIntensity]; % Output, y
u = bulbInput; % Input, u
dataBulb = iddata(y,u,Ts);
dataBulb.InputName = {'Bulb'};
dataBulb.OutputName = {'Temperature';'Light'};
timeBulb = time;
save('WS_Bulb.mat','dataBulb','timeBulb');

%% Response from Fan
t_sim = 700; % Simulation time
t_step = 10; % Step time
stepBulb = 0;
stepFan = stepSize;
stepLed = 0;

open('runSystem');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(3) %Waiting for simulink to save to WS
y = [Temperature,LightIntensity]; % Output, y
u = fanInput; % Input, u
dataFan = iddata(y,u,Ts);
dataFan.InputName = {'Fan'};
dataFan.OutputName = {'Temperature';'Light'};
timeFan = time;
save('WS_Fan.mat','dataFan','timeFan');

%% Response from LED
t_sim = 50; % Simulation time
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t_step = 10; % Step time
stepBulb = 0;
stepFan = 0;
stepLed = stepSize;

open('runSystem');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(3) %Waiting for simulink to save to WS
y = [Temperature,LightIntensity]; % Output, y
u = ledInput; % Input, u
dataLed = iddata(y,u,Ts);
dataLed.InputName = {'Led'};
dataLed.OutputName = {'Temperature';'Light'};
timeLed = time;
save('WS_Led.mat','dataLed','timeLed');

D.3 SISOcontrol.m

% Tuning, simulation and testing of SISO PI controllers in MIMO system
% Temperature can be controlled by the Bulb and Fan and the Light Intensity
% can be controlled by the Bulb and LED. All delays (theta) are neglected
% and the derivitive part is not needed.
%
% The PI controllers PI: c(s) = K_c*( 1 + 1/(tau_I*s)) are tuned with
% SIMC PI tuning rules. The transfer functions used in the tuning was
% calculated in identification.m and saved as WS_tfs.mat
% The controllers in simulink uses Clamping as Anti-windup method.
% The script simulate the controllers in simSISOcontrol.slx and test it in
% realtime in runSISOcontrol.slx
%
% See also SIMCPI SIMCPI_nosat IDENTIFICATION

% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, November 20th, 2017
% Specialization project TKP4580 at Department of Chemical Engineering

%% Initialization

clear
close all
clc

% The script uses runSystem.slx to run the MIMO system that is connected
% with the port spesified as teh 'com' variable.
% tom1ar8_lib.mdl, tom_lib.mdl and msfun_realtime_pacer.m is also needed
% to run the system.
com = 'COM4'; % com port
delete(instrfind({'Port'},{com}));
baud = 250000; % baud rate
Ts = 0.1; % Sampling time period
fTt = 0.05; % Filter time constant for temperature (0.05s - 10s)
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fTl = 0.05; % Filter time constant for light intensity (0.05s - 10s)
fTf = 0.1; % Filter time constant for light intensity (0.1s - 10s)
t_sim = 400; % Simulation time

load('WS_tfs') % estimated transfer functions

%% Using Bulb as Temperature controller.
% Temperature is controlled by a SISO controller on the Bulb and the
% Light Intensity is not taken into any consideration.

% System transfer function:
sys_tf = tf_BT;
sys_num = cell2mat(sys_tf.num);
sys_den = cell2mat(sys_tf.den);

% Calculate smooth SIMC PI control parameters with so saturation on a 5
% degree step.
ys_max = 5; % max step in y without saturation.
[Kc,tauI,tauc] = SIMCPI_nosat(sys_tf,ys_max);

% Test controller on estimated system
y0 = 0; % Shifting of y
y_s0 = y0; % initial set-point
t_sim = 800; % Simulation time
stepTime1 = 200; % Time when first step
stepTime2 = 0; % No step
step_ys1 = 5; % Step in setpoint
step_ys2 = -0; % No step
stepTime_d1 = 400; % Time disturbance 1
stepTime_d2 = 600; % Time disturbance 2
step_d1 = -2.5; % Value of disturbance 1
step_d2 = +2.5; % Value of disturbance 2

% Run simulation:
open('simSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
figIm = getframe(gcf);
imwrite (figIm.cdata, 'SISOsimBT.png', 'png');
hgexport(fig,'SISOsimBT.eps')

%% Test Bulb-Temperature controller on real system:
% measure and shift with standby temperature

t_step = 0; % no step
t_sim = 2;
stepBulb = 0;
stepFan = 0;
stepLed = 0;
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open('runSystem');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

sb_T = Temperature(1,1); %standby temperature
sb_T = 27; % most measured standby temperature
close_system('runSystem');

% Response and rejection:
y0 = sb_T; % shift temperature
t_sim = 800; % Simulation time

% Choose IO and fixed inputs in simulink system model
turnOn_u1 = 1; % Bulb in
turnOn_u2 = 0;
turnOn_u3 = 0;
turnOn_y1 = 1; % Temp out
turnOn_y2 = 0;
fixed_u1 = 0;
fixed_u2 = 0;
fixed_u3 = 0;

% Test controller:
open('runSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'SISOtestBT.png', 'png');
% hgexport(fig,'SISOtestBT.eps')

%% Using Fan as temperature controller.
% Temperature is controlled by a SISO controller on the Fan and the
% Light Intensity is not taken into any consideration.

% System transfer function:
sys_tf = tf_FT;
sys_num = cell2mat(sys_tf.num);
sys_den = cell2mat(sys_tf.den);

% Calculate smooth SIMC PI control parameters with so saturation on a 5
% degree step.
% [Kc,tauI] = SIMCPI(sys_tf,0);
[Kc,tauI,tauc] = SIMCPI_nosat(sys_tf,5);

% Test controller on estimated system
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y0 = 0; % Shifting of y
y_s0 = 0; % initial set-point
t_sim = 800; % Simulation time
stepTime1 = 0; % no step
stepTime2 = 200; % Time when first step
step_ys1 = 0; % No step
step_ys2 = -5; % Step in setpoint
stepTime_d1 = 400; % Time disturbance 1
stepTime_d2 = 600; % Time disturbance 2
step_d1 = -2.5; % Value of disturbance 1
step_d2 = +2.5; % Value of disturbance 2

% Run simulation:
open('simSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
figIm = getframe(gcf);
imwrite (figIm.cdata, 'SISOsimFT.png', 'png');
hgexport(fig,'SISOsimFT.eps')

%% Test Fan-Temperature controller on real system:
% measure and shift with standby temperature

t_step = 10; % nostep
t_sim = 2;
stepBulb = 0;
stepFan = 0;
stepLed = 0;
open('runSystem');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

sb_T = Temperature(1,1); %standby temperature
sb_T = 27;
close_system('runSystem');

y0 = sb_T + 10; % Need a higher temperature to test Fan on
t_sim = 800;

fixed_u1 = 0.25;% Needed to get higher T to test Fan on
fixed_u2 = 0;
fixed_u3 = 0;

% Choose IO:
turnOn_u1 = 0;
turnOn_u2 = 1; % Fan
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turnOn_u3 = 0;
turnOn_y1 = 1; % Temperature
turnOn_y2 = 0;

open('runSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'SISOtestFT.png', 'png');
% hgexport(fig,'SISOtestFT.eps')

%% Using Bulb as Light Intensity controller.
% Light Insensity is controlled by a SISO controller on the Bulb and the
% Temperature is not taken into any consideration.

% System transfer function:
sys_tf = tf_BLI;
sys_num = cell2mat(sys_tf.num);
sys_den = cell2mat(sys_tf.den);

% Because of unstable light control the controller time constant needs to
% be at least 0.5 sec.
[Kc,tauI] = SIMCPI(sys_tf,0.5);

% Test controller on estimated system
y0 = 0; % Shifting of y
y_s0 = 15; % initial set-point
t_sim = 12; % Simulation time
stepTime1 = 2; % Time when first step
stepTime2 = 4; % Time when second step
step_ys1 = 15; % step in setpoint
step_ys2 = -15; % Step in setpoint
stepTime_d1 = 6; % Time disturbance 1
stepTime_d2 = 8; % Time disturbance 2
step_d1 = -5; % Value of disturbance 1
step_d2 = +5; % Value of disturbance 2

% Test controller on estimated system
open('simSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
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figIm = getframe(gcf);
imwrite (figIm.cdata, 'SISOsimBLI.png', 'png');
hgexport(fig,'SISOsimBLI.eps')

%% Test Bulb - Light Intensity controller on real system:

% Choose IO
turnOn_u1 = 1; % Bulb in
turnOn_u2 = 0;
turnOn_u3 = 0;
turnOn_y1 = 0;
turnOn_y2 = 1; % Light Intensity
fixed_u1 = 0;
fixed_u2 = 0;
fixed_u3 = 0;

open('runSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'SISOtestBLI.png', 'png');
% hgexport(fig,'SISOtestBLI.eps')

%% Using LED as Light Intensity controller.
% Light Insensity is controlled by a SISO controller on the ED and the
% Temperature is not taken into any consideration.

% System transfer function:
sys_tf = tf_LLI;
sys_num = cell2mat(sys_tf.num);
sys_den = cell2mat(sys_tf.den);
% Because of unstable light control the controller time constant needs to
% be at least 0.5 sec.
[Kc,tauI] = SIMCPI(sys_tf,0.5);

% Test controller on estimated system
y0 = 0; % Shifting of y
y_s0 = 4; % initial set-point
t_sim = 12; % Simulation time
stepTime1 = 2; % Time when first step
stepTime2 = 4; % Time when second step
step_ys1 = 4; % step in setpoint
step_ys2 = -4; % Step in setpoint
stepTime_d1 = 6; % Time disturbance 1
stepTime_d2 = 8; % Time disturbance 2
step_d1 = -2; % Value of disturbance 1
step_d2 = +2; % Value of disturbance 2
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% Test controller on estimated system
open('simSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
figIm = getframe(gcf);
imwrite (figIm.cdata, 'SISOsimLLI.png', 'png');
hgexport(fig,'SISOsimLLI.eps')

%% Test LED - Light Intensity controller on real system:

% Choose IO
turnOn_u1 = 0; % Bulb in
turnOn_u2 = 0;
turnOn_u3 = 1;
turnOn_y1 = 0;
turnOn_y2 = 1; % Light Intensity
fixed_u1 = 0;
fixed_u2 = 0;
fixed_u3 = 0;

open('runSISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotSISOcontrol(y,u,ys,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'SISOtestLLI.png', 'png');
% hgexport(fig,'SISOtestLLI.eps')

D.4 MISOcontrol.m

% Tuning, simulation and testing of MISO PI controller on MIMO system.
% This script will tunes and implement a MISO Temperature controller with
% Fan and Bulb as MV's.
%
% The MISO control structure consist of the two SISO controllers.
% The controllers in the MISO control can be tuned more
% agressive than the SISO controllers because the two inputs has gains with
% different signs and any overshoot will be coorected by the other
% controller. Setpoint back-off and alternative smooth controllers
% near setpoint is also implemented.
% The script simulate the controllers in simMISOcontrol.slx and test it in
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% realtime in runMISOcontrol.slx
%
% See also SIMCPI SISOCONTROL

% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, November 21th, 2017
% Specialization project TKP4580 at Department of Chemical Engineering

%% Initialization

clear
close all
clc

% The script uses runSystem.slx to run the MIMO system that is connected
% with the port spesified as teh 'com' variable.
% tom1ar8_lib.mdl, tom_lib.mdl and msfun_realtime_pacer.m is also needed
% to run the system.
Ts = 0.1;
com = 'COM4'; % com port
delete(instrfind({'Port'},{com}));
baud = 250000; % baud rate
Ts = 0.1; % Sampling time period
fTt = 0.05; % Filter time constant for temperature (0.05s - 10s)
fTl = 0.05; % Filter time constant for light intensity (0.05s - 10s)
fTf = 0.1; % Filter time constant for light intensity (0.1s - 10s)
t_sim = 800; % Simulation time

% Simulink variables:
y0 = 0; % Shifting temperature

% Disturbances
stepTime_d1 = 0;
step_d1= 0;
stepTime_d2 = 0;
step_d2 = 0;

%setpoints:
y1_s0 = 0;
stepTime_ys1 = 0;
step_ys1 = 0;

y2_s0 = 0;
stepTime_ys2 = 0;
step_ys2 = 0;

% tresholds alternative controllers:
altu1_threshold = 0;
altu2_threshold = 0;

%% Load response models and tune controllers:
load('WS_tfs')

% System transfer functions:
sys_tf11 = tf_BT;
sys_tf21 = tf_FT;
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sys_num11 = cell2mat(sys_tf11.num);
sys_den11 = cell2mat(sys_tf11.den);
sys_num21 = cell2mat(sys_tf21.num);
sys_den21 = cell2mat(sys_tf21.den);

% calculate tight PI control parameters
[Kc11,tauI11] = SIMCPI(sys_tf11,0.1); % tauc = 0.1
[Kc21,tauI21] = SIMCPI(sys_tf21,1); % tauc = 1

%% Test controller on estimated system
y0 = 0;
y_s0 = 0;
stepTime_ys1 = 30;
stepTime_ys2 = 60;
step_ys1 = 5;
step_ys2 = -5;
stepTime_d1 = 90;
stepTime_d2 = 120;
step_d1 = -2.5;
step_d2 = +2.5;
t_sim = 150;

% Run simulation:
open('simMISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotMISOcontrol(y,u,ys,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'MISOsimT.png', 'png');
% hgexport(fig,'MISOsimT.eps')

close_system('simMISOcontrol');

%% Test controller on real system
% measure and shift with standby temperature

t_step = 0; % no step
t_sim = 2;
stepBulb = 0;
stepFan = 0;
stepLed = 0;
open('runSystem');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS
sb_T = Temperature(1,1); %standby temperature
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sb_T = 27;
save_system('runSystem')
close_system('runSystem');

% Shift temperature:
y0 = sb_T+3;
t_sim = 150;
bo_c21 = +0.15; % Back-off on Fan
% The real system will always have error and it is not possible that both
% controllers pushes to the same setpoint from both directions. The result
% will be a very high input usage and oscillations. The back off helps the
% system to choose one of the two setpoints and be controlled by just one
% of the controllers.

% Choose IO
turnOn_u1 = 1; % Bulb in
turnOn_u2 = 1; % Fan in
turnOn_u3 = 0;
turnOn_y1 = 1; % Temp out
turnOn_y2 = 0;
fixed_u1 = 0;
fixed_u2 = 0;
fixed_u3 = 0;

open('runMISOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotMISOcontrol(y,u,ys,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'MISOtestT.png', 'png');
% hgexport(fig,'MISOtestT.eps')

%% Test controller on real system:
% Lowering the oscillations by decreasing the back-off in setpoint and
% adding alternative controllers with smooth control near the setpoint

bo_c21 = +0.1; % Back-off on Fan
altu1_threshold = 0.2;
altu2_threshold = 0.2;

[Kc11,tauI11] = SIMCPI(sys_tf11,0.1);
[Kc21,tauI21] = SIMCPI(sys_tf21,1);
% alternative controllers has 10 times larger tauc and the backoff on the
[alt_Kc11,alt_tauI11] = SIMCPI(sys_tf11,1);
[alt_Kc21,alt_tauI21] = SIMCPI(sys_tf21,10);

open('alt_runMISOControl');
set_param(gcs,'StopTime',num2str(t_sim));
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set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotMISOcontrol(y,u,ys,IAE,time);
figIm = getframe(gcf);
imwrite (figIm.cdata, 'MISOtestT_alt.png', 'png');
hgexport(fig,'MISOtestT_alt.eps')

D.5 SIMCPI.m

function [Kc,tauI] = SIMCPI(tf,tauc)
% Calculate SIMC PI tuning for 1 order response (tf) for given tauc

sys_num = cell2mat(tf.num); % tf system
sys_den = cell2mat(tf.den); % tf system
if sys_den(2)~=1 % make tf on time constant format

sys_num=sys_num/sys_den(2);
sys_den=sys_den/sys_den(2);

end%if

% First order response parameters:
k = sys_num(2); % Plant gain
tau1 = sys_den(1); % Dominant lag time constant
theta = tf.IOdelay; % Delay

% SIMC PI tuning:
Kc = 1/k*tau1/(tauc+theta); % controller gain
tauI = min(tau1,4*(tauc+theta)); % Integral time
end%fun

D.6 SIMCPI_nosat.m

function [Kc,tauI,tauc] = SIMCPI_nosat(tf,delta_ys_nosat)
% Calculate tuning of smooth control with no saturation for delta_ys_nosat
% The change in input is set as 1.

sys_num = cell2mat(tf.num); % tf system
sys_den = cell2mat(tf.den); % tf system
if sys_den(2)~=1 % make tf on time constant format

sys_num=sys_num/sys_den(2);
sys_den=sys_den/sys_den(2);

end%if

% First order response parameters:
k = sys_num(2); % Plant gain
tau1 = sys_den(1); % Dominant lag time constant
theta = tf.IOdelay; % Delay
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% Calculate tauc that does not saturate:
u_max = 1;
Kc_nosat = u_max/delta_ys_nosat; % Kc that given no saturation
tauc = abs(1/Kc_nosat*tau1/k); % tauc that max u without saturating

% SIMC PI tuning:
Kc = 1/k*tau1/(tauc+theta); % controller gain (Kc_nosat)
tauI = min(tau1,4*(tauc+theta)); % Integral time

end%fun

D.7 MIMOcontrol.m

% Tuning and Implementation of MIMO control.
% The MIMO consist of SISO and MISO controllers and switches the focus of
% the Bulb between the two outputs. The estimated temperature from Bulb to
% Light Intensity is used to choose focus.
% The controllers are tuned with SIMC PI
%
% See also SIMCPI

% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, December 17th, 2017
% Specialization project TKP4580 at Department of Chemical Engineering

clear
close all
clc
run('init.m') % init files for TOM1A system and set Simulink variables to 0
load('WS_tfs') % Load response models and initialize system parameters

%% Tuning of Temperature controllers
% System transfer functions:
sys_tf11 = tf_BT;
sys_tf21 = tf_FT;
sys_num11 = cell2mat(sys_tf11.num);
sys_den11 = cell2mat(sys_tf11.den);
sys_num21 = cell2mat(sys_tf21.num);
sys_den21 = cell2mat(sys_tf21.den);

% % calculate PI control parameters
[Kc11,tauI11] = SIMCPI(sys_tf11,5); % B-T
[Kc21,tauI21] = SIMCPI(sys_tf21,2); % F-T
% [altKc11,alt_tauI11] = SIMCPI(sys_tf11,5);
% [altKc21,alt_tauI21] = SIMCPI(sys_tf21,2);

%% Tuning of Light Intensity controllers
sys_tf12 = tf_BLI;
sys_tf32 = tf_LLI;
sys_num11 = cell2mat(sys_tf12.num);
sys_den11 = cell2mat(sys_tf12.den);
sys_num21 = cell2mat(sys_tf32.num);
sys_den21 = cell2mat(sys_tf32.den);

% calculate PI control parameters
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[Kc12,tauI12] = SIMCPI(sys_tf12,1);
[Kc32,tauI32] = SIMCPI(sys_tf32,0.5);

%% Operation at:
% run('steadyState') % runs system at stst.u to find stst.y
stst.u = [0.5,0.2,0.5]';
stst.y = [31.51,26.50]';

%% Temperature from B-LI control
% calculate steady state gain to estimate temperature from B-LI control
tf_LIT = tf_BT/tf_BLI;
T_est.num = cell2mat(tf_LIT.num);
T_est.den = cell2mat(tf_LIT.den);
stst_BTgain = T_est.num(2)/T_est.den(2);

%% Test controller on real system: Temperature controlled system
bo_c21 = 0.1;
y0 = 27; % shift temperature
%Shifted steady state setpoints:
y1_s0 = stst.y(1)-y0; %4.5
y2_s0 = stst.y(2); %26.5

step_ys1_1 = -2;
stepTime_ys1_1 = 60;
step_ys1_2 = -0;
stepTime_ys1_2 = 0;

step_ys2_1 = -20;
stepTime_ys2_1 = 30;
step_ys2_2 = +10;
stepTime_ys2_2 = 90;

t_sim = 150;
open('runMIMOcontrol');
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotMIMOcontrol(y,u,ys,0,IAE,time);
figIm = getframe(gcf);
imwrite (figIm.cdata, 'MIMOtestTemp.png', 'png');
hgexport(fig,'MIMOtestTemp.eps')

D.8 LightPlantMPC.m

% Implementation of MPC control of MIMO plant.
% The nominal operation point was choosen and the identified state space
% model saved in 'WS_MIMO_models' was used to make the MPC.
%
% See also makeMPCobj
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% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, December 17th, 2017
% Specialization project TKP4580 at Department of Chemical Engineering

%% Initialization

clear
clc
run('init')
load('WS_MIMO_models');

% Find steady state at u = [0.5,0.2,0.5]'
% run('steadyState')
stst.y = [31.51,26.50]';
stst.u = [0.5,0.2,0.5]';

% Tune MPC object
Tsc = 0.1;
ph = 10; % Prediction horizon in seconds
ch = 1; % Control horizon in seconds
MPCobj = makeMPCobj(MIMO_tf,stst,Tsc,ph,ch);
MPCobj.Model.Nominal.Y = stst.y;
MPCobj.Model.Nominal.U = stst.u;

%% Test steady state control with MPC
t_sim = 100;
open('LightPlant_mpcModel')
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result:
fig = plotMIMOcontrol(y,u,ys,us,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'MIMOtestMPC.png', 'png');
% hgexport(fig,'MIMOtestMPC.eps')

%% Test changes setpoints:
t_sim = 100;

% Temperature setpoints:
stepTime_ys1_1 = 30;
step_ys1_1 = +1;
stepTime_ys1_2 = 70;
step_ys1_2 = -1;

% Light Intensity setpoints:
stepTime_ys2_1 = 20;
step_ys2_1 = 5;
stepTime_ys2_2 = 50;
step_ys2_2 = -5;
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open('LightPlant_mpcModel')
set_param(gcs,'StopTime',num2str(t_sim));
set_param(gcs,'SimulationCommand','start');
while get_param(gcs,'SimulationStatus')=='running' %Waiting on simulink

pause(1)
end%while
pause(1) %Waiting for simulink to save to WS

% plot result
fig = plotMIMOcontrol(y,u,ys,us,IAE,time);
% figIm = getframe(gcf);
% imwrite (figIm.cdata, 'MIMOtestMPC2.png', 'png');
% hgexport(fig,'MIMOtestMPC2.eps')

D.9 makeMPCobj.m

function MPCobj = makeMPCobj(MIMO_tf,stst,Tsc,ph,ch)
% Building and tuning of MPC object used to control MIMO system.
% MIMO_tf: 2x3 transfer functions for MIMO system.
% stst: Structure of steady state conditions with the 3 inputs '.u'
% Tsc: Timesteps in MPC
% ph: Prediction horizon in time units
% ch: Control horizon in time units

% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, November 21th, 2017
% Specialization project TKP4580 at Department of Chemical Engineering

plant = MIMO_tf;
plant = setmpcsignals(plant,'MV',[1,2,3]); % define all input as MV

% Define MPC object:
nu = 3;
ny = 2;

p = ph/Tsc; % number of steps in prediction horizon
m = ch/Tsc; % number of steps in control horizon
MPCobj = mpc(plant,Tsc,p,m);

% Span of I/O variables:
Uspan = ones(nu,1);
[num,den] = tfdata(MIMO_tf);
numcell1 = num(1,1);
numcell2 = num(2,1);
dencell1 = den(1,1);
dencell2 = den(2,1);
num1 = cell2mat(numcell1);
den1 = cell2mat(dencell1);
num2 = cell2mat(numcell2);
den2 = cell2mat(dencell2);
Yspan = [num1(2)/den1(2), num2(2)/den2(2)]';

% Constraints on inputs:
consU = [0,1;0,1;0,1];
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% Scaling factor and constraits on u:
for i = 1:nu

MPCobj.MV(i).ScaleFactor = Uspan(i);
MPCobj.MV(i).Min = consU(i,1);
MPCobj.MV(i).Max = consU(i,2);

end%for

% Scaling factor for y:
for i = 1:ny

MPCobj.OV(i).ScaleFactor = Yspan(i);
end%for

% MV targets:
MPCobj.MV(1).Target = stst.u(1);
MPCobj.MV(2).Target = stst.u(2);
MPCobj.MV(3).Target = stst.u(3);

% Weights
MPCobj.Weights.MV = [1,0,0];
MPCobj.Weights.MVRate = [1,0.1,0.1];

MPCobj.Weights.OV = [1000,1];

review(MPCobj)
end%fun

D.10 LightPlantLQG.m

% Calculate LQR gain and estiamtor gain
% unfinished code used to implement LQG on MIMO plant

% Author: Sindre Johan Heggheim, sindrjh@stud.ntnu.no, December 18th, 2017
% Specialization project TKP4580 at Department of Chemical Engineering
clear
clc
load('WS_MIMO_models.mat')
run('init')
nu = 3;
ny = 2;
nx = 4;

% run('steadyState')
stst.y = [31.51,26.50]';
stst.u = [0.5,0.2,0.5]';

% state space model:
ssmodel = ss(MIMO_tf);
[A,B,C,D] = ssdata(ssmodel);

% Kalman filter gain:
G = zeros(nx,1);
H = zeros(ny,1);
SSmodel = ss(A,[B G],C,[D H],Ts,'inputname',{'u1' 'u2' 'u3' 'w'},...

'outputname',{'y1' 'y2'});
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Qn = 0;
Rn = [1,0;0,1];
[K_f,L,P] = kalman(SSmodel,Qn,Rn);

% LQR gain:
Q = diag([0,1,0,0]);
R = diag([1,1e9,1e9]);
[K_lqr,S,e] = lqr(A,B,Q,R);
x0 = L*stst.y;
u0 = stst.u;
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