& NTNU

Norwegian University of
Science and Technology

MASTERS SPECIALIZATION PROJECT TKP4580

Sensitivity-Based Economic
NMPC with a Path-Following
Approach in Python

Brittany Hall

Norwegian University of Science and Technology
Department of Chemical Engineering
Process-Systems Engineering Group

Supervised by
Johannes Jaschke and Eka Suwartadi

December 19, 2017



Contents

Contents m
[List of Figures|
[List_of Tables| 21
[List of Abbrevations|
1st of Symbols 0
[List of Symbols| 6l
[List of Functions|
[I_Introduction
2 Background|
2.1 INMPCIProblem Formulationsf . . . . . ... ... .. ... ... ..
1.1 ThelNMPCProblem| . . . ... .. ... ... ........

[2.1.2  Ideal  NMPCJ]and Advanced-Step INMPC| Framework|. . . . . 106l

[2.2  Sensitivity-Based Path-Following [NMPC} . . . . .. .. ... .. .. 16
[2.2.1  Sensitivity Properties of INLP| . . . . . . . ... .. ... .. 106]

[2.2.2  Path-Following Based on Sensitivity Properties) . . . . . .. 19

[2.2.3  Path-Following asNMPC| Approachl . . . . .. ... ... .. 211

[2.3 Introduction to Dynamic Process Optimization| . . . . ... . ...

[2.3.1 Direct methods for solving dynamic optimization problems| . [24

[3 Numerical Case Study| 28
[3.1 Process Description| . . . . . . . ... ... ... ... ... ...,
[3.1.1 Model Equations| . . . . ... ... ... ... .. ...... 20]

B.1.2 Columndatal . .. ... ... ... 31

[3.2  Objective Function and Constraints| . . . . . . . . .. .. ... ... 31
[4_Results|
4.1 Open-Loop Optimization Results] . . . . . . ... .. ... ... ..
[65__Discussion|
.1 MATLAB to Python Conversion|. . . . . . ... ... ... ..... 35
.2 QP Solver Issues| . . . . . . . . ... 35
(.21 gpOASES| . . . . . . . ... 30]

(.22 Gurobl . . .. ... 37

[H.3  Potential Candidate Solvers| . . . . . .. ... ... ... ... ...
b.3.1  Other CasADi Interfaced Solvers) . . . . .. ... ... ...



CONTENTS

[5.3.2  Other|QP|Solvers| . . . . .. ... ... ... ... ......

b.3.3 Quadprogl . . . . . ... ..

(A Open Source)

[A.1 Open-source software licensing| . . . . . . . . ... .. ... ... ..

(B Python Code|
[B.1 Example Code]

[B.2  Numerical Case Study Code| . . . . . . . ... .. ... ... ....

[B.2.1 Steady State Optimizationl . . . . . . . . . ... . ... ...

(B.2.2  Dynamic Optimization| . . . . . . . . ... ... ... ....




List of Figures

[2.1 Plot of the problem at =0 andfj=1f . . ... ... ... .. ...
[2.2  Plot of |z;[ as a function of [t{f 100 iterations| . . . . . . . . . ... ..
[2.3  Plot of |z;[ as a function of [¢ff 10 iterations|. . . . . . . . . .. .. ..
2.4 Polynomial interpolation of finite elements |11 . . . . . .. ... ..
2.5 Parameter values of polynomial interpolation estimate [11]| . . . . .
2.6 Illustration of the direct collocation method [11f| . . . . . . . .. ..

3.1 Diagram of a|CSTR]and distillation column system [21] . . . . . . .

[0.2  Gurobi output using Casadi wrapper| . . . . . . ... .. ... ...
.3 Solver time versus problem size [5]| . . . ... ... ... ... ...




List of Tables

[3.1 Reaction kinetic parameters| . . . . . . . ... ... ... ... ...
[3.2  Distillation column parameters] . . . . . ... .. ... ... ....

B3 Columndatal . .. ... . .. .




List of Abbreviations

asNMPC Advanced step nonlinear model predictive control
CSTR Continuous stirred tank reactor

DAESs Differential algebraic equations

eMPC Economic model predictive control

iNMPC Ideal nonlinear model predictive control

KKT Karush-Kuhn-Tucker

LICQ Linear independence constraint qualification

MPC Model predictive control

NLP Nonlinear programming

NMPC Nonlinear model predictive control

OSI Open source initiative

pfNMPC Path following model predictive control
QP Quadratic programming

SC Strict complimentary

SSOSC Second-order sufficient condition



List of Symbols

Sign  Description Unit
A Matrix
A Chemical component
s Runge Kutta coefficient
ay; Matrix elements for an 7 X j matrix
a1 Path-following weight used to shorten step
Q Relative volatility
B Bottoms flow rate kmol/min
B Chemical component
b; Runge Kutta coefficient
X Decision variables (state variables + control input)
Ax Change in x
Xf Terminal region
X" Optimal x
D Distillate/Recycle flow rate
d Second-order sufficient condition variable
% Derivative of liquid molar holdup on stage ¢ with respect
to time
d(Miz;)

Derivative of material on stage ¢ with respect to time

% Partial derivative with respect to ¢

d—“’i" Derivative of component on stage ¢ with respect to time

o Derivative of z with respect to t

F Feed flow rate to distillation column kmol/min
Fy Feed flow rate to CSTR kmol/min
J Objective function

I Objective function for regularized stage

K Active constraint set

K Order of polynomial

k Current sample

Ky Weakly active constraint set

k+1 Next sample

K Implicit feedback law

K, Strongly active constraint set

A Vector of Lagrange multipliers (equality constraint)

6



List of Symbols

Sign  Description Unit
AX Change in A

Ai Eigenvalues of matrix A

A* Optimal A

L; Liquid flow rate on stage ¢ kmol /min
L;11  Liquid flow rate on stage i + 1 kmol /minl
L Nominal liquid flow rate on stage ¢ kmol /min
Ly Reflux flow rate kmol/min
M Collocation matrix I
Mp Molar holdup on bottom stage kmol
M; Molar holdup on stage @ kmol
M Nominal molar holdup on stage ¢ kmol
u Vector of Lagrange multipliers (inequality constraint)

Ap Change in p

i Lagrange multiplier for constraint ¢

1y Optimal p of constraint ¢

1 Lagrange multiplier for constraint j

uw Optimal p

N Number of MPC/NMPC iterations

N Number of steps in path-following algorithm

Ny Number of decision variables

Ne Number of equality constraints

Ng Number of inequality constraints

Ny Number of parameter variables

Ny Number of control inputs

Ng Number of states

NF Feed stage

NT Total condenser stage

* Optimal value

7 Variables independent of ¢

P Parameter

9] Parameter vector

Po Initial parameter vector

D1 Element 1 of p

Do Element 2 of p

PB Product price

P Updated parameter vector

PD Distillate price

Ap Change in parameter vector

PF Feed cost

Pt Final parameter vector

v Terminal cost




List of Symbols

Sign  Description Unit

P Stage cost

Dy Steam cost $/kg

Q Gershgorin weight

Q1 Gershgorin weight on states

Q2 Gershgorin weight on inputs

qr Liquid fraction of feed

R Recycle stream

R Real numbers

t Time min

TL Time constant for liquid dynamics min|

At Step size min

0 Collocation parameters |

7 Time at sample k min

L1 Time at sample k + 1 min

u Control input

Uy Control input at sample k

Uy i1 Control input at sample k 4 1

Ugs Steady state optimal input

V Vapor flow rate
v Predicted control input

Vo Nominal vapor flow rate kmol /min
Ve Bottom vapor flow rate kmol /min
Vi Vapor flow rate on stage i kmol /min
Vi Vapor flow rate on stage ¢ + 1 kmol /min
Viy Vapor flow rate on stage i — 1 kmol /min
Vr Boilup vapor flow rate kmol /minl
w Collocation NLP decision variables |

Xo Initial solution of x

T Element 1 of x

T Element 2 of x

X State variable

TR Bottoms liquid composition

x; Liquid composition on stage ¢

Tit1 Liquid composition on stage ¢ + 1

Xk State variable at sample k

X1 State variable at sample k£ + 1

Yo Initial solution of y



List of Symbols

Sign  Description Unit
YD Distillate vapor composition

Y Vapor composition on stage ¢

Yi—1 Vapor composition on stage 7 — 1

Z Path constraints

Z Set of all integers

z Predicted state variable

ZF Feed composition




List of Functions

Sign Description Unit
c Equality constraint function

c(x, p) Equality constraints function

¢i(x, p) Equality constraint ¢ function

¢i(xX*, Po) Equality constraint 7 function evaluated at optimal point

ci(x*, po + Ap)

C(X*7 pO)

F
f
F(x fl—f,u(t),ﬂ,t)

(2(1),y(1), u(t), 2)
(2(

f
f(2(1),1)

g
gA(X*a pO)
9(x,p)
9:(x; p)
gi(X*, Po)
9;(X*, Po)

9;(X*, po + Ap)

and initial parameter
Equality constraint ¢ function evaluated at optimal point
and parameter value
Equality constraint functions evaluated at optimal point
and initial parameter

Derivative of state variable function

Scalar objective function
Continuous model function

Generic differential algebraic function

Semi-explicit differential algebraic equation function
Generic system function

Inequality constraint function

Active inequality constraint function evaluated at optimal
point and initial parameter

Inequality constraints function

Inequality constraint ¢ function

Inquality constraint ¢ function evaluated at optimal point
and initial parameter

Inequality constraint j function evaluated at optimal point
and initial parameter

Inequality constraint j function evaluated at optimal point
and parameter value

Gradient function (w.r.t x)

Gradient function (w.r.t p)

Collocation NLP constraints

Semi-explicit differential algebraic equation function

Initial value

Hessian function (w.r.t x)
Hessian function (w.r.t p and x)
Hessian function (w.r.t p)

10




List of Functions

Sign

Description

I_Jnit

Z(X, P, A, 1)
3(X*7 Po + Apa A*a l’l’*)

Q(X*; Po, A*7 IJ’*)

x(t)
X(Ok, t)
X(ek, tk)
X (O, tic j)
y(t)

z(t)

2(0) = zo

Lagrangian function

Lagrangian function evaluated at optimal points and pa-
rameter value

Lagrangian function evaluated at optimal point and initial
parameter

Lagrange polynomial

Lagrange polynomial function property
Derivative of Lagrange polynomial
Collocation NLP objective function

Locally unique minimum of general parameteric NLP prob-
lem

Control variable function
State variable function
State variable function
State variable function
State variable function

Differential variable function

Algebraic variable function
Initial value

11



Summary

In this project, a sensitivity-based predictor-corrector path-following method for
advanced-step nonlinear model predictive control is presented.
is an advanced control strategy where an optimization problem is solved for a de-
fined horizon and the solution becomes the feedback to the manipulated variables
at each interval. Solving the full nonlinear programming problem at every
time step can be computationally expensive; this can cause delays that can lead to
increasingly worse performance and even result in instability in the process. One
approach to reduce the computational delay is to use sensitivity-based methods
to solve the [NLP} these exploit the fact that NMPC optimization problems are
identical at each sample time except for the initial state. One such method is
advanced-step NMPC ; the full is solved at every sample time but
it is done in advance for a predicted initial state. When a new state measurement
is available from the actual process, the solution is corrected so that the
solution matches the measured state. This correction technique is known as an
improved path-following method.

This project focused on implementing both [NMPC| and path-following
[MPCJon a system comprised of a[CSTR]and distillation column in Python; [21] has
previously implemented this same system successfully in MATLAB. The
was treated as an ideal system that could be solved instantly and was intended
to be used as a comparison point for the solution. In [21], it is shown
that the[asNMPC| path-following algorithm traces the exact solution. The
was successfully implemented in Python and was verified by comparison with the
MATLAB results from [21]. Unfortunately, due to difficulties in finding an open-
source solver that could solve a system of this size, the algorithm
has not been successfully implemented in Python during the time period of this
project. However, it should be possible to find an open source solver that
handle large problems. Several potential solvers were identified and are discussed
in more detail in this report.
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Chapter 1

Introduction

Model predictive control and non-linear model predictive control
are advanced control strategies that involve solving an optimization problem for a
set horizon to determine the feedback value of the manipulated variables at each
sampling interval. Historically, this control strategy was only widely used in the
chemical industry for processes with large time constants (i.e., slow dynamics)
since the computations required are large. However, due to modern computation
capabilities and algorithm development, this type of control has expanded to a
variety of system types (even fast dynamics) [21]. has a growing interest
in both research and industry due to its performance in a variety of processes,
in addition to its ability to handle constraints and perform optimization all while
considering economics and nonlinearities of the process. The current areas of
interest are: development of algorithms for rapid optimization, development of
better modeling strategies, and new alternatives/variations that lead to improved
closed-loop performance or reduce the computation time of the optimization prob-
lem [21]. In this project, the focus is on the reduction of the computation time of
the optimization problem.

Since maximizing the profitability of the plant/process is often the ultimate
goal, another type of , known as economic , was developed.
This allows for the integration of the economic optimization and the control layer
into a single dynamic optimization layer [21]. Economic works by adjusting
the inputs such that the economic cost of the operation is directly minimized; thus
allowing for the optimization of the cost during operation of the plant. When an
optimization-based controller such as[MPC|is used, the economic criterion can be
included directly in the cost function of the controller [15]. It is common to use
nonlinear process models for this style of optimization. Therefore, one drawback
of economic [MP(] is the requirement of solving a large nonlinear optimization
problem with the problem at every sample time. This computation
can take a significant amount of time, lead to increasingly worse performance and
even instability of the process [21].

One idea to reduce the effect of computational delay in is to use
sensitivity-based methods which exploit the fact that the optimization
problems are identical at each sample time with the exception of one changing
parameter: the initial state. Using sensitivity-based methods, the full nonlinear
optimization problem is no longer solved, thus reducing the computational delay.
Instead, the sensitivity of the [NLP|solution at the previously-computed iteration
is used to obtain an approximate solution to the new problem |21]. One
such method is the advanced-step NMPC which still involves solving
the full at every sample time, but it is computed in advance for a predicted

13



CHAPTER 1. INTRODUCTION

initial state. When the new state measurement is available from the process, the
[NLP] solution is corrected using a fast sensitivity update to make the solution
match the measured state. To update the solution, a path-following method can
be utilized. This is referred to as advanced step NMPC using path-following or

for short.
The focus of this project was the implementation of both the [NMPC| and

in Python on a continuous stirred tank reactor and distilla-
tion column system. The work done here supplements the work conducted by
Suwartadi, Kungurtsev and Jéschke [21]; the code was developed in MATLAB
and utilized CasADi [3] and TOMLAB optimization software [13] to create the
model and solve the optimization problem. The aim of implementing this same
code in Python is to make a more widely available version of the path-following
advanced-step implementation that uses only open-source code (see Ap-
pendix [A| for a discussion). The ultimate goal is to make the algorithm
into a Python module that is generic and can handle any model.

14



Chapter 2

Background

2.1 INMPC Problem Formulations

2.1.1 The NMPC| Problem

Consider a nonlinear discrete-time dynamic system expressed as:

(2.1)

where € R denotes the state variable, g R is the control input and
[/] {R» xRy —[ ¥ is a continuous model function, which calculates the next

state from the previous state [xy|and control input , where . This
system can be optimized by a nonlinear model predictive controller that solves the

problem
=0

s.t. @H *@), 1=0,...[N-1, (2.2)
Zb =Xk
(@ [v)) €21 1=0,. . .[N-1,
v X7

at each sample time. Here[z) € RV is the predicted state variable; [v} €[TR is the
predicted control input; and [z, is the final predicted state variable restricted

to the terminal region [x | § R¥=. The stage cost is denoted by [tf| { RI*» x[Rf= —[R]|

and the terminal cost by ] { x/ <[ Rl [Z] denotes the path constraints where
[Z] = {(]v) | ¢(@[v) < 0}, where ¢ | R x[R¥= —[ Rl"s. The solution to this
problem is denoted as @ @,@ @,

The idea is that at sample time k, an estlmate or measurement of the state
is obtained and the problem &y, p¢ is solved, The first part of the optimal control
sequence becomes the plant input such that fu,] = vf. This part of the solution
defines an implicit feedback law , and the system evolves according
to Equation 2.1} At the next sample time [k + I} when the measurement of the
new state is obtained, the procedure is repeated. Algorithm summarizes the

generic algorithm.

15



CHAPTER 2. BACKGROUND

Algorithm 2.1: General [NMPC(] algorithm.

set |k| < O;
while 1 running do

Measure or estimate

Assign the initial state: set EL .

Solve the optimization problem Py pc to find @
Assign the plant input :@

Inject |u_k| to the plant

Set [k Ik + 1

® N O kA W N+

2.1.2 Ideal NMPC|and Advanced-Step NMPC| Framework

To achieve optimal economic performance and good stability properties, the prob-
lem shown in &xype needs to be solved instantaneously, such that the optimal
input can be injected into the process immediately. This is known as ideal NMPC]
However, in reality, there will always be some time delay between obtaining the
updated values of the states and injecting them into the plant. The main cause of
the delay is the time required to solve the optimization problem %y, pc. As the
process models grow, so too does the computation time. With sufficiently large
systems, this computational delay cannot be neglected. One approach to decrease
this delay is the advanced-step NMPC which is based on the following
steps:

1. Solve the problem at time [F] with a predicted state value of

2. When the measurement becomes available at time [k + 1, compute an
approximation of the solution using fast sensitivity methods

3. Update [f] «+{ % + 1] and repeat from Step 1

There are different fast sensitivity methods that can be employed but this project
focuses on the application of the sensitivity-based path-following algorithm.

2.2 Sensitivity-Based Path-Following NMPC

Sensitivity results from other works are outlined in the following sections. These

results are utilized in a path-following scheme for obtaining fast approximate so-
lutions to the [NLP| problem.

2.2.1 Sensitivity Properties of [NLP

The dynamic optimization problem shown in Equation [2.2] can be written as a
generic problem:

(Pnip) : Hlilzfll F(x,P)

st. [bop)=0, (2.3)
9(x,p)| <0
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CHAPTER 2. BACKGROUND

where @ are the decision variables (typically the state variables and the
control input) and [p| € R is the parameter (typically the initial state variable).

[F] { RIx[®= —[R]is the scalar objective function, [d { RFXIX[R¥Z —[ R denotes the

equality constraints, and [g] { RV x[R¥2 —[ TR denotes the inequality constraints.
Each instance of the general parameteric shown in Equation that is
solved for each sample time differs only in the parameter [p|

The Lagrangian function of this problem is defined as

2 (0. . A )| = F O )| H N [0 p)l+ 1l o (X P) (2.4)
and the Karush-Kuhn-Tucker (KK'TJ), first order optimality, conditions are written

as Z

=0, <0, (primal feasibility) (2.5)

>0, (dual feasibility)
VAZ (x,p, A, )| =0, (stationary condition,)
lg(x, )= 0, complementary slackness
X y

For the [KKT]conditions to be a necessary condition of optimality, it is assumed
that the linear independence constraint qualification (LICQ)) holds. The [LICQ
states

Definition 2.1 (LICQ) Given a vector[p| and a point [x], the LICQ holds at

if the set of vectors {{chi(x, Pt iy U IVugi (X Piaiemio ) ¢ @8 linearly
independent.
This implies that the Lagrange multipliers (Al p)) satisfying the conditions
are unique. If a second-order condition also holds, then a unique local minimum

is guaranteed. The second-order condition states that the Hessian matrix must be
positive definite in a set of appropriate directions defined in the following property

21

Definition 2.2 (SSOSC) The strong second-order sufficient condition
holds at [x| with multipliers (N and |p] i i
such that |V c(x, p)fid = 0 and [V Jg;(
and [p] > 0.

Before sensitivity results can be discussed, one more definition must be presented.

55085

Definition 2.3 (SC) Given a vector [p| and a solution . with vectors of multi-

plzersm and. strict complimentary (@) holds zf. (X", po)| > 0 for each
i=1.

It has been shown in [§] that the following holds:

Theorem 2.1 (Implicit function theorem applied to optimality conditions) Let

(]E[) be apoz'nt that satisfies Equation and assumed that SSOSC

and [SQ all hold at[x*| Further, let the function [F|[d[g] be at least (k + 1])-times
differentiable in [x] and [F-times differentiable in|p| Then:

17



CHAPTER 2. BACKGROUND

o [\ is an isolated minimizer and the associated multipliers[N and[y] are unique

e for[plin a neighborhood of|pol, the set of active constraints remains unchanged

e for[p| in a neighborhood of [po|, there exists a [K-times differentiable func-
tion = (]E[)T @D @ T], that corresponds to a locally unique
n

minimum for Equatio

Using these results, the sensitivity of the optimal solution in a
small neighborhood of [pg| can be found by solving the system of linear equations
that arises from applying the implicit function theorem to the [KKT] conditions of
Equation 2.3

VAL (X" Po, A, 1) [Vade(X ™, Po)| [Vidga (X7, Po) Ve 1L (X", o, A", 1)
— — |7 . po (2.6)

‘v“ (X* ; PO 0 0
g4 (X", Po)f 0 0 Vg (X", Po)

where indicates that only the vectors and components of the Jacobian
corresponding to the active inequality constraints at [x]| are included; in other
words, where i € A if: 0.

The solution to the system of the linear equations is written as [IVPIXl |Vpl>\| |Vplu|] T
It is possible to obtain a good estimate of the solution to the NLP problem for

small [Ap| at the parameter value [po] { Ap}

bdpo +{Ap) <{x+H{VDdAp] (2.7)
Alpd{Ap) {A]H{VNAD] (2.8)
[dlpd {Ap) [+ VAP (2.9)

However, if [Ap| becomes large, the approximate solution may no longer be suffi-
ciently accurate due to the fact that strict complementary requires that the active
set cannot change; a large[Ap|can result in active set changes. The above condition
thus only holds for small perturbations in [Ap]

Note that the sensitivity system of linear equations corresponds to the station-
ary conditions for a particular quadratic programming problem [21]. It can
be proven that for sufficiently small, the set {i :[ g|[B); > 0} is constant
for [p| ={ po] HAP} A can then be formed where weakly-active constraints are
moved off of and strongly-active ones are remained on. The primal-dual solution
of this will then be the directional derivative of the primal-dual solution path

D) {Ae) {(E)-

It has been shown that the solution of the perturbed [NLP] can be found by
solving a problem of the form [4]:

1
min §AXT

Vixg(x*; Po, A*7l‘1’* AX -+ AXTVinZ(X*?I:)Oa A*7 ”*)Ap

st [V (X, Po)[|AX|H Vi (X, po)[|[Ap[=0, i=1,... (2.10)
Vadgi (X", Po)[JAX|H Vplgi (X, po) Ap = 0, j K]
Vadg; (X", Po)f |AX| H Vi (X, Po)| AP < 0, j

18




CHAPTER 2. BACKGROUND

where ={j > 0} is the strongly-active set and ={y {u)=
0, = 0} denotes the weakly active set. Note that the solution to this
is the directional derivative of the primal-dual solution of the [NLP} thus it is
a predictor step and Equation is referred to as a pure-predictor. Obtaining
the sensitivity via Equation instead of Equation is advantageous in
that changes in the active set are accounted for and strict complementarity is not
required. In the case that does hold, then Equation and Equation

are equivalent.

2.2.2 Path-Following Based on Sensitivity Properties
It is important to recognize that Equation (2.6) and the in Equation (2.10)

are only able to produce the optimal solution accurately for small perturbations
and cannot be guaranteed to work for larger perturbations. This is due to the
curvature in the solution path and active set changes that may happen further
away from the linearization point. One way of handling cases where this is true,
is to divide the perturbation into several smaller intervals and to iteratively use
the sensitivity to track the path of optimal solutions ; this is known as a
path-following method.

The core idea of the path-following method is to reach the solution of the prob-
lem at a final parameter value [pg| by tracing a sequence of solutions )
for a series of parameter values given by |E| = (1 where 0 =
to <t < ... < ... < ty = 1. The new direction is found by evaluating
the sensitivity at the current point. Note that this is similar to applying Euler

integration for ordinary differential equations .

A path-following algorithm that is based only on the pure-predictor may
fail to track the solution accurately enough and thus lead to poor solutions. To
address this problem, elements are introduced that are similar to a Newton step,
which will force the path-following algorlthm towards the true solution. A cor-
rector element can be introduced into a [QP| that results in a [O_ similar to the
predictor ! 2.10). If Equation is approxunated by a inearized with

o both

respect t and [p| and the equahty of the strongly-actlve constraints is
enforced, the |can be written as a [QP] of the form:
=g 5 x A2 (X Po, A, 1Y) +AXTVf,XSZ(x,po7A,u Ap

HVF! vaAer%v? 2 (x* po,)\*,,u Ap
st e o)l Vi, po)l [AX+{ V4 Apl=0, i=1,.[a]
|g]X7p0 |Hvxh]Xap0 AX—HVPIg]XapoxAp|:O7 ]E@

[0 po) H Vs ¢ o JAX] H Vil (. po)[ [AB < 0, 5 € {1, [ng} (K]

For the problem Py pc, the parameter [p| corresponds to the current
“initial” state . The cost function is independent of @ which means that
VJE(x,p) = 0. In addition, the parameter is linear in the constraints meaning

that [Vpe(x, p)| and [V g (X, p)| are constants. Applying these simplifications, the
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CHAPTER 2. BACKGROUND

above can be written as:

A Trey?
st O po+ AP HViki(X . po + Ap[AX]=0  i=0,...[nd (2.11)
l9;" Po + Ap)|H Valsi (X" po + Ap)[[Ax]=0  j K]

lg;(x*, po + Ap)|H V. ly, (X", po + Ap)f[Ax]<0  je{1,...

This formulation is known as the predictor-corrector form. This tries to es-
timate how the [NLP] solution changes as the parameter does in the predictor
component and refines the estimate, as the corrector, so that the [KKT] conditions
are more closely satisfied at the new parameter.

The predictor-corrector is well suited for use in a path-following algorithm.

Recall the parameter equation: [pf{tx) = (1 At each point |§|,

the is solved and the primal-dual solutions are updated using:

(i) (2.12)
Nl < AN (2.13)
i) 50 (2.14)

where is obtained from the primal solution of the [QP| (2.11); [AX and [Ay]
correspond to the Lagrange multipliers of the [QP}

This formulation is able to detect changes in the active set along the path.
If a constraint becomes inactive, the corresponding multiplier [i,;| will first become
weakly active, meaning that it is added to the set[Ky| If a new constraint becomes
active, the corresponding linearized inequality constraint in the will be active
and tracked at the next iteration.

The path-following algorithm is summarized with its main steps in Algorithm
2.2 This algorithm is used to find a fast approximation of the optimal
solution corresponding to the new available state measurement; this is done by
following the optimal solution path from the predicted state to the measured state.
The use of the path following algorithm should result in faster computation time

in comparison to solving the full problem.

Vixg(X*> Po + Ap7 )‘*7 “*)AX H VXFTAX
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Algorithm 2.2: Path-following algorithm

Input: initial variables from m
1 Fix stepsize |At}, and set |[N|= rm
2 Set initial parameter value M
3 Set final parameter value
4 Set [t|= 0;
5 fore 1 to.do
Compute step - :@ @C 1
Solve @ problem;
18 feasible then
W [ (5%
10 Update dual variables appropriately using either the pure-predictor
method or the predictor-corrector method;

|| [eli+a
:

© ® 9 o
—-
=
Q
an]

13 else .
14 AT
15 — t—{ aqlAtt

2.2.3 Path-Following asNMPC| Approach

The approach solves the full at every time step for a predicted
state; when a new measurement is available, the precomputed [NLP| solution is

updated by tracking the optimal solution curve from the predicted initial state to
the new measured state. The update is done by solving a linearized version of the
[NLP], which becomes a[QP|problem, until a set criteria is met; either a predictor or
a predictor-corrector method can be used to update the solution. This correction
method is known as path-following. Note that the solution of the last along
the path corresponds to the updated solution and only the inputs from the
last become inputs to the plant.

One unique quality of this method is that strong and weakly active inequality
constraints are differentiated between. Strongly-active inequalities are linearized
and included as equality constraints in the [QP] but weakly active constraints are
linearized and included as inequality constraints in the [QP} This helps to ensure
that the true solution path is tracked more accurately, particularly in the case that
the full Hessian of the optimization problem is non-convex [21]. The
method outlined in is illustrated with an example below.

Example 2.1 Consider the following parametric 110]:

. B D
11111 P11 )
kd l

st [rd—e @ >0, (2.15)
> pl
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Start at the approzimate solution to Equation [2.15 = ((0.5,0.6),1.2) with
[p| = (1,—4) and trace a path to generate an approzimate solution for[p|= (8,1).

Note that the starting point @ = (1,—4) is referred to as and the final point
= (8,1) as[pg

Figure|2.1| shows the contour plots and constraints for the approrimate solution
at [pol and at [py respectively. The contours of the objective function are given in
black, the constraints plotted in red, and the current point is a blue star. Note
that as plotted the contour plot for [po| does not show the second constraint since
xo = —4 is out of range for the axis.

Contour Plot (pg) Contour Plot (pf)

1.0 1.0

0.8 0.8
0.6 0.6

o o~

X X

0.4+ 0.4+

0.2 0.21 ™

0.0 T T T T T T T 0.0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

X1 X1

Figure 2.1: Plot of the problem at : 0andjf|=1

This problem has two inequality constraints = 2) and zero equality con-
straints =0). Algorithm 15 applied to this problem. The full be solved
to find the wnitial variables using the predicted solution: .
The[NLRB solution is then fed to a[QH solver where the linearized[NLH is solved as

a problem. FEither the pure—predz’ctor or the predz'ctor-corrector

formulation can be used; here the predictor-corrector formulation was uti-
lized. If the is feasible, the primal vam’ables and the dual variables are
updated either using the pure-predictor method or the predictor-corrector method
depending on which [QH formulation was solved. The update method should be
selected based on the problem to be solved; stiff problems should not use predictor-
corrector methods. Next the step size is updated using the path following equation
gwen previously. If the [QH is infeasible, then the step size is reduced and the [QP
15 solved again.

Figure [2.9 illustrates how [xy] changes with respect to[f] when [k]= 100 iterations
are used = 0.01). Note how changes steeply as the constraints become
active.
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X1 as a function of t

1.0
0.9+
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00 01 02 03 04 05 06 07 08 09 1.0

t

Figure 2.2: Plot of [r4] as a function of , 100 iterations

If less iterations are used, the final solution is still approximately the same.
Figure llustrates |x1| versus time for = 10 iterations = 0.1). Notice that
the shape of both the plots of [x1] versus time are the same and the final solution is
still approximately the same.

X1 as a function of t

1.0
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0.7
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00 01 02 03 04 05 06 07 08 09 1.0

t

Figure 2.3: Plot of [r1|as a function of [t| 10 iterations

While this is a relatively simple problem, it is a good test for Algorithm
since the problem changes substantially both in the nature of the active constraints

and the slope of the objective function from [po| to ps| [16].

2.3 Introduction to Dynamic Process Optimiza-
tion

Given that most optimization problems in chemical processes are dynamic op-
timization problems, further discossion on dynamic optimization is required. A
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dynamic optimization problem is one that has a dynamic process model, mean-
ing that time dependent balances are used to construct a model of the process.
Dynamic models are given by an implicit set of differential-algebraic equations
. These are expressed with respect to an independent variable (often ,
representing time or distance. In process engineering, are often written as
initial value problems:

F(x, Z—f, u(t), p,t), h(z(0))=0 (2.16)

where e R¥= are the state variables, [u(t)] € BRI are control variables, and

are variables that are independent of [f]

The fully implicit (Equation are difficult to analyze so it is common

to consider a simpler form where we partition the state variables into differential
variables and algebraic variables y(¢) which leads to the semi-explicit form:

N ey, 2 [0 = o
g (z(8),y(1), u(t), 2)|= 0

where it is assumed that can be solved uniquely from |g(z(t), y(t), u(t), 2)|=0
once , andare specified. of the form in Equation[2.17|are common
in many areas of process engineering where the differential equations come from
conservation laws and the algebraic equations from constitutive equations and
equilibrium conditions.

Dynamic optimization strategies often have to solve problems in infinite dimen-
sions and provide reasonable levels of approximation even for poorly conditioned
or unstable systems. In the following sections, a brief introduction to one of the
methods of solving dynamic optimization problems known as direct collocation is
conducted.

2.3.1 Direct methods for solving dynamic optimization prob-
lems

There are three main methods of solving a dynamic optimization problem: dy-
namic programming, direct methods, and indirect methods. There are two sub-
categories of direct methods: sequential methods and simultaneous methods. In
this project, simultaneous methods are utilized; specifically the method known as
direct collocation. Therefore, no discussion of the other methods is given in this
report.

The basic principle of collocation methods is the discretization of both the
control and the state variables [1]. Collocation methods are based on Runge-
Kutta methods where th and [b;| coefficients are constructed in a specific way
and are of order at least [#] [19].
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Direct Collocation

Direct collocation is a fully simultaneous approach since integration and optimiza-
tion are performed together in the solver [11]. The following properties of
this method should be noted:

e The differential constraint is only fulfilled at discrete points (the collocation
points)

e Increasing the number of elements increases the accuracy but also the size

of the [NLP|

e Numerical stability properties for one-step methods are inherited

Looking at a generic dynamic system given by

ool 0=z (2.18)

from which a collocation method can be derived by solving the differential equation
at selected points in time. The state variable [x] can be approximated using a
polynomial approximation of order [#] over a single finite element. Figure [2.4
illustrates this polynomial interpolation.

to . t t? . 5 t . ts

Figure 2.4: Polynomial interpolation of finite elements

Lagrange polynomials are commonly used for the polynomial approximation:

ﬁ— )
Pa)= 11 =~ (2.19)
J=0,g7#i ™
of order [#] and has the following property:
1 if l=1
Py i(te))| = 2.20
k(b {0 it I (220)

The states [x] can then be approximated by interpolating on each time interval

X(0i, t) = > Bl (2.21)
—~ = ==

parameters polynomials
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where = 6].;. This idea is illustrated in Figure

1.5¢ ;
.0 b4
i
1
P
1/
05t @
]
]
]
oF |
|
P12 tk+1

'll 112 1j-'-1- 1 jE "II.B .';_
Figure 2.5: Parameter values of polynomial interpolation estimate

The parameters ,i are adjusted to approximate the dynamics =
F(x|[ul). On each interval [t][t1], the derivative is approximated using Equation
2.21l Collocation uses the constraints

B 8] { B0
0

EX(Gk,th) =F X<0k7tk,j) Q% ] = 1, e

where [x;] and [uy] are coming from the This can also be written in the form

[Bk.o (2.22)

.
)H P (|teg) = F,j (2.23)
=0

lea 4

0.38 L] 045 0.8 055 (¥l .88 o.r Lrs o2 088

2F teoitel L

Figure 2.6: Illustration of the direct collocation method

In direct collocation, all constraints are given to the NLP solver. Thus, the
[NLP! formulation becomes:

n’rllliJn D (w)
s.t. =|M|
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where

‘h

] JPOJ

(6] m 10
F7 E iPe(ths)

The constraints are made up of the initial conditions Xy, the continuity constraints,
and the integration constraints for £k = 0,..., N — 1. The decision variables [w| are

defined as: ,0, e Eb’K’ Ug, . . . ,1,0, e ,1,K,1}. This problem is

then solved using a [NLP| solver.
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Numerical Case Study

3.1 Process Description

The ideal NMPC|method and path-following asNMPC|method are both applied to
an isothermal reactor and separator process shown in Figure|3.1, The continuously-

stirred tank reactor (CSTR]) receives a stream of pure component [A|and a recycle
stream [R] from the distillation column. A first-order reaction (Al — [B]) takes
place in the[CSTR] where[B]is the desired product. The product is then fed with a
flow rate [F] to the distillation column where the unreacted raw material [Alis then
separated from the product [B] and recycled to the reactor. The bottom product
must meet a certain specified purity. Table [3.1{ summarizes the reaction kinetic
parameters for the[CSTR] The distillation column model is taken from [20] and is
outlined in ??. The parameters used for the distillation column are summarized
in Table 3.2

Figure 3.1: Diagram of a and distillation column system [21]
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Table 3.1: Reaction kinetic parameters

Reaction Reaction Rate Constant (min~!) Activation Energy (Jmol™!)

Al — B 1 x 108 6 x 10*

Table 3.2: Distillation column parameters

Parameter Value

o 1.5

0.063
number of stages 41
feed stage location 21

The distillation column is comprised of 40 theoretical stages (39 trays and
a reboiler) plus a total condenser. The feed is an equimolar liquid mixture of
components [A] and [B] with a relative volatility of 1.5. The pressure is assumed
constant due to perfect control using |V as an input. The reflux and boilup rates
are such that nominally there is a 99% purity for each product and . The
nominal holdup is = 0.5 min for all stages, including the reboiler and
condenser. A simple linear relationship [L¢) = L]+ (M)[¢) frl where
= 0.063 min, is used to model the liquid flow dynamics on all trays.

The following assumptions are used in the construct of the model: binary sep-
aration, constant relative volatility, no vapor holdup, one feed and two products,
constant molar flows, and a total condenser. Actuator and measurement dynamics
are not included in the model. The system (CSTR|and distillation column) has
a total of 84 state variables: 82 from the distillation column (mole fractions and
liquid holdups from each stage) and two from the (concentration and liquid
holdup).

3.1.1 Model Equations

The equations that make up the process model of the [CSTR] and distillation
column system are outlined below.

i) Total balance on stage i:

daM;
7| L —Q-I- Vi (3.1)

ii) Material balance for light component on each stage i:

d(M;x;
% = Lipfria| H Viealyi—1| — Lofri| Vzlyz- (3.2)
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which also gives the following expression for the derivative of the liquid mole

fraction: Rt —
dajz‘ _ d; l@fz dtl (33)
dt
iii) Algebraic equations (applies to all stages except condenser, feed and re-
boiler):

e Vapor-liquid equilibrium:

@
= (3.4)

L+ (o] - Dzl

e From assumption of constant molar flows and no vapor dynamics (ex-
cept if feed is partially vaporized):

(3.5)
e Linearized liquid flow:

M;|— M*

Where kmol min~! and kmol are the nominal values for the liquid

flow and holdup on stage .

IS

iv) Feed stage (i =5 NF)):

dM;

) -] -V T )
d(M;z;
LIS 77w 7w Rl o R v M 0 7 R

v) Total condenser (i = NT)):

d(]]\fi Vo[ D (3.9)
LULEDIR v 7 R ip2 (310)
vi) Reboiler (i = 1):
7] =377 (3.11)
dﬂl%lzm:m (3.12)
(ﬁz T8 (3.13)
d(]\(/;f;xz) T Vi[5 (3.14)
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3.1.2 Column data

The column has 41 stages including the reboiler and total condenser; the feed
stage is located at stage 21. The nominal steady state conditions for this column
are summarized in Table [3.3} these values were found by performing a steady state
optimization on the system with a 1% Gaussian distributed measurement noise
added to the states.

Table 3.3: Column data

Parameter Value Units
Feed rate 1 kmol min~!
Feed composition 0.5 mole fraction unit
Feed liquid fraction 1 saturated liquid
Reflux flow 2.706 kmol min—!
Boilup 3.206 kmol min—!
Liquid holdup 0.5 kmol
Time constant for liquid dynamics 0.063 min
Distillate [D] 0.5 kmol min~!
Distillate composition = INT 0.99  mole fraction units
Bottoms 0.5 kmol min—*
Bottoms composition =1 0.01  mole fraction units

This steady state data can easily be recalculated to simulate different oper-
ating conditions or column setups (number of stages, feed composition, flows,
relative volatility, holdups) by changing values in params.py, col model.py, and
col_LV.py.

3.2 Objective Function and Constraints

The economic objective function for this system, which is to be optimized under
operation, is given by:

0 < pAF Ve (A8 D) (3.15)

where is the feed cost, is the steam cost, [pp| is the distillate price, and
is the product price. The following prices are used in this case study: [prf=1
$/kmol, [py}=0.02 $ /kmol, [pp}=0 $/kmol and [pg=2 $ /kmol. The constraints are the
concentration of the bottom product < 0.1), the liquid holdup at the bottom
and the top of the distillation column and in the CSTR (0.3 < Mg p.csrr) <
0.7kmol). The control inputs are the reflux flow , boil-up flow , feed rate
to the distillation column , distillate flow rate @ and bottom product flow
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rate . These control inputs have the following bounds:

0.1 10

0.1 4.008

0.1] < < | 10 (3.16)
0.1 D) 1.0

0.1 B 1.0

To solve this problem, the optimal steady-state values must first be calculated
to get the optimal values for the control inputs and state variables; a feed rate of
= 0.3kmolmin~"! is selected (see Table . The optimal steady state input

values are found to be : [1.18 1.92 1.03 0.74 O.QQ]T.

The optimal steady-state state and control inputs are then used to construct a
regularization term that is added to the objective function. Regularization terms
are often used in optimization problems because they introduce more informa-
tion to the function which helps solve an ill-posed problem or prevent overfitting.
The regularization term also helps to regulate the different goals of the objective
function. The new objective function for the regularized stage is written as:

oo S pAFHp AV Hp ABHp ADH (- ) [Qul -, ) + (-l ) [ Qal v Hul ) (3.17)

The weights and are selected to make the rotated stage cost of the steady
state problem strongly convex. To find a valid diagonal regularization matrix [Q)]
the Gershgorin property for a matrix is applied. This states that for a matrix

[Al= (ay):

aii_Z|aij| S < aii"‘Z’aij‘ (3.18)
i#] i#]
where |\;| are the eigenvalues of |A| [15]. This property can be utilized to systemati-
cally find the regularization terms such that the rotated stage cost will be strongly
convex and thus a stable economic [NMPC] controller can be obtained using this
method. For further details on this method, see [15].

Next, the [NLP] is set up to calculate the predicted state variables [z and the
predicted control inputs[vl A direct collocation approach is used on finite elements;
specifically, Lagrange collocation is utilized to discretize the dynamics and then
three collocation points are used in each finite element. Using this approach means
that the state variables and the control inputs are actually optimization variables.
See 2.3 for further discussion on the use of direct collocation to discretize the
dynamic optimization problem.

The economic case study is initialized using the steady states values
for a rate of [Fy| = 0.29 kmol min~! meaning that the economic controller
is essentially controlling for a throughput change from = 0.29kmolmin~! to
= 0.30 kmolmin~!. The simulation is run for 150 iterations with a
sample time of 1 min. The prediction horizon of the controller is set to 30
minutes. This results in an with 10,314 optimization variables [21]. To solve
the [NLP]| CasADi [3] with IPOPT [22] is used. To solve the CasADi with
qpOASES [7], Gurobi [12], and IPOPT [22] were all tried. Unfortunately, none of
the solvers was unable to find a solution for even one iteration. Further
discussion on this issue is conducted in Chapter [3
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Results

4.1 Open-Loop Optimization Results

The “true” solution of the dynamic optimization problem Pyy;pe versus the
steady-state solution is now discussed. First, the distillation column results are
analyzed. Figure compares the steady-state optimal solution to the dynamic
solution; the Python results are also compared to the MATLAB results
from [21]. A disturbance of 0.01 kmolmin™! in the feed to the column is

used.
Distillation: Top Composition Distillation: Feed Composition
0.701 .1 —— Steady-state
—— iNMPC-Python |
® iNMPC-Matlab 0.680 o
0.69
0.6754 ]
‘s =
S 0,68 S 06701 @
° J
= =
[ [
2 2 0.665
(s} (s}
© 0.67 A ©
06601 &
—— Steady-state
0.66 0.655 - —— iNMPC-Python
® iNMPC-Matlab
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Time [min]

Distillation: Bottom Composition
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Concentration [-]

0.090 -

0.088 -

—— Steady-state
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Time [min]

Figure 4.1: Distillation column results

Time [min]

The dynamic optimal solution is controlled to the steady state solution well
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in each of the trays (top, feed, and bottom). The fluctuations are a result of
the 1% Gaussian distributed noise that was added to the state variables in the
simulation. The top composition and distillation column feed composition reach
the steady-state value after approximately 25 minutes but the bottom composi-
tion does not reach the steady-state value until after approximately 100 minutes.
Further illustrated in Figure is the match between the Python and the MAT-
LAB implementation. This verifies that the two codes provide the same output
for INMPCL

The results are shown in Figure[4.2], which compares the steady-state so-
lution to the dynamic solution. The concentration has larger fluctuations
around the steady-state value in comparison to the distillation columns stages;
despite these fluctuations it only requires one iteration to be near the steady-state
value. The fluctuations are caused by a combination of the added noise and the
changes in the recycle flow rate to the [CSTR] It takes about 50 minutes before the
holdup reaches the steady state value. Figure [4.2]shows the match between
the two implementations serving as a verification of the outputs.
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Figure 4.2: CSTR results

The run time for the ideal NMPC| method in Python was approximately 9
minutes. In comparison, the ideal method in MATLAB had a run time of
approximately 13 minutes. Both codes were run on the same computer: Lenovo
Ideapad with an Intel Core i7 processor and 8 GB of RAM. The time difference is
likely due to the fact that MATLAB graphical user interface requires utilization
of a significant portion of the RAM thus, slowing the solver down. In addition,
MATLAB performance slows down considerable with the use of for loops, which
are utilized in the method several times.
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Discussion

5.1 MATLAB to Python Conversion

The aim of this project was to convert the work done in [21] into an equivalent
Python code. First, a steady state and dynamic model for a and distil-
lation column system were developed utilizing CasADi [3]. CasADi was selected
because it is a “symbolic framework for algorithmic differentiation and numeric
optimization” [6]. This allowed for the construction of a symbolic model which
could then be evaluated for different operating conditions to produce numerical
values. CasADi provides built-in capabilities for the differentiation of thes sym-
bolic equations and thus the construction of the Jacobian and Hessian, which are
beneficial to use in the optimization problem. Further, CasADi is open-source
under the LGPL license (see Appendix [A) and written in C++ code, which can
be used in Python “with little to no difference in performance” |6].

The ideal case was then implemented. As previously mentioned, IPOPT
was used to solve the problem [22]. IPOPT uses a primal-dual interior point
method and was selected because it was designed to handle large-scale nonlinear
optimization. Further motivation to use this solver came from the fact that an
interface to the solver is available in CasADi; therefore, it was trivial to couple the
model and the solver. This solver was excellent for this problem since it was able
to quickly and accurately solve the problem. Since IPOPT was successful, no
further discussion is given to [NLP|solvers. Comparison of the ideal NMPC results
from Python to the results from MATLAB was used as validation of the
model and the code for the method (see Chapter {4)).

Next the aim was to construct the algorithm in Python using the
same system model used for the method. The implementation proved
problematic as a result of the challenge of finding an appropriate solver for
this particular problem. Further examination of this issue is given in Section [5.2]

5.2 QP Solver Issues

Despite the numerical case problem being constructed such that the H matrix
and A matrix are sparse, neither of the two solvers evaluated or the [NLP)|
solver tested were able to solve the problem; constructing the problem with sparse
matrices was intended to help make a large problem easier for solvers to handle. In
[21], a TOMLAB Optimization solver is used but this is not available in an open
source form [13]; specifically, MINOS (qp-minos), which solves sparse quadratic
problems, was utilized [18]. Since the aim was for this project to generate open-

35



CHAPTER 5. DISCUSSION

source code (see Appendix , this solver was not considered for use in Python.
Thus, an alternative solver had to be found.

It was proposed to first try qpOASES since it is described as a “software package
[that] implements a parameteric active-set method for solving convex quadratic
programming problems”, which is exactly the problem type being considered
in this project [7]. In addition, CasADi provides a interface and installation of
qpOASES and, as previously mentioned, CasADi was employed for the model con-
struction. However, this proved unable to solve the problem for even one
iteration. Next Gurobi’s solver was tried since CasADi offers an interface to
this solver as well; therefore, no problem reformulation is required to use this
solver. However, this solver was also unsuccessful at finding a solution. As a last
quick fix, IPOPT was tried to solve the since it had been able to solve the full
[NLP] This required some minor code changes since IPOPT requires a format dif-
ferent than that of the solvers. IPOPT was able to handle the problem but was
unsuccessful in finding a feasible solution even if the step size was decreased using
the path-following algorithm. It is possible there was an error in the implementa-
tion of the to work for the [NLP|solver and further investigating should done
to confirm that the problem was being passed to IPOPT correctly. Regardless, it
is preferred that a solver is found, since it is not efficent to use a solver.

Due to the time constraint, unfortunately, a successful solver was unable
to be identified; therefore, the results for a Python implementation are
not provided. Further discussion on the two solvers tested is conducted in
Sections [5.2.1] and [5.2.2] Other solvers that should be evaluated as part of future
work are discussed in 5.3

5.2.1 qpOASES

qpOASES was the first [QP] solver used but it failed to converge for even one
iteration and it took a long time to run for one iteration [7]. qpOASES
was selected because the algorithm uses the form known as the primal-dual
parameteric quadratic programming method, which is exactly what was desired.
While numerical tests have shown that qpOASES can outperform other popular
academic commercial solvers for small to medium scale convex test examples, this
problem proved too large for it to solve |7]. Further investigation into qpOASES
revealed that the “current implementation can be expected to show satisfactory
performance for problems with up to about 1000 unknowns and constraints” [7];
this suggests that the selected numerical case study is far too large for this solver.
Even if qpOASES was able to find a solution, it appeared to be a slow solver for a
problem of this size anyway.

It was difficult to identify the exact reasons why the solver failed because there
was insufficient documentation on gpOASES’s output in CasADi. The output was
of the form: iteration number, step length, information, nFX, nAC. While the
contents of column one and two were obvious, the contents of columns three,
four, and five were less so. nFX likely stands for the number of the function
being solved; nAC likely stands for the number of active constraints. This made
it seem like qpOASES solves the optimization row by row which seemed strange.
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Unfortunately, as stated, it was difficult to find much information on the exact
solver gpOASES solver used by CasADi so the details of how the solver works are
not well understood. Figure gives a snapshot of the output format to the
terminal.

HHHH AR R qOOASES  -- OQF HO. p i HEE SR RS
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|
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|
|
|
|
|
|
|

Figure 5.1: gpOASES output using CasADi wrapper

5.2.2 Gurobi

Next gurobi was tried; while it is a commercial solver, it has a free academic license
available to students [12]. This solver was only tried because CasADi offers an
interface to it and thus its use does not require any problem reformulation. The
Gurobi Optimizer supports all common problem types and states that it is a
robust code [12]. With the current problem formulation, gurobi determined that
the model was infeasible and thus could not find a solution. Gurobi gave the
warning that the model contained a large quadratic objective coefficient range; it
suggested to reformulate the model or set the NumericFocus parameter to avoid
numerical issues. Setting the NumericFocus controls the degree to which the code
detects and manages numerical issues; for higher values, the code spends more
time focus on being careful in numerical computations. It proved difficult to pass
any Gurobi options through the CasADi interface so it was not possible to see if
setting the NumericFocus would improve performance. Even after adjusting the
step size (i.e., applying the path-following algorithm), the solver could not find a
solution.
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Academic license - for non-commercial use only

Warning for adding constraints: zero or small (< le-13) coefficients, ignored

Optimize a model with 10164 rows, 10314 columns and 65874 nonzeros

Model has 32910 quadratic objective terms

Coefficient statistics:

Matrix range [3e-07, 2e+01]
Objective range [2e-08, 3e+00]
QObjective range [3e-09, 2e+02]
Bounds range [2e-03, 9e+00]
RHS range [2e-19, 2e+00]

Warning: Model contains large quadratic objective coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 0 rows and 8 columns

Presolve time: 0.01s

Barrier solved model in 0 iterations and 0.0l seconds

': DM([nan, nan, nan, ..., nhan, nan, nan]), 'cost': DM(nan), 'lam x': DM([O, 0, O,
., 0, 0, 0]), 'lam a': DM([O, O, O, ..., O, O, 0])}

Figure 5.2: Gurobi output using Casadi wrapper

5.3 Potential Candidate Solvers

After the two above mentioned solvers proved unsuccessful, research was con-
ducted on what other solvers were interfaced with CasADi or interfaced to Python
and open-source. In the following sections, the solvers are discussed in more detail.
Some options were quickly discarded due to not being open-source and others were
discarded due to size constraints or other issues. However, a few solvers worth fur-
ther investigation were identified. None of these solvers have yet been tested since
the use of any of them required either recompilation of CasADi to include the inter-
faces (they are not provided in the binary installation) or extensive restructuring
of the model and/or the problem.

5.3.1 Other CasADi Interfaced Solvers

CasADi offers interfaces to the following additional solvers: CPLEX, HPMPC,
00QP, and SQIC. The use of CPLEX requires a commercial license so this solver was
eliminated from the possibilities. The HPMPC solver is meant for Model Predictive
Control and requires that the decision variables are only be state and control
and that the variable ordering is [zOwu0z1wul]; it also requires the constraints
to be in order. Thus, the use of this solver requires some reformatting of the
problem to test. The SQIC solver is an implementation of an active-set method
utilizing inertial control |24]; however, it is a commercial software and thus was
not considered further.

00QP solver is based on the primal-dual interior-point method that can be used
for solving convex quadratic programming problems [9]. This solver is not included
in the standard installation of CasADi and requires a copy of MA27. MA27 can be
downloaded for free from the HSL archive and provides either a personal license or
incorporate license as desired. To get a copy of 00QP requires filling out a request
form [9]. A copy was received but there was insufficient time to test it since a new
installation of CasADi would have to be compiled that included the interface to
this solver as well as the installation of the solver itself plus the MA27 software.
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In summary, only the OOQP solver appears to be a potential option from the
list of solvers that CasADi provides an interface to.

5.3.2 Other |QP| Solvers

Investigating other potential solvers lead to the discovery of the following
solvers: quadprog, CVXOPT, CVXPY and MOSEK [5]. quadprog and CVXOPT, like
gpOASES, are numerical solvers and the other solvers are symbolic. MOSEK is a
commercially licensed solver so it was not considered. Since the problem at hand
is a numerical optimization, the numerical solvers are focused on and consequently
CVXPY was not looked into further. From [5], it appeared that quadprog was able
to solve problems of any size the fastest with CVXOPT being the second best option.

Time (s)

cwRpy
cwxopt
gpoases

gurobi

"
10 10° 10"
Problem size n

Figure 5.3: Solver time versus problem size [5]

Based on this information, it is most prudent to investigate quadprog and
CVXOPT further. CVXOPT requires the use of its own matrix types and thus would
require the problem as used with qpOASES to be reformulated. CVXOPT also it
requires that the H matrix is symmetric. The quadprog module works directly on
NumPy arrays so type conversion is not required. However, there was not much
documentation available on how to use this solver.

Wrappers for all the solvers shown in Figure [5.3[ have been found [5]. This
should help decrease the amount of restructuring required to utilize these solvers.
However, users should also be wary of using so many wrappers as this may lead to
the code having decreased speed More details on the quadprog and CVX0PT solvers
are provided in Sections [5.3.3] and [5.3.4], respectively.

5.3.3 Quadprog

The quadprog [17] solver minimizes the standard form using the Goldfarb/Id-
nani dual algorithm [10]. This solver only works with strictly convex quadratic
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program problems and requires that the H matrix be symmetric. The documenta-
tion for this solver is poor making it difficult to figure out how to use; the wrapper
found in [5] may help with this issue. Due to the lack of documentation it could
not be determined if quadprog is able to handle problems of this size.

5.3.4 CVXOPT

CVXOPT is a free software package for convex optimization in Python. It extends
built-in Python objects with two matrix objects: matrix for dense matrices and
spmatrix for sparse matrices. CVXOPT provides interfaces to several libraries for
dense and sparse matrix computations; these include convex optimization solvers
written in Python and interfaces to a few other optimization libraries [2]. The
function gp is considered because it is an interface to the various solvers: coneqp
and MOSEK. coneqgp uses an interior-point algorithm to solve quadratic program-
ming problems. There exists significant documentation on this software making it
easier to use than quadprog; however, as mentioned, it would require the problem
to be redefined. The documentation did not provide any information on what
size problems CVXOPT is able to handle so it is unknown if this solver would prove
sufficient for this problem.
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Chapter 6

Conclusion

First, a steady-state optimization of the and distillation column system was
implemented. The steady-state results were used as an initial starting point to
solve the dynamic optimization problem. The dynamic optimization problem was
discretized utilizing collocation. The dynamic problem was then solved using two
different methods: “ideal” and path-following [NMPC| The ideal
method works by solving the full problem for every iteration, where the
is constructed as an [NLP] problem. In comparison, the path-following [NMPC]
utilizes the sensitivity of the [NLP] solution at the previous iteration to obtain a
fast approximate solution to the next iterate of the[NMPC|problem. The particular
approach used in this project solves the full NLP at every sample time but this
is done in advance for a predicted initial state. When a new measurement is
available, the NLP solution is corrected using the path-following method so that
it matches the measured or estimated initial state. The idea is that by pre-solving
the full problem at each time-step for a predicted value, the computational time
will be shorter and thus, decrease the delay.

The ideal nonlinear model predictive control method was successfully
implemented in Python utilizing IPOPT [22] to solve the full NLP| As seen in
Chapter ] the ideal dynamic optimization results from Python matched
the results from MATLAB exactly. The dynamic results are able to be controlled
to the steady-state results well for a disturbance of 0.01 kmolmin—! in the
feed.

The aim was then to implement the path-following advanced-step nonlinear
model predictive control algorithm in Python and compare the results
to that of the ideal NMPC| However, it proved challenging to find a quadratic pro-
gramming solver that could solve a problem of this size. While the path-following
advanced-step nonlinear model predictive control algorithm has proven to be a
valuable alternative to solving the full nonlinear model predictive control problem
in [21], it was more problematic to implement in Python than in MATLAB. The
next steps are then to test the quadprog and CVXOPT solvers. After a solver
is found, the algorithm and associated code needs to be verified. The
results should then be verified with the MATLAB results. Finally the
INMPC| and [pfNMPC]| results and runtimes should be compared to one another.
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Appendix A

Open Source

Open-source software is defined as “computer software with its source code made
available with a license in which the copyright holder provides the rights to study,
change, and distribute the software to anyone and for any purpose” [23]. Another
definition is that open source “describes a broad general type of software license
that makes source code available to the general public with relaxed or non-existent
restrictions on the use and modification of the code.”

The idea behind open-source software is that it leads to more collaborative
development which yields a more diverse scope of design. Open-source software is
not equal to free software, which is considered a subset of open-source.

A.1 Open-source software licensing

Open-source licenses are licenses that comply with the Open Source Definition;
meaning that the license must allow the software to be freely used, modified and
shared [14]. The Open Source Initiative reviews these licenses and deter-
mines if it meets these criteria. The following [OSI}approved licenses are widely
used [14]:

e Apache License 2.0

e BSD 3-Clause “New” or “Revised” license

e BSD 2-Clause “Simplified” or “FreeBSD” license

e GNU General Public License (GPL)

e GNU Library or “Lesser” General Public License (LGPL)
e MIT license

e Mozilla Public License 2.0

e Common Development and Distribution License

e FEclipse Public License

Each license has different caveats under which its software can be used. It is the
user’s responsibility to make sure that they compile with these rules.

When using open-source software, it is important to notice what license the
software is distributed under. For example, if a software is distributed under the
MIT license, any code/software generated utilizing this software can still be sold
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commercially. However, if the software is distributed under the GPL license, under
no conditions can anything using it be sold as commercial software. Therefore,
when developing software it is important to think about the desired market before
selecting other softwares to use. Further explanation of all the license types is
beyond the scope of this discussion but details can be found online. This short
discussion was simply to highlight the importance of selecting a software that uses
a license that matches your needs.
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Appendix B
Python Code

All of the code created for this project can be downloaded at Github:
https://github.com/brittanh/masters-project

B.1 Example Code

This is the code to solve the example problem; the main.py is the main file and
is the only one that needs to be executed by the user. The main file is where the
initial values are defined and then passed to the NLP solver. The NLP solver is
used to solve the NLP at the initial parameter and is then used as an initial guess
for the QP solver in the path following algorithm.

#!/opt/local /bin/python
# —+— encoding: ascii —x—
@purpose: Solving an NLP problem using a path following algorithm
@author: Brittany Hall
@date: 18.09.2017
@version: 0.1
@Qupdates:
from numpy import array, zeros, linspace, meshgrid, arange, exp
import matplotlib.pyplot as plt
from problem import prob, obj
from nlp_solve import =*
from pathfollowing import

#Initial Values

p-init = array ([1,—4]) #initial
parameter value

p_final = array ([8,1]) #final
parameter value

x_init = array ([[0.5],[0.6]]) #initial
primal variable

y-init = array ([1.2]) #initial

dual variable

99

Solving the problem

#Solving NLP at p0 to get initial values
x_opt, lam_opt, mu_opt, con = nlp_solve(prob, obj, p_init, x_init,
y-init)

47



https://github.com/brittanh/masters-project

29

31

33

35

37

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

APPENDIX B. PYTHON CODE

#define method to use (predictor or predictor—corrector)
case = ’'predictor—corrector’

#Solving the NLP to get optimal parameters using path—following
algorithm

x_init , y_init, t_list , x_list_0, x_list_1, lam_list, mu_list, p =
pathfollowing (p-init , p-final, x_init, x_opt, y-init, lam_opt,
mu_opt, case)

print (x_list_0)
print (x_list_1)
print (t_-list)
print (p)

#!/opt/local /bin/python

# —«— encoding: ascii —x—

@purpose: Path—following algorithm (algorithm 2 from Suwartadi et al
2016)

@author: Brittany Hall

@date: 20.09.2017

@version: 0.1

@Qupdates:

from numpy import array, append, zeros

from nlp_solve import =*

from gqp_solve import =x

def pathfollowing (p-init, p_-final, x_init, x_opt, y_-init, lam_opt,
mu_opt, case):

7NN

Applying a path following algorithm to an NLP

99

#defining empty arrays
t = 0.0

t_list = array ([])
x_list_0 = array ([])
x_list_1 = array ([])
y-list = array ([])
lam_list = array ([])
mu_list = array ([])
iter =1

#appending initial values

t_list = append(t_list , t)

x_list_0 = append(x_list_0 ,x_init [0])

x_list_1 = append(x_list_1 ,x_init [1])

lam_list = append(lam_list ,lam_opt)

mu_list = append(mu_list ,mu_opt)

#initial algorithm parameters

delta_t = 0.1 #step size
N = int(1/delta_t) #number of iterations
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alphal = 0.25
p = zeros ((N+1,2))
p[0,:] = (1—t)*p_init + txp_final
for k in range(1,N+1):
print 7

print "Iteration number: %d \n” %(iter)

#calculate step for p

plk,:] = (1-t)*p_init + txp_final
step = plk,:] — p[k—1,:]
if case = ’'pure—predictor ’:
param = plk,:]
elif case = ’predictor—corrector :

param = p[k,:] + step
#Solve QP problem
qp-exit , optimal, x_qpopt, lam_qpopt, mu_gpopt
prob, obj,
param, x_opt, y_init ,
, case)
print QP x:’, x_gpopt

#redefining variables
del_x= x_qpopt
del_lam = lam_qgpopt

del_ mu = mu_qgpopt
if (gqp-exit = ’optimal’):
x_opt = x_opt + del_x
if case = ’'pure—predictor ’:
lam_opt = lam_opt + del_lam * step
mu_opt = mu_opt + del_mu * step
lam_list = append(lam_list , lam_opt)
mu_list = append(mu_list , mu_opt)
elif case = ’predictor—corrector ’:
lam_opt = del_lam
mu_opt = del_mu
lam_list = append(lam_list , lam_opt)
mu_list = append(mu_list , mu_opt)

t =t + delta_t

t_list = append(t_list , t)

x_list_0 = append(x_list_0, x_opt[0])

x_list_1 = append(x_list_1, x_opt[1l])
else:

delta_t = alphalxdelta_t

t = t—alphalxdelta_t
iter 4= 1

return x_opt, y_init, t_list , x_list_0, x_list_1,
mu_list, p

= qp-solve(

lam_opt , mu_opt

lam _list ,

#!/opt/local /bin/python
# —+— encoding: ascii —x—

%N

@purpose: NLP solver
@author: Brittany Hall
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@Qdate: 18.09.2017
@Qversion: 0.1
@updates:

7NN

from casadi import nlpsol

def nlp_solve(prob, obj, p-init, x_init, y-init):

7N

NLP solver for initial conditions to path—following algorithm
9
nx, np, neq, niq, name = prob ()
if niq >0:

x, p, f, f-fun, con, conf, ubx, lbx, ubg, lbg = obj(x_-init ,
y-init , p-init, neq, niq, nx, np)

#Formulating NLP to solve

#All constraints must be formatted as inequality constraints
for this solver

nlp = {’x’:x, 'p’:p, 'f’:f, 'g’:con}

solver = nlpsol(’solver’, ’ipopt’, nlp)
sol = solver(x0 = x_init, p = p_init ,
lbg = lbg, ubg = ubg, ubx = ubx, lbx = lbx)
x-opt = sol[’'x’] #
Solving for x
lagmul = sol[’lam_g’]

#Determining active constraints
#(necessary to determine which multipliers are a lambda and
which are a mu)
con_vals = conf(x_opt,p_init)
tol = le—6
for k in range(0,len(con_vals)):
if con_vals[k] >= 0 + tol or con_vals[k] >= 0 — tol: #
active constraint
lam_opt = lagmul [k]
else: #inactive constraint
mu_opt = lagmul [k]
#print ("x_opt:’,x_opt, lambda:’ ,lam_opt, 'mu:’ , mu_opt)
return x_opt, lam_opt, mu_opt, con

#!/opt/local /bin/python
# —+— encoding: ascii —x—
@purpose: Solving a QP
@author: Brittany Hall
@date: 20.09.2017
@version: 0.1
@updates:
%99
from numpy import array, append, zeros
from casadi import vertcat, gradient, jacobian, hessian, Function,
conic, SX, mtimes
from problem import prob, obj

#QP solver
def gp_solve(prob, obj, p_init, x_init, y_init, lam_opt, mu_opt, case
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79

QP solver for path—following algorithm

inputs: prob — problem description

obj — problem equations

p_init — initial parameter

x_init — initial primal variable

y_init — initial dual variable

lam_opt — Lagrange multipliers of equality and active
constraints

mu_opt — Lagrange multipliers of inequality constraints
outputs: y — solution primal variable

qp-val — objective function value

qp-exit — return status of QP solver

deriv — derivatives of the problem

k_zero_tilde — active set index

k_plus_tilde — inactive set index

grad — gradient of objective function
print ’Current point x:’, x_init
#Importing problem to be solved
nx, np, neq, niq, name = prob ()
x, p, f, f-fun, con, conf, ubx, lbx, ubg, lbg = obj(x_-init ,
y_init ,

p-init , neq, niq,

nx, np)

#Deteriming constraint types

eq_con_ind = array ([]) #indices of equality constraints
ig-con_ind = array ([]) #indices of inequality constraints
eq_con = array ([]) #equality constraints

ig.con = array ([]) #inequality constraints

for i in range(0,len(lbg[0])):

if lbg[0,i] = 0:
eq_con = vertcat (eq_con,con[i])
eq_con_ind = append(eq_con_ind ,1i)
elif 1bg[0,i] < 0
ig-con = vertcat (iq-con ,con[i])
iq_-con_ind = append(iq_con_ind ,1i)

#Evaluating constraints at current iteration point

con_vals = conf(x_init ,p_init)

#Determining which inequality constraints are active
k_plus_tilde = array ([]) #active constraint
k_zero_tilde = array ([]) #inactive constraint

tol = 10e—5 #tolerance
for i in range(0, len(igq_-con_ind)):
if ubg[0,i] — tol <= con_vals[i] and con_vals[i] <= ubg[0,i
J+tol:
k_plus_tilde = append(k_plus_tilde ,i)
else:
k_zero_tilde = append(k_zero_tilde ,1)
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nk_pt len(k_plus_tilde) #number of active constraints
nk_zt = len(k_zero_tilde) #number of inactive constraints
#Calculating Lagrangian

lam = SX.sym( ’lam’ ,neq) #Lagrangian multiplier (eq)
mu = SX.sym( 'mu’,niq) #Lagrangian multiplier (iq)

lag_f = f + mtimes(lam.T,eq-con )+ mtimes(mu.T,iq_con)

#Calculating derivatives
g = gradient (f, x)#Derivative of objective function

g_fun = Function(’g_fun’ ,[x,p], [gradient(f, x)])

H = 2xjacobian(gradient (lag_f ,x) ,x) #Second derivative of the
Lagrangian

H_fun = Function( ’H_fun’,[x,p,lam,mu] ,[jacobian (jacobian (lag_f ,x)

x) 1)

if len(eq-con_ind)>0:

deq = jacobian (eq-con ,x)#Derivative of equality constraints
else:

deq = array ([])
if len(iq_con_ind) >0:

diq = jacobian (iq_con ,x)#Derivative of inequality constraints
else:

diq = array ([])

#Creating constraint matrices
nc = niq + neq #Total number of constraints
if (nig>0) and (neq>0): #Equality and inequality constraints
#this part needs to be tested
if (nk_zt >0): #Inactive constraints exist
A = SX.zeros ((nc,nx))
Af0,:] = deq #A matrix
lba = —1el6%SX. zeros ((nc,1))
lba [0 ,:] = —eq_con #lower bound of A
uba = 1el6+SX. zeros ((nc,1))
uba[0,:]= —eq_con #upper bound of A

for j in range(0,nk_pt): #adding active constraints

Alneqg+j+1,:] = dig[int (k_plus_tilde[j]) ,:]
lba [neq+j+1] = —iq_con [int (k_plus_tilde[j])]
uba[neq+j+1] = —iq_con [int (k_plus_tilde[i]) ]

for i in range(0,nk_zt): #adding inactive constraints

A[neq+nk_pt+i+1,:] = digq[int(k-zero_tilde[i]) ,:]
uba [neq+nk_pt+i+1] = —iq_con[int (k_zero_tilde[i]) ]
#inactive constraints don’t have lower bounds
else: #Active constraints only
A = vertcat (deq,diq)
lba = vertcat(—eq_con,—iq-con)
uba = vertcat(—eq-con,—iq_con)
elif (niq>0) and (neq==0): #Inquality constraints
if (nk_zt >0): #Inactive constraints exist

A = SX.zeros ((nc,nx))

lba = —1el6+SX.ones ((nc,1))

uba = 1el6xSX.ones((nc,1))

for j in range(0,nk_pt): #adding active constraints
Alj,:] = diq[int (k_plus_tilde[j]) ,:]
lba[j] = —iq-con[int (k_-plus_tilde[j])]
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uba[j] = —iq-con[int (k_plus_tilde[j])]
for 1 in range(0,nk_zt): #adding inactive constraints
A[nk_pt+i,:] = diq[int(k_-zero_tilde[i]) ,:]
uba[nk_pt+i] = —iq_con[int (k_zero_tilde[i])]
#inactive constraints don’t have lower bounds
else:
A = vertcat (deq, diq)
lba = —iq_con
uba = —iq_con
elif (niqg==0) and (neq>0): #Equality constriants
A = deq
lba = —eq-con
uba = —eq_con
A_fun = Function(’A_fun’ | [x,p],[A])
lba_fun = Function(’lba_fun’ , [x,p],[lba])
uba_fun = Function(’uba_fun’ [x,p],[uba])
#Checking that matrices are correct sizes and types
if (H.sizel() != nx) or (H.size2() != nx) or (H.is_dense ()=’
False ) :
#H matrix should be a sparse (nxn) and symmetrical
print ('WARNING: H matrix is not the correct dimensions or
matrix type’)
if (g.sizel() != nx) or (g.size2() != 1) or g.is_dense ()= "True’:
#g matrix should be a dense (nxl)
print ("WARNING: g matrix is not the correct dimensions or
matrix type’)
if (A.sizel() !=(neq+niq)) or (A.size2() != nx) or (A.is_dense ()
=—'False’):
#A should be a sparse (nc x n)
print ("WARNING: A matrix is not the correct dimensions or
matrix type’)
if lba.sizel () !=(neq+niq) or (lba.size2() !=1) or lba.is_dense()
="False ’:
print ( 'WARNING: lba matrix is not the correct dimensions or
matrix type’)
if uba.sizel () !=(neq+niq) or (uba.size2() !=1) or uba.is_dense()
=—’False ’:
print ('WARNING: uba matrix is not the correct dimensions or
matrix type’)

#Evaluating QP matrices at optimal points
H_opt = H_fun(x_init ,p_init ,lam_opt ,mu_opt)
g_opt = g_fun(x_init, p_init)

A_opt = A_fun(x_init ,p_-init)

lba_opt = lba_fun(x_init ,p_init)

uba_opt = uba_fun(x_init ,p_init)

#Defining QP structure

ap = {}

qp[’h’] = H_opt.sparsity ()

qp[’a’] = A_opt.sparsity ()

optimize = conic(’optimize’, gpoases’ ,qp)

optimal = optimize (h=H_opt, g=g_opt, a=A_opt,
lba=lba_opt , uba=uba_opt, x0=x_init)
x-gqpopt = optimal[’'x’]
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if x_qpopt.shape = x_init .shape:
qp-exit = “optimal’
else:
qp-exit = 7’
lag_gqpopt = optimal[’lam_a’]
#Determing Lagrangian multipliers (lambda and mu)
lam_qgpopt = zeros ((nk_pt,1)) #Lagrange multiplier of active
constraints
mu_qgpopt = zeros ((nk_zt ,1)) #Lagrange multiplier of inactive

constraints
if nk_pt > 0:
for j in range(0,len(k_plus_tilde)):
lam_qpopt[j] = lag_qpopt[int (k_plus_tilde[j])]
if nk_zt > 0:
for k in range(0,len(k_zero_tilde)):
print lag_qpopt[int (k_zero_-tilde [k])]
return qp-exit, optimal, x_qpopt, lam_qpopt, mu_gpopt

#!/opt/local /bin/python
# —x— encoding: ascii —x—
@purpose: Defining the problem to be solved
@author: Brittany Hall
@date: 18.09.2017
@version: 0.1
@Qupdates:

9N

from casadi import SX, Function, vertcat

from numpy import array, ones, zeros, exp

#Defining the problem

def prob():
Information on the problem to be solved
nx = 2 #number of variables
np = 2 #number of parameters
neq = 0 #number of equality constraints
niq = 2 #number of inequality constraints
name = ”Problem 17
return nx, np, neq, niq, name

def obj(x, y, p, neq, niq, nx, np):
Problem to be solved
x = SX.sym(’'x’,nx) #Variable
p = SX.sym(’'p’,np) #Parameters
f =pl[0]*xx[0]**x3 4+ x[1]*x*2 #ODbjective fxn

f_fun = Function(’ ' f_fun’ [x,p],[p[0]*x[0]**x3+x[1]*%2])

con = vertcat (exp(—x[0])—x[1],p[l]—x[0]) #Constraints
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conf = Function(’conf’ [x,p],[exp(—x[0])—x[1],p[l]—x[0]])

#Specifying Bounds

ubx = lel6xones([1,nx]) #Variable upper bound
lbx = —lel6*ones ([1,nx]) #Variable lower bound
ubg = zeros ([1,niq+neq]) #Constraint upper bound
Ilbg= —lel6xones ([1,nig+neq]) #Constraint lower bound

return x, p, f, f_fun, con, conf, ubx, lbx, ubg, Ibg
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B.2 Numerical Case Study Code

This is the code for both the ideal NMPC case and the path-following NMPC
case. Both cases utilize all the same code with the exception that the ideal
NMPC case uses: iNMPC.py and itPredHorizon.py; pfNMPC uses:pfNMPC.py
and itPredHorizon pf.py.

First a steady state optimization is performed. These results are saved (CstrDistXinit.mat

and LambdaCstrDist.mat) and then loaded into the dynamic optimization prob-
lem (iNMPC and pfNMPC); the steady state optimal results are used as the initial
guess for the dynamic optimization problem.

B.2.1 Steady State Optimization
Run the ColCSTR_SS.py file.

#!/opt/local /bin/python
# —x— encoding: ascii —k—
@purpose: Steady state optimization for CSTR and distillation
column A
Creates ’CstrDistXinit.mat’, ’'LambdaCstrDist.mat’ and ’'Qmax.mat’
@author: Brittany Hall
@date: 11.10.2017
@version: 0.1
@updates:

%N

from scipy.io import savemat

from casadi import

from numpy import append, ones, transpose, shape, abs, size,
concatenate , array, savetxt

from scipy.linalg import eigvals

from buildmodel import x

from params import *x #imports cstr and distillation column parameters

from nlp_solve import =x

import time

#Unpacking parameter valt
NT = params|’dist ][ 'NT’]
LT = params|’dist ][ 'LT’]
VB = params|[’dist ][ "VB’]
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F = params| ' dist "|[ 'F]
D = params|’dist ' ][ 'D’]
B = params|[’dist ][ 'B’]
#Symbolic

x = SX.zeros (2«NT+2,1)

1 = SX.zeros (2«NT+2,1)

for i in range(0,2xNT+2):
x[i1] = SX.sym('x_'+ str(i+1))
11i] = SX.sym(’1_"+ str(i+1))

ul = SX.sym(’ul’)
4T

u2 = SX.sym(’'u2’)
#VB

ud = SX.sym('u3’)
#F

ud = SX.sym(’'ud’)
7D

ub = SX.sym(’ub’)
#B

#Collecting states and inputs
x = vertcat (x[:]

X = vertcat ( 1)

x = vertcat ( 2)
x = vertcat (x,u3)
x = vertcat ( 4)
x = vertcat ( 5)

#Decision variables (states and controls)
Xinit = 0.5%ones ((2xNT+2,1))
Uinit = vertcat (Xinit, LT)

Uinit = vertcat (Uinit, VB)
Uinit = vertcat (Uinit, F)
Uinit = vertcat (Uinit, D)
Uinit = vertcat (Uinit, B)

#Define the dynamics as equality constraints and additional
inequality constraints

obj, eq, lbx, ubx, lbg, ubg = buildmodel (x, params)

prob = {'f’: obj, 'x’: x, 'g’: eq}

options = {}

tic = time.time()
startnlp = tic
wO = Uinit

lbw = 1bx

ubw = ubx

sol = nlp_solve(prob, options, w0, lbw, ubw, lbg, ubg)
toc = time.time() — tic

elapsednlp = toc

print ( 'IPOPT solver runtime = %f\n’, elapsednlp)

u = sol[’x’]
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lam = sol[’lam_g’]

lam [NT+1:—1] = —1xlam [NT+1:—1]
lam = lam. full (). flatten ()
Xinit = u. full (). flatten ()

#Saving steady state data to be used in dynamic optimization (.mat
and .csv)

savemat ('CstrDistXinit .mat’, {’Xinit’: Xinit}, do_compression=True)
savemat ( 'LamdaCstrDist .mat’, {’lambda’:lam}, do_compression=True)
savetxt (' CstrDistXinit.csv’, Xinit, delimiter=",")

savetxt (’LambdaCstrDist.csv’, lam, delimiter=",")

Compute Hessian and perform Greshgorin convexification

%99

xsol = u

lamda = {}

lamda | eqnonlin’] = lam

L = obj + lxeq # Lagrangian

Lagr = Function(’Lagr’, [x, 1], [L], [’x’,’1’], [’Lagr’])
H = Function(’H’ ,[hessian (Lagr) ,[ 'x’, Lagr’]])

cons = Function(’Const’, [x], [eq],[’x’], [’cons’])

Jcon = Function(cons.jacobian(’x’, cons’))

eqVal = cons(xsol)

Hx = H(xsol, lamda[’eqnonlin’])

Hx = Hx. full ()

Jac = Jcon(xsol)
Jac = Jac. full ()

# Nullspace of the constraints and its eigenvalue
rH = transpose (Jac.nullspace ())*HxxJac.nullspace ()
eigen . RH = eigvals (rH)

#Calculating the Greshgorin convexification
def Gershgorin (H):
numH = H. shape [0]
Q = zeros ((numH,numH) )
delta = 2.5 #with measurement noise of 1 percent
for 1 in range (0 ,numH): #iterate every row of the Hessian
sumRow = 0
for j in range (0 ,numH):
ifjol= i
sumRow += abs(H[i,]])
if H[i,i] <= sumRow: #include equality
Q[i,i] = sumRow — H[i,i] 4+ delta
Q = diag(Q)
return H, Q

Hxxl, Qmax = Gershgorin (Hx)
savemat ( 'Qmax’, Qmax)
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#Check at some initial point for optimization

xstat = Xinit [0:2xNT+2]

u0 = array ([[2.5],[3.5],[0.6],[0.5],[0.5]])

xeval = concatenate ((xstat ,u0))

Jeval = Jcon(xeval)

Jeval = full (Jeval)

Hxxl = H(xeval, lam[’eqnonlin’])

Hxxl = full (Hxx])

Hconv = Hxxl + diag (Qmax)

rHe = transpose(Jeval.nullspace())*HconvxJeval.nullspace ()
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#!/opt/local/bin/python
# —+— encoding: ascii —x—
@purpose: Creates objective function and constraints for
Distillation column
A model and CSTR
@author: Brittany Hall
@date: 11.10.2017
@version: 0.1
@updates:
from casadi import
from numpy import divide, multiply , zeros, array

def buildmodel (u, params):
#Unpacking model parameters

NT = params|[’dist ][ 'NT’] #number
of stages
NF = params[’dist’ ][ 'NF’] #stage where

feed enters

alpha = params[’dist’ ][ alpha’] #relative volatility

Muw = params|[’dist ][ 'Muw’] #nominal liquid hold ups

taul = params|[’dist ][ ’taul’] #time constant for liquid dynamics
F = params[’dist ’][ ’F’] #nominal distillation feed flowrate

qF = params|[’dist ][ 'qF’] #nominal distillation feed liquid
fraction

LO = params[ 'dist ][ 'LO’] #nominal reflux flow

LOb = params|’dist ][ ’LOb’] #nominal liquid flow below feed
F_0 = params[’dist ’][’F.0’] #nominal CSTR feed flowrate

zF = params[’dist ][ 'zF’] #nominal feed composition

#Inputs and disturbances
LT = u[2xNT+2]
#Reflux
VB = u[2*NT+3]
#Boilup
F = u[2xNT+4]
#Feedrate
D = u[2%NT+5] #
Distillate
B = u[2xNT+6]
#Bottoms
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9999

The Model

7N

#0Objective function

pf = params|[’price’ ][ pf’]
pV = params|[’'price’|[ 'pV’]
pB = params |’ 'price’ ][ 'pB’]
pD = params|[’price’ ][ 'pD’]

J = pf*xF_0 + pV«xVB — pBxB — pDx*D

#Vapor and Liquid flowrates, composition, and holdups

y = SX.zeros (NT-1)

V = SX.zeros (NT-1)

L = SX.zeros (NT)

dMdt = SX. zeros (NT+1)

dMxdt = SX.zeros (NT+1)

for i in range (0 ,NT—1):
y[i] = SX.sym( y-"+str(i+1),1
V[i] = SX.sym(’V_"+str (i+1),1
Lli] = SX.sym('L_"+str(i+1),1

(

L[NT-1] = SX.sym('L_"+str (NT) ,1)

dMdt [NT—1] = SX.sym(’dMdt. '+str (NT) ,1)
dMxdt [NT—1] = SX.sym(dMxdt_'+str (NT) ,1)
dMdt [NT] = SX.sym( dMdt_"+str (NT+1),1)
dMxdt [NT] = SX.sym(dMxdt_'+str (NT+1) ,1)

#Vapor—liquid equilibria
for i in range (0 ,NT—1): #don’t calculate value for last stage NT
y[i] = alphaxu[i]/(1+(alpha—1)xu[i])

#Vapor flows (constant molar flows assumed)
for i in range (0 ,NT—1):#don’t calculate value for last stage NT
if i >= NF-1:
V[i] = VB 4+ (1—qF)*F
else:
V[i] = VB

#Liquid flows
L[NT-1] = LT #last stage liquid
for i in range (0 ,NT—1):#don’t calculate value for last stage NT
if i <= NF-1:
L[i] = LOb + divide ((u[NT+14+i] — Muw) ,taul)
else:
L[i] = L0 + divide ((u[NTH+14i] — Muw) ,taul)

#Time derivatives for material balances for total holdup and
component
for 1 in range(1,NT—1):
dMdt[i] = L[i+1] — L[i] + V[i—-1] — V][i]
dMxdt[i] = multiply (L[i+1], u[i+1,0]) — multiply(L[i], uli
,0]) + multiply (V[i—1], y[i—1]) — multiply (V[i],y[i])

#Correction for feed stage
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dMdt [NF—1] = dMdt[NF—1] + F
dMxdt [NF—1] = dMxdt[NF—1] + Fsxu[NT]

#Reboiler (assumed to be an equilibrium stage)
dMdt[0] = L[1] — V[0] — B
dMxdt [0] = L[1]*u[l] — V[0]*xy[0] — Bxu[0]

#Total condenser (not an equilbrium stage)
dMdt [NT-1] = V[NT-2] — LT - D
dMxdt [NT—1] = V[NT—2]xy [NT—2] — LT*u[NT—1] — Dxu[NT—1]

#Compute the derivative for the mole fractions d(Mx) = xdM + Mdx

ceq = SX.zeros (2xNT+2)
for i in range(0,2xNT42):
ceq[i] = SX.sym(’ceq-'+str(i+1),1)

#CSTR model

kl = params|[’cstr’ ][ 'kl ]

dMdt[NT] = F.0 + D — F

dMxdt [NT] = F_0*zF + Dxu[NT—1] — F*u[NT] — kIlsu[2+NT+1]*u[NT]

for i in range (0 ,NT+1):
ceq[i] = dMxdt[1i]

for i in range (0 ,NT+1):
ceq [NTH1+i] = dMdt[i]

#Constraint bounds

Ibx = params| bounds’ ][ ’1bx ]
ubx = params| bounds’|[ ubx’]
lbg = params| bounds’ ][ '1bg’]
ubg = params| ’bounds’ ][ ubg’]

return J, ceq, lbx, ubx, lbg, ubg

#!/opt/local/bin/python

# —x— encoding: ascii —x—
@purpose: NLP solver
@author: Brittany Hall
@date: 18.09.2017
@version: 0.1
@updates:

7990

from casadi import x

def nlp_solve(prob, options, w0, lbw, ubw, lbg, ubg):

7N

NLP solver for initial conditions to path—following algorithm

N

#Formulating NLP to solve
solver = nlpsol(’solver’, ’ipopt’, prob, options)
sol = solver (x0 = w0, lbx = lbw, ubx = ubw, lbg=lbg, ubg=ubg)

return sol

60




11

13

15

17

19

21

23

25

27

10

12

14

16

18

20

APPENDIX B. PYTHON CODE

#!/opt/local /bin/python
# —+— encoding: ascii —x—
@purpose: Generates noise for states
@author: Brittany Hall
@date: 23.10.2017
@version: 0.1
@updates:
99N
import scipy.io as spio
from numpy import zeros, array, append, random

mpc_iter = 500
noiselevel = 0.1 # 1 percent noise

#Load in steady state data

data = spio.loadmat(’CstrDistXinit.mat’, squeeze.me = True)
Xinit = data|’ Xinit ]

xf = Xinit [0:2«NT+2]

xholdup = xf[NT+1:-1]

noise = array ([])
for i in range(0,mpc_-iter):
noise = append(noise, noiselevelsxxholdup*random.randn(NT+1,1))

print noise
raw_input ()
spio.savemat ( 'noiselpct ’,noise)

B.2.2 Dynamic Optimization

Run the process_main.py file.

#!/opt/local /bin/python

# —+— encoding: ascii —x—
@purpose: Main file to run iINMPC and pfNMPC
@author: Brittany Hall
@date: 06.10.2017
@version: 0.1
@Qupdates:

from numpy import reshape, tile

import scipy.io as spio

#user made functions

from optProblem import x

from system import x

from pfNMPC import =x

from iINMPC import =

from params import x

from plotting import x

#AVIPC iterations
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MPCit = 150

#Prediction Horizon

N = 30

#Sampling time

T=1 #[min |
#Loading in initial data (different initial conditions)

data = spio.loadmat(’Xinit29 .mat’, squeeze_me = True)

Xinit = data[’ Xinit29 ]

u0 = Xinit [84:89] #Initial inputs

u0 = u0.reshape(len(u0), 1)
u0 = tile (u0,N)

tmeasure = 0.0 #Start time
xmeasure = Xinit [0:84] #Initial states
Uf = 0.3 #Feed rate to CSTR (F_0)
params|'dist ][ 'F.0"] = Uf

#Applying ideal NMPC
_, xmeasureAll, uAll,_, _, _, runtime = iINMPC(optProblem, system,
MPCit, N, T, tmeasure, xmeasure, u0, params)

#print "INMPC finished \n”
#Applying path—following NMPC

_,xmeasureAll_pf ,uAll_pf,_,_,_,runtime_pf=pfNMPC(optProblem, system,
MPCit, N, T, tmeasure, xmeasure, ul, params
)

#Plotting results
plotting (u0, xmeasure, MPCit, T)

#!/opt/local /bin/python

# —x— encoding: ascii —k—
@purpose: CSTR model (stage NT+1) with a first order
reaction (A—> B) plus nonlinear distillation column model
with NT-1 theoretical stages including a reboiler (stage 1)
plus a total condenser (stage NT).
The model is based on column A in Skogestad and Postlethwaite
(1996) .
@author: Brittany Hall
@date: 05.10.2017
@version: 0.1
@updates:

from casadi import SX

from numpy import *

from params import x

def col_cstr_model (t, X, U):
#Column Information

7N

Inputs: t — time [min]
X — States, the first 41 states are compositions
of light component A with reboiler/bottom
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Outputs:

799

stage as X(0) and condenser as X(40). X(41) is
the holdup in the reboiler/bottom stage and X(81)
is the hold—up in condenser

U[0] — reflux L

U[1l] = boilup V

U[2] — top or distillate product flow D

U[3] — bottom product flow B

U[4] — feed rate F

U[5] — feed composition zF

U[6] — feed rate FO

xprime — vector of time derivative all states

#Unpacking model parameters

i

/]

Column Dependent Properties 4

7

NC = params|[’dist ][ 'NC’]

NF = params|’'dist ][ 'NF’]

NT = params|[’dist ][ 'NT’]

qF = params|[’dist ][ qF ]

alpha = params|[’dist ][ alpha’]
zF0 = params|[ dist ][ 'zF "]

MO = params[’dist’ ][ 'MO’]

F0=0U

#Data for linearized Liquid flow dynamics
#(does not apply to reboiler and condenser)

taul = params[’dist’ ][ taul’]
FO = params|[’dist ][ "FO’]

qF0 = params|[’dist ][ 'qF0’]
LO = params[’dist ][ 'L0"]

LOb = LO + qF0+F0

lam = params|[’dist’][ 'lam’]
V0 = params[ dist ][ VO]

VOt = VO + (1—qF0)+F0

/]

/]

7

71

#Dividing the states
#Liquid composition of column plus composition in tank
x = X[0:NT+1]

#Liquid hold up from btm to top of col plus hold up in tank

M = X[NT+1:]
#Inputs and
LT = U[0]
VB = U[1]

D = UJ[2]

B = UJ[3]

F =U[4]
zF_0 = U[5]
qF = params|
F.0 =U[6]

Disturbances
#Reflux flowrate
#Boilup flowrate
#Distillate flowrate
#Bottoms flowrate
#Distillation feed flowrate
#CSTR Feed composition
"dist 7 ][ 'qF 7] #Feed liquid fraction
#CSTR, flowrate
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Model Development

80 v
#Vapor—liquid equilibria
82 y =[]
for i in range (0 ,NT-1):
84 y.append (alphaxx[i]/(14+(alpha—1)*x[i]))
86 #Vapor flows (assuming constant molar flow)
V=]
88 for i in range (0 ,NT—1):
V.append (VB)
90 for i in range (NF,NT—1):
VIi] = V[i] + (1-qF)«F
92

#Liquid flows (assuming linearized tray hydraulics)
94 L=1]

L.append (0)

96 for i in range (1 ,NF):

L.append (LOb + (M[i]-MO[i])/taul)
98
for i in range (NF,NT—-1):
100 L.append (LO + (M[i]-MO[i])/taul)
102 L.append (LT)
104 9
Time Derivatives of material balances for total
106 holdup and component holdup
108 #Column
dMdt = []
110 dMdt . append (0)
dMxdt = []
112 dMxdt . append (0)
for i in range (1 ,NT—1):
114 dMdt. append (L[i+1] — L[i] + V][i—-1] — V[i])
dMxdt.append (L[i4+1]*x[i+1]-L[i]*x[1]4+V[i—1]*y[i—1]
116 V]i]*y[i])
118 #Correction for feed at feed stage
dMdt [NF—1] = dMdt[NF-1] + F
120 dMxdt [NF—1] = dMxdt [NF—1] + x [NT]+F
122 #Reboiler (assumed to be an equilibrium stage)
dMdt[0] = L[1]-V[0]-B
124 dMxdt [0] = L[1]*x[1]-V[0]*y[0] —Bxx[0]
126 #Total condensor (not an equilibrium stage)
dMdt . append (V[NT-2] — LT — D)
128 dMxdt . append (V[NT—2]xy [NT—2]—LTxx [NT—1]—D*x [NT—1])
130 #CSTR Model (inputs F_0 z_F0)

kl = params[’cstr ][ 'kl’]
132 dMdt. append (F.0 + D — F)
dMxdt . append (F_0%zF0[0,0] + Dsx[NT—1] — Fxx[NT]
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134 —k1+M[NT]*x [NT])
136 #Calculating the derivative of the mole fractions
dxdt = |[]
138 for i in range (0 ,NT+1):
dxdt.append ((dMxdt[i]—x[i]«dMdt[i]) /M[i])
140
xprime = append (dxdt ,dMdt)
142 return xprime

#!/opt/local /bin/python

2|# —x— encoding: ascii —%—

%99

4 @purpose: Ideal Nonlinear Model Predictive Control (iNMPC)
@author: Brittany Hall

6 @date: 11.10.2017
@version: 0.1

8 @updates:

%9

10| from numpy import size , zeros, append, hstack, savetxt, reshape
from compObjFn import =*

12| from solveOpt import =

from plotStates import =x

14| from scipy.io import savemat, loadmat

16| def INMPC(optProblem , system , MPCit, N, T, tmeasure, xmeasure, u0,

params) :
18 #Unpacking required parameters
NT = params|[’dist ][ 'NT’]
20
#Constructing empty arrays for later use
29 Tall = []
Xall = zeros ((MPCit, size(xmeasure, axis = 0)))
24 Uall = zeros ((MPCit, size(u0, axis = 0)))
ObjVal = {}
26 ObjVal[’econ’] = []
ObjVal[’reg’] = []
28 xmeasureAll = []
uAll = []
30 xAll = []
runtime = []
32 u_nlp_opt = []
x_nlp_opt = []
34
#NMPC iteration
36 iter =1
38 #Load in noise data
data = loadmat ( 'noiselpct.mat’, squeeze_me = True)
40 noise = data| noise’|
42 while (iter <= MPCit):
print 7 \n”
44 print "MPC iteration: %d \n” %(iter)
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#0Obtaining new initial wvalue
def measurelnitVal(tmeasure, xmeasure):

t0 = tmeasure
x0 = xmeasure
return t0, x0
t0,x0 = measurelnitVal (tmeasure, xmeasure)

#Measurement noise

nM = noise[:,iter —1] #Holdup noise

nX = zeros ((NT+1,1)) #Concentration noise
measure_noise = append(n-X, n.M)

x0_measure = x0 + measure_noise#Add measmt noise to states

#Solving NLP
primalNLP , _,1b jub, _, params, =solveOpt (optProblem ,x0,
u0,N, x0_measure , params)

#Re—arrange NLP solutions

#(turning vectors into matrices to make easier to plot)

u_nlp_opt, x_nlp_opt = plotStates (primalNLP, 1b, ub, N,
params)

#Save open loop solution for error computation
z1 = x_nlp_opt [0:nx,4]

#Record information

Tall = append(Tall, t0)
Xall[iter —1,:] = transpose(x0)
Uall[iter —1,:] = u0[:,0]

#Applying control to process with optimized control
def dynamic(system, T, t0, x0, u0):

x = system (t0, x0, u0, T)

x_intermediate = append(x0, x)

t_intermediate = hstack ([t0, t0+T])

return x, t_intermediate , x_intermediate

def applyControl(system, T, t0, x0, u0):
xapplied, -, _ = dynamic(system, T, t0, x0, u0[:,0])
tapplied = t0 + T
return tapplied, xapplied

#Apply control to process with optimized

#control from path—following algorithm

x0 = xmeasure #From online step
tmeasure ,xmeasure=applyControl (system ,T,t0,x0,u_nlp_opt)

#Using actual state
Jobj = compObjFn(u-nlp_opt[:,0], xmeasure)

#Storing Output Variables
ObjVal[’econ’].append(float (Jobj[ econ’]]

110]))
ObjVal[’'reg’].append(float (Jobj[ 'reg’][0])

)
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xmeasureAll = append(xmeasureAll, xmeasure)
uAll = append(uAll, u_nlp_opt[:,0])
runtime = append(runtime, elapsedtime)

def shiftHorizon (u):

u0 = hstack ((u[:,1:u.shape[1]], u[:,u.shape[l] —1]))
return u0
u0 = shiftHorizon (u_nlp_opt)
iter +=1
xmeasureAll = reshape(xmeasureAll ,(xmeasureAll.shape[0],1))
xmeasureAll = reshape (xmeasureAll, (2xNT+2, MPCit))
xmeasureAll = array (xmeasureAll)

ObjReg = array (ObjVal[ reg’])

ObjEcon = array (ObjVal[ econ’])
ideal = {
“ideal 7 :{
"xmeasureAll ’: xmeasureAll,
"WAll: uAll,

"ObjReg’: ObjReg,
"ObjEcon’: ObjEcon,
T’: T,
"mpciterations ': MPCit
}

¥

savemat ( INMPC.mat’ ,ideal) #saving iINMPC results

return Tall ,xmeasureAll ,uAll ,ObjVal, primalNLP ,params,runtime

#!/opt/local /bin/python
# —+— encoding: ascii —x—
@purpose: Path— following based Nonlinear Model Predictive
Control (pfNMPC)
@author: Brittany Hall
@date: 07.10.2017
@version: 0.1
@Qupdates:
from solveOpt import solveOpt
import scipy.io as spio
from plotStates import plotStates
from ColCSTR_pf import ColCSTR._pf
from predictor_corrector import predictor_corrector
from numpy import size, zeros, append, array

def pfINMPC(optProblem, system, MPCit, N, T, tmeasure, xmeasure, u0,

params) :
NT = params|[’dist ][ 'NT’]
#Dimension of state and input
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nx = size (xmeasure) #Elements in state
nu = size (u0, axis = 0) #Size of inputs
#Constructing empty arrays for later use
Tall = []

Xall = zeros ((MPCit, xmeasure.shape|[0]))
Uall = zeros ((MPCit, u0.shape[0]))
ObjVval = {}

ObjVal[ ’econ’] = []

ObjVal[’'reg’] = []
xmeasureAll = []
uAll = []
runtimepf = []
u_pf_opt = []
x_pf_opt = []

#starting NMPC iteration

iter =1

7zl = Xxmeasure

#loading in noise data

data = spio.loadmat( ' noiselpct.mat’, squeeze_.me = True)
noise = data| noise’]

while (iter <= MPCit):
print (7 \n”)
print ('MPC iteration: %d\n’ %iter)

#0Dbtaining new initial wvalue
def measurelnitVal(tmeasure, xmeasure):

t0 = tmeasure
x0 = xmeasure
return t0, x0
t0,x0 = measurelnitVal (tmeasure, xmeasure)

#adding measurement noise

nM = noise[:,iter —1] #Holdup noise

nX = zeros ((NT+1,1)) #Concentration noise
measure_noise = append (n_X, n.M)

x0_measure = x0 + measure_noise #Add measmt noise to states

#advanced—step NMPC
primalNLP , dualNLP ,1b ,ub,objVal ,params, =solveOpt (optProblem ,
x0,u0,N, z1 , params)

#re—arrange NLP solutions
_, x.nlp_opt = plotStates (primalNLP, 1b, ub, N, params)

p-init = primalNLP [0: nx]
p-final = x0_measure
xstart = primalNLP
ystart = dualNLP

delta_t = 0.5 #Step size
Ib_init = 1b

ub_init = ub
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75 #NLP sensitivity (predictor—corrector)

primalPF | _ elapsedqp=predictor_corrector (lambda p:ColCSTR_pf
77 ) p-init ,p_final ,xstart ,ystart ,delta_t ,1b_init ,ub_init ,0 ,N)
79 runtime_pf = append(runtime_pf, elapsedqp)
81 return Tall ,xmeasureAll ,uAll ,ObjVal, primalPF ,params,runtime_pf

1|#!/opt/local /bin/python
# —+— encoding: ascii —%—

3 7NN
@purpose: Distillation Column A and CSTR model parameters
5 @author: Brittany Hall
@date: 11.10.2017
7 @version: 0.1
@Qupdates:
9 7NN

from numpy import zeros, ones, concatenate, array
11| params = {}

# Distillation column parameters +#
13|NC = 2 #Number of components
NT = 41 #Number of stages
15|NF = 21 #Location of feed stage
LT = 2.827 #Reflux
17|VB = 3.454 #Boilup
F=1.0 #Feedrate
19| zF = array ([[1.0] ,[0.0]]) #Feed composition (# components)
D=20.5 #Distillate flowrate
21|B = 0.5 #Bottoms flowrate
qgF = 1.0 #Feed liquid fraction
23|F.0 = 0.3 #CSTR Feed rate
FO =F #Nominal feed rate to column
25| qF0 = qF
alpha = 1.5 #Relative volatility
27|#Nominal liquid holdups
Muw = 0.5
29 O— zeros (NT+1)
MO[0] = 0.5 #Nominal reboiler holdup [kmol]
31|MO[1:NT—-1] = 0.5 #Nominal stage (tray) holdup [kmol]
MO[NT-1] = 0.5 #Nominal condenser holdup [kmol]
33|MO[NT ] = 0.5 #Nominal CSTR hold up [kmol]
#Linearized flow dynamics (NA to reboiler and condenser)
35| taul = 0.063 #Time constant for liquid dynamics [min]
L0 = 2.70629
37|L0b = LO + gF+«F0 #Nominal liquid flow below feed [kmol/min]
lam = 0

39| VO = 3.206
VB_max = 4.008

41|14 CSTR parameters #
#Reaction
431k1 = 34.1/60.0
+# Objective Function & Constraints +#
45|#Prices
pf =
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pV = 0.02

pB = 2

pD =0

#Gains

KeB = 10

KeD = 10

#Nominal holdup values
MDs = 0.5

MBs = 0.5

#Nominal flow rates
Ds = 0.5

Bs = 0.5
#Constraint bounds

u_min = array ([[0.1], [0.1], [0.1], [0.1], [0.1]])
u-max = array ([[10],[VBmax] ,[10],[1.0],[1.0]])
#State bounds

x-min = zeros ((2xNT+2,1))

x-max = ones ((2xNT+2,1))

1bx concatenate ((x-min, u-min))

ubx = concatenate ((x_-max, u.max))

lbg = zeros ((2«NT+2,1))

ubg = zeros ((2xNT+2,1))

#Problem Dimensions

nx = 2xNT42 #Number of states (CSTR + Distillation Column)

nu = 5 #Number of inputs (LT, VB, F, D, B)
nk =1

tf =1

h = tf/nk

ns =0

#Collecting all parameters into a dictionary
params = {}
params [ 'dist ’] = {'NC":NC,’F.0’: F.0, 'NT’: NT, 'zF’: zF,
"qF 7. gqF, 'NF’: NF, ’VB’: VB, 'LT’: LT, 'F’: F, ’alpha’: alpha,
'B’: B, 'D’: D, 'zF’: zF, Muw’: Muw, ’LO’: LO, ’LOb’: LOb,
"qF0’: gF0O, 'FO’: FO, ’taul’: taul,’V0’:V0, ’lam’:lam, MO’: MO}
params|'cstr’] = {’kl1’: kl}
params | 'price’] = {’'pf’: pf, 'pV’: pV, 'pB’: pB, 'pD’: pD}
params | 'bounds’] = {’x.min’:x.min, ’x.max’:x.max, ‘u.min’: u.min,
‘umax’: u.max, ’'lbx’: lbx, ’ubx’: ubx, ’'ubg’: ubg, ’lbg’: lbg}
params| 'gain’] = {’MDs’:MDs, "MBs’:MBs, 'Ds’:Ds, 'Bs’:Bs,
'KeD '’ :KeD, 'KcB’:KceB}
params | 'prob’] = {’nx’:nx, ’'nu’:nu, ’'nk’:nk
'h’: h, 'ns’:ns}

, . tf tf,

#!/opt/local /bin/python
# —x— encoding: ascii —x—
99N
@purpose: solving optimal control problem
@author: Brittany Hall
@date: 07.10.2017
@version: 0.1
@updates:

%99

from casadi import x
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from numpy import transpose, shape, zeros, savetxt
import numpy

numpy . set_printoptions (threshold=numpy.nan)

from optProblem import =x

import time

from nlp_solve import x

from collections import x

def solveOpt (optProblem, x0, u0, N, zl, params):

x0_measure = zl

x = zeros ((N+1,84))

x[0,:] = transpose(x0)

for k in range (0 ,N):
x[k+1,:] = transpose(x0)

J, g, w0, w, lbg, ubg, lbw, ubw, params = optProblem(x, u0,

x0_measure, N, params)

#Solving the NLP

NLP = {'x’: w, "f’: J, ’g’: g}

options = {}

tic = time.clock ()

startnlp = tic

sol = nlp_solve (NLP, options, w0, lbw, ubw, lbg, ubg)
toc = time. clock ()

elapsednlp = toc — tic

print "TPOPT solver run time = %f\n” %elapsednlp
u = sol[’x’]

lam = {}

lam[’lam_g’] = sol[’lam_g’]

lam[’lam_x’] = sol[’lam_x "]

objVal = sol[7f7]

return u, lam, lbw, ubw, objVal, params, elapsednlp

#!/opt/local /bin/python
# —x— encoding: ascii —k—
@purpose: Solving the optimal control problem
@author: Brittany Hall
@date: 07.10.2017
@version: 0.1
@updates:
from casadi import Function, MX, SX, vertcat
from collocationSetup import collocationSetup
from ColCSTR_model import ColCSTR_model
from numpy import zeros, ones, array, transpose, matlib,
reshape, shape, savetxt
import scipy.io as spio
from itPredHorizon import itPredHorizon

def optProblem(x, u, x0_measure, N, params):
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NT = params|[’dist ][ 'NT’]
Uf = params|[’dist’ ][ 'F_0"]

#Modeling the system
_, state, xdot, inputs = ColCSTR_model (Uf, params)
f = Function(’'f’, [state, inputs], [xdot])

#Unpacking parameters
x_min = params| bounds’ ][ x_min’]

x.max = params | bounds’ ][ 'x_max’]

#Loading steady state data

data = spio.loadmat(’CstrDistXinit.mat’, squeeze_me = True)

Xinit = data[’ Xinit ']
xf = Xinit [0:84]
u-opt = Xinit [84:89]

#Problem dimensions

nx = params| prob’ ][ 'nx’] #Number of states
nu = params| 'prob’ ][ 'nu’] #Number of inputs
nk = params]| prob’ ][ 'nk’]

tf = params|[ 'prob’ ][ tf ]

h = params[ 'prob’ ][ h’]

ns = params|[ 'prob’ ][ 'ns’]

#Collecting model variables

u = tile (u,nk)

model = {’'NT’: NT, ’f’: f, ’xdot_val_rf_ss’: xf,
'x’: x, 'u.opt’: u_opt, ‘u’:u}

params [ 'model ] = model

#Preparing collocation matrices
-, C, D, d = collocationSetup ()
params| 'prob’][’'d’] = d

#Collecting collocation variables
colloc = {'C’: C, 'D’: D, 'h’: h}

params| ' colloc’] = colloc

#Empty NLP

w = MX() #Decision variables (control + state)
w0 = [] #Initial

Ibw = [] #Lower bound for decision

ubw = [] #Upper bound for decision

g :MX() #Nonlinear constraint
lbg = [] #Lower bound for nonlinear constraint
ubg = [] #Upper bound for nonlinear constraint
J =0 #Initialize objective function

#Weight variables
delta_t =1

alpha =1

beta = 1

gamma = 1

72




73

(0]

(s

79

81

83

85

87

89

91

93

95

97

—_

11

13

15

17

19

21

23

25

APPENDIX B. PYTHON CODE

weight = {’delta_t’: delta_t, ’alpha’: alpha,
"beta’: beta, ’gamma’: gamma}

params | 'weight '] = weight

#Initial conditions

X0 = MX.sym( 'X0’, nx)

w = vertcat (w,XO0)

w0 = [1 for i in x[0,0:nx]]

lbw = [i for i in x_min]

ubw = [i for i in x_max]

g = vertcat (g, X0—x0_measure)
lbg = params|[ 'bounds’|[ 'lbg’]

ubg = params| bounds’|[ ubg’]

Xk = X0

data = spio.loadmat ( 'Qmax.mat’, squeeze_me = True)

Qmax = data [ Qmax’]

params | 'Qmax’] = Qmax

count = 2 #Counter for state variable
ssoftc =0

for iter in range(0,N):

J, g, wO, w, lbg, ubg, lbw, ubw, Xk, params, count, ssoftc =
itPredHorizon (Xk, w, w0, lbw, ubw, lbg, ubg, g, J, params, iter
count , ssoftc, d)

return J, g, w0, w, lbg, ubg, lbw, ubw, params

#!/opt/local/bin/python

# —+— encoding: ascii —x—
@purpose: Setting up collocation
@author: Brittany Hall (based on Joel Anderson’s Matlab script)
@date: 18.10.2017
@version: 0.1
@updates:

from casadi import x

from numpy import zeros, convolve, polyval, polyder, polyint, array,
append

def collocationSetup ():

#Degree of interpolating polynomial

d =3

#Get collocation points

tau_root = collocation_points(d, ’legendre’)
tau_root = append(0,tau_root)

#Coefficients of the collocation equation
C = zeros ((d+1, d+1))

#Coefficients of the continuity equation
D = zeros((d+1, 1))

#Coefficients of the quadrature function
B = zeros ((d+1, 1))

#Construct polynomial basis
for j in range(0,d+1):
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#Lagrange poly to get poly basis at the colloc point

coeff =1
for r in range(0,d+1):
if rl=j:
coeff = convolve(coeff, [1, —tau_root[r]])
coeff = coeff/(tau_root[j]—tau_root[r])

#Evaluate the polynomial at the final time to get
# the coefficients of the continuity equation
D[j] = polyval(coeff 1.0)
#Evaluate the time derivative of the polynomial at
#all collocation points to get the coefficients of the
#continuity equation
pder = polyder (coeff)
for r in range(0,d+1):
Clj,r] = polyval(pder,tau_root|[r])

#Evaluate the integral of the polynomial to get
#the coefficients of the quadrature function
pint = polyint (coeff)
B[j] = polyval(pint, 1.0)

return B,C,D,d

#!/opt/local /bin/python
# —x— encoding: ascii —k—
@purpose: CSTR model (stage NT+1) with a first order reaction (A
— B) plus
nonlinear distillation column model with NT—1 theoretical stages
including
a reboiler (stage 1) plus a total condenser (stage NT).
The model is based on column A in Skogestad and Postlethwaite
(1996) .
@author: Brittany Hall
@date: 31.10.2017
@version: 0.2
@updates: Fixed bug errors on index assignments
from casadi import x
from numpy import array, Infinity

def ColCSTR_model (U, params) :

#Unpacking model parameters

# Column Dependent Properties #

NC = params|[’dist ][ 'NC’]

NF = params[’dist’ ][ 'NF’]

NT = params|[’dist ][ 'NT’]

qF = params|[’dist ][ qF ]

alpha = params|[’dist ][ alpha’]
zF0 = params|[ dist ][ 'zF "]

Muw = params|[’dist ][ 'Muw’ ]

FO0=0U
#Data for linearized Liquid flow dynamics

#(does not apply to reboiler and condenser)
taul = params[’dist’ ][ taul’]
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FO = params[ 'dist’ ][ 'F0’]
qF0 = params|[’dist ]| qFO ]
LO = params[’dist ][ 'L0"]
LOb = LO + qF0%F0

lam = params[’dist’][ 'lam’]
VO = params[ dist ][ VO]
VOt = VO + (1—qF0)+F0

/] /]
7 7

#States and Control Inputs

x = SX.sym(’x’, NT+1, NC-1) #Composition
M = SX.sym( M’ ,NT+1, 1) #Holdup
states = vertcat(x, M)

LT = SX.sym('L.T") #Liquid flow
VB = SX.sym(’VB’) #Vapor flow
F = SX.sym('F’) #Feed to column
D = SX.sym(’'D") #Distillate
B = SX.sym('B’) #Bottom
inputs = vertcat (L.T,V_B)

inputs = vertcat (1nputs, )

inputs = vertcat (inputs ,D)

inputs = vertcat (inputs ,B)

t = SX.sym(’t’) #Time
y = SX.sym( 'y ’, NT—l, NC-1) #Vapor composition
Li = SX.sym('Li’, NT, 1) #Liquid flow on stages
Vi = SX.sym(’Vi’, NT, 1) #Vapor flow on stages
dMdt = SX.sym('dMdt’, NT+1, 1) #Total Molar holdup
dMxdt = SX.sym( dMxdt’, NT+1, NC-1) #Component wise holdup
dxdt = SX.sym(’dxdt’, NT+1, NC-1) #Rate of change of comp

#Vapor flows (assumed constant, no dynamics)
for i in range(1,NT):
Vi[i—1] = VB
if i—1 >= NF:
Vi[i—1] = Vi[i—1] + (1—qF)*F
Vi[NT—-1] = float (’'Inf")

#Liquid flows (Wier formula)
Li[0] = float(’Inf")
for i in range (1 ,NT):
if i <= NF-1:
Li[i] = LOb + (M[i]-Muw)/taul
else:
Li[i] = LO + (M[i]-Muw) /taul

#Top tray liquid
Li[NT-1] = L.T

#Vapor Liquid equilibrium
for i in range (0 ,NT—1):
for j in range(0,NC-1):
yli,j] = (x[i,j]+alpha)/(1+(alpha—1)*x[i,]j])
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88 #Partial Reboiler
dMdt[0] = Li[l1] — Vi[0] — B
90 for i in range(0,NC-1):
dMxdt[0,i] = Li[1]#x[1,i] — Vi[0]*y[0,i] — B*x[0,]]
92
#Stripping and Enrichment sections
94 for 1 in range(1,NT—1):
dMdt[i] = Li[i+1] — Li[i] + Vi[i-1]-Vi[i]
96 for j in range(0,NC-1):
dMxdt[i,j] = Li[i+1]*x[i+1,j] — Li[i]*x[i,]]
98 + Vi[i—1]ky[i—1,j] =Vi[i]*y[i,j]
#Correction for feed stage
100 dMdt [NF-1] = dMdt[NF-1] + F
for j in range(0, NC-1):
102 dMxdt [NF—1,j] = dMxdt [NF—1, j] 4+ Fxx[NT]
104 #Total Condenser
dMdt [NT—1] = Vi[NT-2] — Li[NT—1] — D
106 for j in range(0,NC-1):
dMxdt [NT—1,j] = Vi|[NT—2]#y[NT—2,j] — Li[NT—1]*x[NT—1,j]
108 — Dxx[NT—1,j]
110 #CSTR Model
kl = params|[’cstr’ ][ 'kl ]
112 dMdt[NT] = F.0 + D — F
for j in range(0,NC-1):
114 dMxdt [NT, j] = F_0%zF0[j] + D+x[NT—1,j] — Fxx[NT,j]

— kI«M[NT]*x[NT, j ]
116
for i in range (0, NTH1):

118 for j in range(0, NC-1):

dxdt[i,j] = (dMxdt[i,j]—x[1,j]*dMdt[i]) /M][i]

120
xdot = vertcat (dxdt ,dMdt)
122
return t, states, xdot, inputs
1|#!/opt/local /bin/python
# —+— encoding: ascii —x—
3 399
@purpose: Distillation column and CSTR model to be used in
pathfollowing
5 method
@author: Brittany Hall
7 @date: 09.11.2017
@version: 0.1

9 @updates:
11| from numpy import zeros
from objective import =x
13
def ColCSTR_pf(p):

15 prob = {’neq’: 0, ’niq’: 0, ’cin’: 0, ’ceq’: 0,
"dp_in’:0, ’dp_eq’:0, hess’:0, ’lxp’:0,
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'x":0, ’name’:0}
prob [’ neq’] = 2000 #Number of equality constraints
prob [ 'niq ] 0 #Number of inequality constraints
prob[ 'name’] = ’Distillation Column A + CSTR Model’
prob [ ’x’ ] = zeros ((2,1))
prob[’obj’] = lambda x,y,p,N: objective (x,y,p,N)

return prob

#!/opt/local /bin/python
# —x— encoding: ascii —%—
@purpose: solving optimal control problem
@author: Brittany Hall
@date: 07.10.2017
@version: 0.1
@updates:
from casadi import x
from numpy import ones, zeros, multiply , append
import scipy.io as spio

def itPredHorizon (Xk, w, w0, lbw, ubw, lbg, ubg, g, J, params,
count , ssoftec, d):

#extracting parameter variables

nx = params| prob’ ][ 'nx’] #Number of states
nu = params| prob’ ][ ’nu’] #Number of inputs
nk = params|[ 'prob’ ][ 'nk’]

tf = params][’prob’ ][’ f7]

h = params[ 'prob’ ][ ’h’]

ns = params[ prob’ ][ 'ns’]

x_min = params| 'bounds’ ][ x_min’]

x.max = params | bounds’ ][ x_max’]

u_min = params| bounds’ ][ u_min’]

u_max = params| bounds’ ][ u.max’]

NT = params | ’model ’ ][ 'NT’ ]

)

f = params[ 'model’ ][ ']
xdot_val_rf_ss = params[ 'model’ ][ xdot_val_rf_ss’]
x = params| 'model’ ][ 'x ]

u = params| ‘model ][ 'u’]

u_opt = params| model’]]

pf = params|’'price’ ]|
pV = params|[ 'price’ ][ 'p
pB = params|[’price’ ]|
pD = params| ’price ]|

F_0 = params[’dist’ ][ 'F.0"]

MDs = params |’ gain’|[ ’MDs’]
MBs = params|[’gain’ ][ 'MBs’ |
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Ds = params|’'gain’ ][ 'Ds’]
Bs = params|[’gain’][ 'Bs’]

= params| 'colloc’ ][ 'C’]
= params | 'colloc’ ][ 'D’]
= params|’colloc ][ ’h’]

50 Q
|

delta_t = params|[’ weight ][ delta_t ]
alpha = params|[ weight’ ][ alpha’]
beta = params|’weight ][ *beta ']

gamma = params | weight ][ ’gamma’ |
Qmax = params [ Qmax’]

for k in range(0,nk):
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#New NLP variable for control

Uk = MX.sym( 'U_"+str ((iter)*nk+k) ,nu)
w = vertcat (w,Uk)

lbw = append (lbw,u_min)

ubw = append (ubw,u_max)

indexU = iterxnk 4+ k

w0 = append (w0,u[: ,indexU])

Jcontrol = mtimes(transpose(multiply (Qmax|[nx:nx+nu],
Uk — u_opt)), (Uk — u_opt))

#State at collocation points
SumX1 = 0
Xkj = {}
for j in range(0,d):
Xkj[str(j)] =MX.sym(’'X_" 4+ str((iter)snk + k)
+’ _+str(j+1), nx)
w = vertcat (w, Xkj[str(j)])
lbw = append (lbw, x_min)
ubw = append (ubw, x_max)
w0 = append (w0, x[iter+1,:])
count 4= 1

#Loop over collocation points
Xk_end = D[0] * Xk
for j in range(0,d):
xp = C[0,j+1] * Xk
for r in range(0,d):
xp = xp + C[r+1,j+1] * Xkj[str(r)]

#Append collocation equations

£ = F(XKj[str(j)],UK)

g = vertcat (g, hxfj—xp)

lbg = append(lbg, zeros((nx,1)))
ubg = append(ubg, zeros((nx,1)))
#Add contribution to the end state
Xk_end = Xk_end + D[j+1]«Xkj[str(j)]

#New NLP variable for state at end of interval

Xk = MX.sym( 'X_"4 str((iter)*nk + k), nx)
w = vertcat (w, Xk)
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lbw = append (lbw, x_min)
x-maxEnd = ones ((2«NT+2,1))
x-maxEnd [0,0] = 0.1
x-maxEnd [2xNT+1,0] = 0.7
ubw = append (ubw, x maxEnd)
w0 = append (w0, x[iter +1,:])
w0 = w0.reshape(len(w0) ,1)
count 4= 1

#Add equality constraint
g = vertcat (g, Xk_end—Xk)
lbg = append(lbg, zeros((nx,1)))
ubg = append (ubg, zeros((nx,1)))

Jecon = (pf*F_0 + pV«Uk[1l] — pBxUk[4]
— pDxUk[3]) * delta_t

Jstate = mtimes(transpose (multiply (Qmax[0:nx],
(Xk —xdot_val_rf_ss))) ,(Xk — xdot_-val_rf_ss))xdelta_t

J = J + alphaxJcontrol 4+ gammaxJstate + betaxJecon

return J, g, w0, w, lbg, ubg, lbw, ubw, Xk, params, count, ssoftc

#!/opt/local /bin/python
# —x— encoding: ascii —x—
@purpose: Solving optimal control problem
@author: Brittany Hall
@date: 10.11.2017
@version: 0.1
@Qupdates:
9
from casadi import x
from numpy import ones, zeros, multiply, append
import scipy.io as spio

def itPredHorizon_pf(Xk, V, cons, obj, params, iter, ssoftc):

#Extracting parameters
NT = params|[’dist ][ 'NT’]

sf = params|[ model ][ 'sf ]

xdot_val_rf_ss = params[ 'model’ ][ xdot_val_rf_ss’]
u_opt = params[ 'model’|[ u_opt’]

pf = params|[ ' price’|[ 'pf’]

pV = params|[ ' price’ ][ 'pV’]

pB = params|[ ' price’ ][ 'pB’]

pD = params|[ ' price’ ][ 'pD’]

F_0 = params[’dist ][ ’F_.0"]

C = params|[’colloc ][ ’C
D = params[’colloc ][ 'D’]
h = params[’colloc’ ][ h’]

delta_t = params[’ weight’|[ delta_time ']
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Qmax = params [ ’Qmax’]

) 7

nx = params| prob’ ][ 'nx’]
nu = params| 'prob’ ][ 'nu’]
nk = params[ 'prob’ ][ 'nk’]
d = params| 'prob’][’d’]
ns = params| prob’ ][ 'ns’]
count = 0

for k in range(0,nk):
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#New NLP variable for control

Uk = MX.sym('U_"+str ((iter )*nk+k), nu)

V = vertcat (V,Uk)

Jcontrol = mtimes(transpose (multiply (Qmax[nx:nx+nu],
Uk — u_opt)), (Uk — u_opt))

#State at collocation points
SumX1 = 0
Xkj = {}
for j in range(0,d):
Xkj[str(j)] =MX.sym(’'X_" + str((iter)snk + k)
+7 _4str(j+1), nx)
V = vertcat (V,Xkj[str(j)])
count 4= 1

#Loop over collocation points
Xk_end = D[0] * Xk
for j in range(0,d):
xp = C[0,j+1] = Xk
for r in range(0,d):
xp = xp + C[r+1,j+1] = Xkj[str(r)]
#Append collocation equations
fj = sf(Xkj[str(j)],Uk)
cons = vertcat (cons, hxfj — xp)

#Add contribution to the end state
Xk_end = Xk_end + D[j+1]xXkj[str(j)]

#New NLP variable for state at end of interval
Xk = MX.sym(’X_'4+ str ((iter)snk + k), nx)

V = vertcat (V, Xk)

#Add equality constraint

cons = vertcat (cons, Xk_end—Xk)

Jecon = (pf*F_0 + pV«Uk[1] — pB«Uk[4] —
pDxUk[3]) xdelta_t
Jstate = mtimes(transpose(multiply (Qmax[0:nx],

(Xk —xdot_val_rf_ss))),(Xk — xdot_val_rf_ss))xdelta_t

#Compute rotate cost function
fm = sf(Xk, Uk)

alpha =1
beta = 1
gamma = 1
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obj = obj + alphaxJcontrol + gammaxJstate 4+ betaxJecon

return obj, cons, V, Xk, params, ssoftc

#!/opt/local /bin/python

# —x— encoding: ascii —%—
@purpose: NLP solver
@author: Brittany Hall
@date: 18.09.2017
@version: 0.1
@updates:

%99

from casadi import x

def nlp_solve(problem, options, x0, lbx, ubx, lbg, ubg):

99

NLP solver for initial conditions to path—following algorithm

7N

#Formulating NLP to solve
solver = nlpsol(’solver’, ’ipopt’, problem, options)
sol = solver (x0=x0, lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg)

return sol

#!/opt/local/bin/python
# —x— encoding: ascii —k—
%99
@purpose: Used to reshape the data to make it easier for plotting
@author: Brittany Hall
@date: 08.10.2017
@version: 0.1
@updates:
from numpy import array, zeros, reshape, delete, size
from casadi import

def plotStates(data, lb, ub, N, params):
#unpacking params
nu = params| 'prob’ ][ ’nu’]
nx = params| prob’ ][ 'nx’]
ns = params | 'prob’ ][ 'ns’]
nk = params[ 'prob’ ][ 'nk’]
d = params[ 'prob’][’d’]

#Optimized initial state

x0_opt = data[0:nx]

index = range (0,nx)

data = delete (data,index)

data = reshape(data, ((nu 4+ (nx4ns)*d 4+ (nx4ns)) ,Nxnk))
u_nlp_opt = data[0:nu,0:Nxnk]

data = data[nu: ,:]

1b0 = 1b [0:nx+ns |

Ib = delete (1b,range(0,nx))
#print where(1b!=0) [0]
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Ib = reshape(lb,(nu+(nx+ns)*d+(nx+ns) ,Nxnk))
IbU = 1b [0:nu, 0:Nxnk]

Ib = 1b[nu: ,:]

ub0 = ub[0:nx+ns]

ub = ub[nx:]

ub = reshape (ub, (nu+(nx+ns)*xd+(nx+ns) ,Nxnk))
ubU = ub[0:nu,0:Nxnk]

ub = ub[nu: ,:]

#Preparing matrix for plotting
nState = (nx+ns) + Nknkx*(d+1)=(nx+ns)
nPoint = nState/(nx+ns)
plotState = zeros ((nx+ns,nPoint))
for i in range(0,nx):

plotState [i,0] = x0_opt[i]
plotLb = zeros ((nx+ns, nPoint))
plotLb[:,0] = 1b0
plotUb = zeros ((nx+ns,nPoint))
plotUb[:,0] = ub0

#Extract states from each colloc point at each time horizon
sInd = 1 #initial index row
for i in range (0 ,Nxnk—1):
temp = data[:,i]
numCol = size (temp, axis=0)
numRow = numCol/(nx+ns)
temp = reshape (temp, (nx+ns ,numRow) )
plotState [:,sInd : (numRow+sInd)] = temp
tempLb = 1b [:, 1]
tempLb = reshape (tempLb, (nx+ns,numRow))
plotLb [:, sInd : (numRow+sInd )] = tempLb
tempUb = ub|[:,i]
tempUb = reshape (tempUb, (nx+ns,numRow))
plotUb [:, sInd : (numRow+sInd )| = tempUb

sInd += numRow

return u_nlp_opt, plotState

#!/opt/local /bin/python

# —x— encoding: ascii —x—
@purpose: Predictor corrector
@author: Brittany Hall
@date: 08.10.2017
@version: 0.1
@updates:

99N

from casadi import =x

from qp-solve import x

from numpy import zeros, shape

def predictor_corrector (problem, p_init, p-_final, x_init, y_init,
delta_t , lb_init , ub_init, verbose_level , N):
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p = p-init
pp = SX.sym( 'pp’)
theprob = lambda p: problem (pp)

prob = theprob(p)

t =0

alpha_1 = 0.5

iter = 0 #iteration number

elapsedqp = 0
numX = shape(x_init) [0]
x0 = zeros (numX)

if verbose_level:
print (’Solving problem %s \n’, prob[ name’])
print (’Iteration delta_t t Success\n")

p-0 = p_init
while t<=1:
#Calculating the step
tk = t + delta_t
p-t = (1—-tk)*p_0 +tkxp_final
step = p_t 4+ p_init

#Updating bound constraints
if 1b_init.any():

Ib = lb_init —x_init

ub = ub_init—x_init
elif not lp_init:

lb = array ([])

ub = array ([])

#Solve QP problem

y, gqp-val, qp_exit, lam_qpopt, mu_gpopt, gptime = gp_solve(
prob, p, x_init, y_init, step, lb, ub, N, x0, lb_init, ub_init)

elapsedqp += qptime

raw_input ()
if gp_-exit = ’infeasible ":#QP infeasible
delta_t = alpha_1xt #shorten step

t =t — delta_t
#Print out iteration number and failure
iter = iter 4+ 1

success = 0
if verbose_level:
print "%f %t %t %d’ %(iter , delta_t, t, success

else:#Q)P feasible
#Update states, multipliers, parameter and time step
x_init = x_init + y
y-init ['lam_x’] = y_init[’lam_x’] + lam_gpopt[’lam_x’]
t =t + delta_t
p-init = p_t
#Print out iteration number and success
iter = iter 4+ 1
success = 1
if verbose_level:
print "%f %t %t %d’> %(iter , delta_t, t, success
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if (1-t) <= le—5:
break

return x_init , y_init, elapsedqp

#!/opt/local/bin/python

# —x— encoding: ascii —x—
@purpose: Solving a QP
@author: Brittany Hall
@date: 08.10.2017
@version: 0.1
@updates:

” NN

from numpy import where, multiply , shape, all

from casadi import

from params import params

from objective import objective

import time

, isman, array

def gp_solve(prob, p_init, x_init, y_init, step, 1b, ub, N, x0,
lb_init , ub_init):

7N

QP solver for path—following algorithm

inputs: prob — problem description
p — parameters
x_init — initial primal variable
y_init — initial dual variable
step — step to be taken (in p)
Ib_init — lower bounds
ub_init — upper bounds
verbose_level — amount of output text
N — iteration number
outputs: y — solution primal variable
qp-val — objective function value
qp-exit — return status of QP solver
#Importing problem to be solved
neq = prob|[ 'neq’] #Number of equality
constraints
niq = prob [’ niq’] #Number of inequality
constraints
name = prob [ 'name’ | #Name of
problem
-, g, H, Lxp, ecst, -, -, Jeq, dpe, - = objective(x_.init ,

y-init ,p_init ,N,params)

#Setting up QP
f = mtimes(Lxp,step) + g
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#Constraints
ceq = cst
Aeq = Jeq

beq = mtimes (dpe,step) + ceq

#Check Lagrange multipliers from bound constraints
lamC = fabs(y_-init[’lam_-x"])
#setting limits to determine if constraint is active

BAC = where (lamC >= le—3)

#Finding active constraints
nmmBAC = len (BAC)
for i in range (0,numBAC):
#Placing strongly active constraint on boundary
indB = BAC[1i]
#Keeping upper bound on boundary
ub[indB] = 0
Ib [indB] = 0

#Solving the QP
ap = {}

gp|[’h’] = H.sparsity ()

gp|’a’] = Aeq.sparsity ()

#optimize = conic(’optimize’,’ qpoases’,qp,{ sparse ':True})
optimize = conic( optimize’,’ gurobi’ ,qp,{})

startqp = time.time ()

optimal = optimize (h=H, g=f, a=Aeq, lba=beq, uba=beq, lbx=lb, ubx

=ub, x0=x0)

elapsedqp = time.time()—startqp

x_qpopt = optimal[’x’] #primal solution
y = xX_qpopt

qp-val = optimal[’ cost '] #optimal cost
lam_gpopt = optimal[’lam_a’] #dual solution—linear bounds
mu_qpopt = optimal[’lam_x’] #dual solution—simple bounds

if isnan(array(x_qpopt[0])):
qp-exit “infeasible’
else:
qp-exit = “optimal’

return y, gp-val, qp_exit, lam_qpopt, mu_qpopt, elapsedqp

#!/opt/local/bin/python
# —x— encoding: ascii —k—

99

39N

@purpose: Computing objective function values
@author: Brittany Hall

@date: 11.10.2017

@version: 0.1

@updates:

from numpy import size , transpose, multiply
import scipy.io as spio
from itPredHorizon import x
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APPENDIX B. PYTHON CODE

from params import x

def compObjFn(uOpt, xActual):

#prices

pf = params|[’'price’|[ 'pf’]
pV = params| ’price’ ][ 'pV’]
pB = params|[ 'price’ ][ 'pB’]
pD = params|[ ' price’ ][ ’'pD’]

#Setpoints
F_0 = params[’dist’|[ 'F_.0"]

#Steady—state values
data = spio.loadmat(’CstrDistXinit.mat’, squeeze_me=True)
Xinit = data[’ Xinit ']

xs = Xinit [0:84]
us = Xinit [84:]
nx = size(xs, axis 0)
nu = size(us, axis = 0)

#Loading in objective function weights

data = spio.loadmat(’Q.mat’, squeeze_me = True)
Qmax = data[’Q’]
cl = —0.05 #noise
Iss —0.256905910000000 + cl1 #ss obj fxn value

#Defining objective function
Jecon = pf*F_0 + pVxuOpt[1] — pBxuOpt[4] — pD*xuOpt[3]

Jcontrol = mtimes(transpose (multiply (Qmax|[nx:nx+nu],
uOpt — us)), (uOpt — us))
Jstate = mtimes(transpose(multiply (Qmax[0:nx],

(xActual —xs))) ,(xActual — xs))

J = Jecon + Jcontrol + Jstate —Iss

print (’ \n’)
print (" Jecon: %f,\n Jcontrol: %f, \n Jstate: %f, \n”
%(Jecon, Jcontrol, Jstate))

Jobj = {}
Jobj['reg’] =17
Jobj[’econ’] = Jecon

return Jobj

#!/opt/local /bin/python
# —x— encoding: ascii —x—
@purpose: Plots the results (INMPC vs pINMPC)
@author: Brittany Hall
@date: 08.11.2017
@version: 0.1
@updates:
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import matplotlib.pyplot as plt
import scipy.io as spio

from numpy import reshape, append, hstack, linspace, ones, transpose,

vstack
from params import params

def plotting (u0, xmeasure, MPCit, T):

NT = params|[’dist ][ 'NT’]
NF = params|[’dist ][ 'NF’]

#Loading in steady state data
data = spio.loadmat(’CstrDistXinit.mat’,
squeeze_me = True, struct_as_record=False)
Xinit = data[’ Xinit ']
xf = Xinit [0:84]
u-opt = Xinit [84:]

#Loading in iNMPC results

data_ideal = spio.loadmat ( INMPC.mat’ ,squeeze_me = False)
uAll = data_ideal [ ideal’ ][ uAll’]

uAll = uAll[0,0]

xmeasureAll = data_ideal|’ideal ][ ’xmeasureAll’]
xmeasureAll = xmeasureAll[0,0]

ObjReg = data_ideal[’ideal ’][ ObjReg’]

ObjReg = transpose (ObjReg[0,0])

ObjEcon = data_ideal[’ideal’ ][ ObjEcon’]

ObjEcon = transpose (ObjEcon[0,0])

T = data_ideal [ ideal > ][ T’]

mpcit = data_ideal[’ideal ][ mpciterations’]

#Loading in iINMPC MATLAB results

data_iMat = spio.loadmat (’iNmpcData.mat’,squeeze_me = False)
xmeasureAll_mat = data_iMat [ xmeasureAll’]

uAll_mat = data_iMat [ uAll’]

ObjReg_mat = transpose(data_iMat [ ObjReg’])

ObjEcon_mat = transpose(data_iMat [ ObjEcon’])

#Loading in pfNMPC results

#data_pf = spio.loadmat ('pfNMPC.mat’, squeeze_me = True)
#uAll_pf = data_pf [ pfINMPC’][’uAll’]

#xmeasureAll_pf = data_pf[ pfNMPC’][ > xmeasureAll 7]
#0bjReg_pf = data_pf [ pINMPC’][ " ObjReg ]

#0bjEcon_pf = data_pf[ pNMPC’]| [’ ObjEcon ’]

nu = u0.shape [0]

uAll = uAll.reshape(nu, MPCit, order="F’").copy ()
uAll_mat = uAll_mat.reshape(nu, MPCit,order="F").copy ()
#uAll_pf = reshape(uAll_pf,(nu,MPCit))

#Add initial control

u0_.0 = reshape(u0[:,0],(nu,1))

uAll = hstack ((u0.-0, uAll))
uAll_mat = hstack ((u0-0, uAll_mat))
#uAll_pf = append(u0[:,0], uAll_pf)
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APPENDIX B. PYTHON CODE

#Add initial states

xmeasure = reshape (xmeasure ,( xmeasure.shape[0],1))
xmeasureAll = hstack ((xmeasure ,xmeasureAll))
#xmeasureAll_pf = hstack (xmeasure , xmeasureAll_pf)

x = linspace (0, MPCit, MPCit/T)
xi = append (0,x)

#Plotting

#Figure: Objective function comparison

plt.plot (x,0ObjReg, 'g’, x, ObjEcon, ’'b’, x, ObjReg.mat, ’'ro’, x,
ObjEcon_mat, ’kx’)

plt.title (’Objective function’)

plt . xlabel ( "Number of MPC iteration [—]7)

plt.ylabel (’Objective function [—]’)

plt.legend ([ INMPC: Full—Python’, ’iINMPC: Economic—Python’, ’'iNMPC:
Full—Matlab’, ’iNMPC: Economic—Matlab’])

plt .show ()

#Figure: Concentration at stage 1 (reboiler)

plt.plot (xi,xf[0]*ones(MPCit+1),’r’, xi, xmeasureAll[0,], g’ , xi
[0:150], xmeasureAll_mat[0,], bo”)

plt.ylabel (’Concentration [—]’)

plt.xlabel (’Time [min] ")

plt.title (’Distillation: Bottom Composition’)

plt.legend ([ 'Steady—state ’, INMPC-Python’, ’'iNMPC-Matlab’])
plt.show ()

#Figure: Concentration at feed stage

plt.plot (xi, xf[NF]*ones (MPCit+1), ’r’ ,xi,xmeasureAll [NF,], 'g’, xi
[0:150], xmeasureAll_mat [NF,], 'bo’)

plt.ylabel (’Concentration [—]’)

plt.xlabel (’Time [min] ")

plt.title (’Distillation: Feed Composition’)

plt .legend ([ 'Steady—state ’, INMPC-Python’ , "iNMPC-Matlab ' ])

plt .show ()

#Figure: Concentration at stage NT (top)

plt.plot (xi, xf[NT]*ones (MPCit+1), ’r’,xi,xmeasureAll [NT,], g’ xi
[0:150] ,xmeasureAll_mat [NT,], "bo’)

plt.ylabel (’Concentration [—]")

plt.xlabel (’Time [min] ")

plt.title (’Distillation: Top Composition’)

plt.legend ([ 'Steady—state ’, INMPC—Python ', ’'iNMPC-Matlab’])

plt .show ()

#Figure: Concentration in CSTR

plt.plot (xi,xf[NT+1]«xones (MPCit+1), ’r’,xi,xmeasureAll [NT+1,], g’
xi[0:150], xmeasureAll_mat [NT+1,], bo’)

plt.ylabel (’Concentration [—]’)

plt.xlabel (’Time [min] ")

plt.title (’CSTR: Concentration’)

plt.legend ([ ’Steady—state ', INMPC-Python’, INMPC-Matlab’])
plt.show ()
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113
#Figure: Holdup in CSTR
115 plt. plot (xi,xf[2«NT—1]*ones (MPCit+1), 'r’,xi,xmeasureAll [2«NT—-1,],
'g’, xi[0:150], xmeasureAll_mat[2*NT—1,], bo”)
plt. ylabel( Holdup [—]7)

117 plt.xlabel (’Time [min] ")
plt.title (’CSTR: Holdup’)

119 plt .legend ([ 'Steady—state ’, INMPC—Python’, ’'iNMPC-Matlab ’])
plt .show ()

121

#Figure: u[0] LT control input

123 plt.plot(xi, u-opt[0]xones(MPCit+1), 'r’, xi, uAll[0,],’g’, xi,
uAll_mat [0,], ’bo’)

plt.ylabel ('LT [m"3/min]| ")

125 plt.xlabel (’Time [min] ")
plt.title (’Control input for LT’)

127 plt.legend ([ ’Steady—state ', INMPC-Python’, ’INMPC-Matlab’])
plt.show ()

129

#Figure: u[l] VB control input

131 plt.plot(xi, u_opt[l]*ones(MPCit+1), ’r’, xi, uAll[l,],’g’ ,xi,
uAll_mat [1,], bo’)

plt.ylabel ("VB [m"3/min] ")

133 plt . xlabel (’Time [min] ")
plt.title (’Control input for VB’)

135 plt.legend ([ 'Steady—state ', ’INMPC-Python’, ’'iNMPC-Matlab’])
plt .show ()

137

#Figure: u[2] F control input

139 plt.plot(xi, u_opt[2]*ones(MPCit+1), ’r’, xi, uAll[2,],’g’, xi,
uAll_mat [2,], ’bo”)

plt.ylabel ('F [kmol/min] ")

141 plt.xlabel (’Time [min] )
plt.title (’Control input for F’)

143 plt .legend ([ 'Steady—state >, ’INMPC—Python’, ’'iINMPC-Matlab’])
plt .show ()

145

#Figure: u[3] D control input

147 plt.plot(xi, u-opt[3]*ones(MPCit+1), 'r’, xi, uAll[3,], g’ ,xi,
uAll_mat [3,], ’bo’)

plt . ylabel (’D [kmol/min]| ")

149 plt.xlabel (’Time [min] ")
plt.title (’Control input for D’)

151 plt.legend ([ ’Steady—state ’, 'iNMPC-Python’, ’INMPC-Matlab’])
plt .show ()

153

#Figure: u[4] B control input

155 plt.plot(xi, u_opt[4]*ones(MPCit+1), 'r’, xi, uAll[4,],’g’, xi,
uAll_mat [4,], bo’)

plt.ylabel (’B [kmol/min] ")

157 plt.xlabel (’Time [min]|’)
plt.title (’Control input for B’)

159 plt.legend ([ 'Steady—state ’, ’INMPC-Python’, ’'iNMPC-Matlab’])
plt .show ()
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